首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In order to assess pollutants and impact of environmental changes in the coastal region of the Jordanian Gulf of Aqaba, concentrations of six metals were traced through variations in 5 years growth bands sections of recent Porties coral skeleton. X-radiography showed annual growth band patterns extending back to the year 1925. Baseline metal concentrations in Porites corals were established using 35 years-long metal record from late Holocene coral (deposited in pristine environment) and coral from reef that is least exposed to pollution in the marine reserve in the Gulf of Aqaba. The skeleton samples of the collected corals were acid digested and analyzed for their Cd, Cu, Fe, Mn, Pb and Zn content using Flame Atomic Absorption Spectrophotometer (FAAS). All metal profiles (except Fe and Zn) recorded the same metal signature from recent coral (1925–2005) in which low steady baseline levels were displayed in growth bands older than 1965, similar to those obtained from fossil and unpolluted corals. Most metals showed dramatic increase (ranging from 17% to 300%) in growth band sections younger than 1965 suggesting an extensive contamination of the coastal area since the mid sixties. This date represents the beginning of a period that witnessed increasing coastal activities, constructions and urbanization. This has produced a significant reduction in coral skeletal extension rates. Results from this study strongly suggest that Porites corals have a high tendency to accumulate heavy metals in their skeletons and therefore can serve as proxy tools to monitor and record environmental pollution (bioindicators) in the Gulf of Aqaba.  相似文献   

2.
In order to monitor pollutants from urban areas to coral reefs, metal contents in Porites coral samples collected from the Hija River mouth and at nearby sites from the estuary were analyzed. The corals were cleaned by oxidative and reductive treatments to effectively eliminate detritus and organic materials. Metal-to-calcium (Me/Ca) ratios in the samples were determined by ICP-MS. Filtered samples of river water were also measured similarly for metal concentrations. The extent of anthropogenic contribution by riverine input was assessed by comparing the Me/Ca values in corals to those of Rukan-sho, an unpolluted coral reef. High riverine inputs of Mn, Cd, Zn and Ag were observed from Me/Ca values in the coral samples. Manganese in the coral samples showed strong dependence on salinity, varying inversely to the distance from terrestrial sources. Considering a lead background of 25.0 nmol/mol measured in the Rukan-sho corals, Pb/Ca in corals of the Hija River estuary that are two and three times higher may indicate lead enrichment in the river mouth. Because Pb is only moderately high in the Hija River water compared to its concentration in surface seawater, lead may have accumulated in the estuarine water and sediments, resulting in an elevated concentration of lead available for coral uptake.  相似文献   

3.
Several coastal rocky shores in northern Chile have been affected by the discharges of copper mine tailings. The present study aims to analyze the chemical speciation of heavy metals in relation to the diversity of sessile species in the rocky intertidal benthic community on the northern Chilean coast, which is influenced by the presence of copper mine tailings. In particular, the chemical forms of Cd, Cu, Fe, Mn, Ni, Pb and Zn in beach sediment samples collected in the area influenced by El Salvador mine tailings were studied using a sequential chemical extraction method. In general, all the elements present a maximum concentration in the area near the actual discharge point (Caleta Palito). With regard to Cu and Mn, the concentrations range between 7.2-985 and 746-22,739 microg/g respectively, being lower than background levels only in the control site of Caleta Zenteno. Moreover, the correlation coefficients highlight that Fe, Mn and Ni correlate significantly and positively in the studied area, showing a possible common, natural origin, whilst Cu shows a negative correlation with Fe, Mn and Ni. It could be possible that Cu has an anthropogenic origin, coming from mining activity in the area. Cd, Fe, Mn, Ni, Pb and Zn are mostly associated with the residual phase, whilst Cu presents a different speciation pattern, as resulted from selective extractions. In fact, Cu is highly associated with organic and exchangeable phases in contaminated localities, whilst it is mainly bound to the residual phase in control sites. Moreover, our results, compared to local biological diversity, showed that those sites characterized by the highest metal concentrations in bioavailable phase had the lowest biodiversity.  相似文献   

