共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
The eutrophication of Lake Taihu is becoming more serious day by day and more urgent to be comprehensively harnessed. The lake sludge is considered as a important polluting factor. To control the internal pollution source of Lake Taihu and restore its water ecological environment, this paper put forward an idea of the dredging for environmental purposes. It was on the basis of the research on the sludge storage and physical/chemical characteristics. The technical keys are sludge-dredging depth, time, method and sludge treatment. The requirements and scheme for the environmental dredging work in Lake Taihu were also analyzed in detail. 相似文献
3.
According to the social and natural conditions of Taihu Lake Basin, the planning objectives and some ideas for water pollution prevention in Taihu Lake and its surrounding river-lake system are proposed. 相似文献
4.
Following the development of local industries, agriculture and the increase of living standard of people, Lake Taihu is in the meso-eutrophication stage. The main eutrophication part in this lake is the Meiling Bay. The dominant phytoplankton species are Microcystis, Anabena, Melosira, Cyclotella and Cryptomonas. In summer, Microcystis spp. occupys 85% of algae biomass and form the water bloom. This causes the trouble for the people lived around the lake, especially for the drinking water of Wuxi City.The Microcystis intrinsic rate was high, the Max. growth rate 1.27. Besides Microcystis own characteristics, its growth depended on irradiation, temperature and nutrients, especially the phosphorus. This paper also discussed the possibility of biomanipulation for restoration of lake ecology and the control strategy of lake eutrophication. 相似文献
5.
Two sediment cores, one 396 cm long from west Taihu Lake, another 246 cm long from east Taihu Lake, are interpreted from the analysis of their magnetic susceptibility, total organic carbon, total nitrogen, total pigments, organic carbon isotope, hydrogen index, saturated hydrocarbons, 14C dating and surficial sediment conditions. The west Taihu Lake core is the longest one studied in this lake so far, and has provided us the most complete environmental and climatic information for this lake. The results from the west Taihu lake core indicate that Taihu Lake has undergone the following stages:from ca.14 300 to 13 300 aB.P. Taihu Lake was in low lake-level, and there existed exposed features from the proxies reflecting arid paleoclimate. From ca.13 300 to 12 400