4.
Leachate derived from bioleaching process contains high amount of metals that must be removed before discharging the water. Aspergillus fumigatus was isolated from a gold mine tailings and its ability to remove of As, Fe, Mn, Pb, and Zn from aqueous solutions and leachate of bioleaching processes was assessed. Batch sorption experiments were carried out to characterize the capability of fungal biomass (FB) and iron coated fungal biomass (ICFB) to remove metal ions in single and multi‐solute systems. The maximum sorption capacity of FB for As(III), As(V), Fe, Mn, Pb, and Zn were 11.2, 8.57, 94.33, 53.47, 43.66, and 70.4 mg/g, respectively, at pH 6. For ICFB, these values were 88.5, 81.3, 98.03, 66.2, 50.25, and 74.07 mg/g. Results showed that only ICFB was found to be more effective in removing metal ions from the leachate. The amount of adsorbed metals from the leachate was 2.88, 21.20, 1.91, 0.1, and 0.08 mg/g for As, Fe, Mn, Zn, and Pb, respectively. The FT‐IR analysis showed involvement of the functional groups of the FB in the metal ions sorption. Scanning electron microscopy revealed that surface morphological changed following metal ions adsorption. The study showed that the indigenous fungus A. fumigatus was able to remove As, Fe, Mn, Pb, and Zn from the leachate of gold mine tailings and therefore the potential for removing metal ions from metal‐bearing leachate.  相似文献   

5.
The influence of large‐scale mining operations on groundwater quality was investigated in this study. Trace element concentrations in groundwater samples from the North Mara mining area of northern Tanzania were analyzed. Statistical analyses for relationships between elemental concentrations in the samples and distance of a sampling site from the mine tailings dam were also conducted. Eleven trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were determined, and averages of Fe and Al concentrations were higher than levels accepted by the Tanzanian drinking water guideline. Levels of Pb in three samples were higher than the World Health Organization (WHO) and United States Environmental Protection Agency (USEPA) drinking water guidelines of 10 and 15 µg/L, respectively. One sample contained a higher As level than the WHO and USEPA guideline of 10 µg/L. The correlation between element concentrations and distance from the mine tailings dam was examined using the hierarchical agglomeration cluster analysis method. A significant difference in the elemental concentration existed depending on the distance from the mine tailings dam. Mann–Whitney U‐test post hoc analysis confirmed a relationship between element concentration and distance of a sampling site from the mine tailings dam. This relationship raises concerns about the increased risks of trace elements to people and ecosystem health. A metal pollution index also suggested a relationship between elemental concentrations in the groundwater and the sampling sites’ proximity from the mine tailings dam.  相似文献   

6.
Trace metals in coral tissue and skeleton have been investigated in various ways since the early seventies. More recently it has been suggested that the symbiotic zooxanthellae may play an important role in the accumulation and regulation of trace metals. Furthermore gamete development and mucus production may influence the metal accumulation and loss in corals. Many studies have attempted to use the annual growth bands in coral skeletons to investigate historical pollution events. However the relationship between the metal concentrations in the surrounding environment and the incorporation of this into coral skeleton is not well understood. This paper explains a method for investigating metal loads in coral tissue, zooxanthellae and skeleton. Furthermore, it presents new information suggesting that zooxanthellae accumulate most metals (Al, Fe, As, Mn, Ni, Cu, Zn, Cd, Pb) in greater concentrations than the coral tissue. Coral skeletons had consistently lower metal concentration than the zooxanthellae, tissue and gametes. The loss of zooxanthellae during stress events may have a significant contribution to the total metal loads in corals. The use of corals as biomonitors should carefully factor in zooxanthellae densities and gamete development before conclusions are drawn.  相似文献   

7.
Closely related scleractinian coral species that exhibited similar survival patterns under relatively normal field conditions responded very differently to the occurrence of an environmental disturbance. The two species studied were Porites cylindrica and Porites rus which occur in the same reef zones in shallow reef flats. Transplants of both species were evenly distributed and attached to three different types of substrate: live coral colonies of P. cylindrica, dead coral colonies (also of P. cylindrica), and epoxy coated metal grids that were raised above the sandy substrate. With the onset of above-normal water temperatures due to the El Ni?o episode of 1998, P. cylindrica transplants immediately showed signs of bleaching stress and tissue necrosis, followed by algal overgrowth and mortality soon afterwards. In contrast, transplants of P. rus bleached more slowly and suffered less mortality, with a few actually showing signs of recovery at the end of the experimental period which covered a total of 14 weeks. These differences in responses could be attributed to properties of the symbiotic zooxanthellae, of the host coral tissue itself, or both. Over-all, survival was good on the metal grids (average of 35%), and on the live coral (average of 22%). It was poor on the dead coral (average of 6%). The metal grids as well as live coral tissue apparently provided a favorable substrate for the attached coral fragments, even for those of a different species. Under the conditions of this particular study, attachment of live coral fragments on already dead colonies for the purpose of increasing live coral cover on the reef did not yield favorable results. This is an area that requires further investigation.  相似文献   

8.
In Bermuda, bulk waste such as scrap metal, cars, etc., and blocks of cement-stabilized incinerator ash (produced from burning garbage) are disposed of in a foreshore reclamation site, i.e., a seafill. Chemical analyses show that seawater leaching out of the dump regularly exceeds water quality guidelines for Zn and Cu, and that the surrounding sediments are enriched in multiple contaminant classes (metals, polycyclic aromatic hydrocarbons, petroleum hydrocarbons, dioxins and furans, polychlorinated biphenyls and an organochlorine pesticide), i.e., there is a halo of contamination. When compared against biological effects-based sediment quality guidelines (SQGs), numerous sediment samples exceeded the low-range values (where biological effects become possible), and for Hg and Zn exceeded the mid-range value (where they become probable). A few metres away from the edge of the 25 acre dump lies a small coral patch reef, proposed here as most contaminated coral reef in the world.  相似文献   

9.
Concentrations of dissolved metals (Cd, Cu, Ni, Mn and Zn) were determined for summer and winter, under low-flow conditions in Port Jackson, a microtidal, well-mixed estuary in south-east Australia. Mean concentrations of Cd (0.04+/-0.02 microg/l), Ni (0.86+/-0.40 microg/l), Mn (20.0+/-25 microg/l) and Zn (6.47+/-2.0 microg/l) were below water quality guidelines. Concentrations of Cu (1.68+/-0.37 microg/l), however, slightly exceeded recommended values. Dissolved Ni and Mn behaved mostly conservatively, whereas Cd, Cu and Zn showed mid-estuarine maxima. Peaks in Cd, Cu and Zn concentrations were located in the upper estuary, independent of the salinity and suspended particulate matter loading, and were consistent with anthropogenic inputs of metals in the estuary. Concentrations of dissolved Cu were highest in summer, whereas concentrations of Cd, Ni and Mn were significantly lower in summer than winter (P< or =0.05). The increase in temperature and biological activity during summer explained the seasonal variation. The sequence of log K(d) values (20-30 salinity) was Mn>Zn>Cu>Ni. These results give unique information concerning the contemporaneous distribution of dissolved trace metals in the Port Jackson estuary and they provide a data set against which the long-term contamination may be assessed.  相似文献   

10.
Acute toxicity bioassays were conducted on mine tailings produced by pilot plant testing for the proposed Quartz Hill molybdenum mine, which will be situated near Ketchikan, Alaska. Tailings bioassays were conducted in seawater with juvenile coho salmon (Oncorhynchus kisutch), mussel larvae (Mytilus edulis), infaunal amphipods (Rhepoxynius abronius), and euphausiids (Euphausia pacifica). The same general range of mine tailings concentrations was acutely toxic to all four test species with acute effects observed between 61 000 to 277 000 mg l?1 (wet wt) tailings solids (range of 95% confidence limits for LC50 and EC50 values). Chemical analyses of bioassay test solutions and leaching test solutions were conducted for metals (including Cd, Cu, Pb, Zn, Mn and Mo), EPA Priority Pollutant base/neutral organics, and more general parameters such as sulphate, nitrate/nitrite, cyanides, phosphate and ammonia. Parameters possibly contributing to the observed toxicity were complex contaminant mixtures including total suspended solids and heavy metals. The present study provides information related to the marine disposal of mine tailings and shows that these mine tailings present a relatively low level of acutely toxic effects.  相似文献   

11.
Six reef sites were chosen along the west coast of the southern islands of Singapore, at an increasing distance from the densely populated metropolitan area, to study the spatial patterns of coral reef communities on the upper reef slope ( approximately 4m) and the associated environmental conditions. Chronic exposure to high sediment load was the most obvious form of anthropogenic stress. Recruitment rates on ceramic tiles were low (1.4+/-1.0-20+/-14.7 recruits m(-2) yr(-1)) but decreased towards the main island of Singapore as did hard coral cover and coral density. Coral fauna consisted of genera generally found in deeper waters (e.g., fungiids, foliose Oxypora, Leptoseris, and Echinopora) or those well-adapted to turbid waters (e.g., Porites, Pectinia, Leptastrea, Montipora). Light extinction coefficient (K) and % live coral cover (%LCC) showed a strong and inverse curvilinear relationship (%LCC=13.60 *K(-3.40)). Similarly, the rate of sediment deposition (DFSPM) (RR=1.51-0.17 *DFSPM) and water clarity (RR=3.56-2.92 *K) exhibited strong and inverse relationships with recruitment rates (RR). Although measured levels of the downward flux of suspended particulate matter and suspended solids were well within "normal" levels recorded in the literature, it was the proportion of benthic space, generic coral composition, and site history that offered compelling evidence of chronic exposure to increased sediment load. Clearly a reduction in both water clarity and live-coral cover has taken place since monitoring efforts began in the early 1970s, in fact coral cover has more than halved at all sites examined since the 1980s and benthic space was predominantly occupied by dead corals covered with sediment and filamentous algae.  相似文献   

12.
Dissolved Zn, Cu and Cd concentrations in interstitial waters collected from a lacustrine mine tailings deposit indicate that the tailings are not releasing heavy metals to the overlying lake water at present, and there is no evidence to suggest that significant oxidation is occurring in the deposit. The lake waters are enriched in metals from surface drainage, however, while pore waters in natural sediments are heavy-metal-depleted. Diffusion into the natural sediments therefore tends to buffer the lacustrine metal load, but only to a very limited extent.  相似文献   

13.
Effects of dredging on a coral reef are described. Under water light values at a depth of 12–13 m were reduced from about 30% to less than 1% surface illumination. Colonies of coral species which are inefficient sediment rejectors (Porites astreoides) lost their zooxanthellae and died. Calcification rates in Madracis mirabilis and Agaricia agaricites were observed to decrease by 33%. The period of suppressed calcification exceeds that of environmental disturbance.  相似文献   

14.
The Batu Hijau copper–gold mine on the island of Sumbawa, Indonesia operates a deep-sea tailings placement (DSTP) facility to dispose of the tailings within the offshore Senunu Canyon. The concentrations of trace metals in tailings, waters, and sediments from locations in the vicinity of the DSTP were determined during surveys in 2004 and 2009. In coastal and deep seawater samples from Alas Strait and the South Coast of Sumbawa, the dissolved concentrations of Ag, As, Cd, Cr, Hg, Pb and Zn were in the sub μg/L range. Dissolved copper concentrations ranged from 0.05 to 0.65 μg/L for all depths at these sites. Dissolved copper concentrations were the highest in the bottom-water from within the tailings plume inside Senunu Canyon, with up to 6.5 μg Cu/L measured in close proximity to the tailings discharge. In general, the concentrations of dissolved and particulate metals were similar in 2004 and 2009.  相似文献   

15.
A 182-year long record of trace metal concentrations of aluminum, zinc and lead was reconstructed from a massive Porites coral skeleton from southeastern Hong Kong to evaluate the impacts of anthropogenic activity on the marine environment. Zn/Ca and Pb/Ca ratios fluctuate synchronously from the early 19th century to the present, indicating that the marine environment has been anthropogenically influenced since industrialization. Additionally, land reclamation, mining, and ship building activities are recorded by elevated Al/Ca ratios from 1900 to 1950. The coral record indicates that high levels of Zn, Pb and Al occur coincidentally with local wars, and may have contributed to partial colony mortality. Pb/Ca does not correlate well with hemispheric proxy records after 1950, indicating that coastal corals may be recording local rather than hemispheric contamination. Pb/Ca levels in Hong Kong, Guangdong and Hainan corals imply a continuous supply of Pb-based contamination to southern China not reflected in hemispheric signals.  相似文献   

16.
Two closely related scleractinian coral species, Porites cylindrica and Porites rus, were transplanted to two different locations: the natural environment on the reef flat, and culture tanks on land. The use of tanks enabled the regulation of certain environmental factors, and, hence, the evaluation of specific responses of the corals to these factors. For both species, growth and survival were much better in the field than in the land-based tanks most probably due to unrestricted water circulation. Since the two species were subjected to identical experimental treatments, it was possible to distinguish inherent differences between them in terms of responses to external variables. Porites cylindrica was more susceptible than P. rus to predation by corallivores. Predators, as well as grazers, occurred in significant numbers in the field, but not in the land-based tanks. Porites rus, on the other hand, succumbed more readily to overgrowth by macroalgae which thrived in the culture tanks presumably because of significantly higher nutrient levels and the conspicuous absence of grazers. These results have broader ecological implications because of accelerated environmental changes taking place in present-day reefs due to human impact. Major examples are eutrophication and alterations in water circulation which frequently result in sub-optimal conditions for coral survival and growth.  相似文献   

17.
Dietary metal exposure in fish is studied in native red mullet, Mullus barbatus, involving metallothionein (MT) response in the intestine, a primary site for metal uptake. Intestinal MTs (microg mg(-1) proteins), total proteins (mgml(-1) S50), Cu, Zn, Fe, Mn and Cd (microg ml(-1) S50) are considered as indicators of metal exposure in specimens from near-shore and off-shore locations of the Eastern Adriatic Sea. Metallothionein and Cu are statistically significantly higher in 68 specimens from the Kastela Bay, a near-shore area (30.0+/-6.71microg MT mg(-1) proteins; 0.30+/-0.08microg Cu ml(-1) S50), in comparison to 51 specimens from off-shore area, Solta Island (25.9+/-4.21microg MT mg(-1) proteins; 0.26+/-0.09microg Cu ml(-1) S50). Cytosolic Cu, a MT inducer, is significantly correlated (p<0.05, r=0.44) with MT in specimens from the Kastela Bay, independent on fish biometry. Our study indicates that cytosolic intestinal Cu and MT represent a measurable biochemical response in red mullet specimens, dwelling above sediments contaminated with Cu.  相似文献   

18.
Complexation of aqueous elements by DOC in a clay aquitard   总被引:1,自引:0,他引:1  
Reszat TN  Hendry MJ 《Ground water》2007,45(5):542-553
The extent of partitioning of several elements (Cu, Mn, Mo, Ni, Sr, U, and Zn) on dissolved organic carbon (DOC) was investigated in pore water samples collected from a clay-rich aquitard. High DOC concentrations in the aquitard, ranging from 21 to 143 mg C/L, and natural aqueous metal concentrations higher than in most ground water environments facilitated complexation studies at this site. Analyses were conducted using on-line coupling of asymmetrical flow field-flow fractionation with ultraviolet, total organic carbon, and inductively coupled plasma-mass spectrometry detectors. Of the elements investigated, only U and Zn were complexed with all DOC samples, ranging from 2.2 to 60 microg U/g DOC (0.4% to 3% of the total U in the pore water) and 0.04 to 0.5 microg Zn/g DOC (0.1% to 0.9% of the total Zn in the pore water), respectively. Laboratory experiments conducted over a range in pH (1.3 to 9.7) and geochemical modeling supported the measured complexation of U and Zn on the DOC. The in situ association constant, K(d), for U decreased with depth from 76 mL/g C for pore water samples at 2.2 m below ground (BG) to 24 mL/g C at 9.7 m BG. The decrease was attributed to a decrease in aromaticity of the DOC with depth. Zn K(d)constants ranged from 2 to 12 mL/g C and exhibited no trend with depth. Results of the current study suggest minor masses of U and Zn (less than or equal to 4% of total) complex with this DOC under in situ pH conditions. Our data suggest that competitive complexation by other ligands may limit the importance of DOC-facilitated transport of the elements studied in water of similar chemical composition.  相似文献   

19.
Shallow marine sediments and fringing coral reefs of the Buyat-Ratototok district of North Sulawesi, Indonesia, are affected by submarine disposal of tailings from industrial gold mining and by small-scale gold mining using mercury amalgamation. Between-site variation in heavy metal concentrations in shallow marine sediments was partially reflected by trace element concentrations in reef coral skeletons from adjacent reefs. Corals skeletons recorded silicon, manganese, iron, copper, chromium, cobalt, antimony, thallium, and lead in different concentrations according to proximity to sources, but arsenic concentrations in corals were not significantly different among sites. Temporal analysis found that peak concentrations of arsenic and chromium generally coincided with peak concentrations of silica and/or copper, suggesting that most trace elements in the coral skeleton were incorporated into detrital siliciclastic sediments, rather than impurities within skeletal aragonite.  相似文献   

20.
The response of metal accumulation in coral Tubastraea coccinea to various degrees of metal enrichment was investigated from the Yin-Yang Sea (YYS) receiving abandoned mining effluents, the Kueishan Islet (KI) hydrothermal vent field, and the nearshore area of remoted Green Island (GI). The concentrations of most dissolved metals were highest in seawater at YYS, followed by KI, and then GI, showing the effects of anthropogenic and venting inputs on metal levels. Five metals (Co, Fe, Mn, Ni, and Zn) yielded significant differences (p < 0.05) among the skeleton samples. We identified similar patterns in the metal–Ca ratios, indicating that the elevated metals in skeletons was a consequence of external inputs. The coral tissues were relatively sensitive in monitoring metal accumulation, showing significant differences among three locations for Cd, Co, Cu, Fe, Pb, Ni, and Zn. Specific bioconcentration factors provided strong support for the differential metal accumulation in skeletons and tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号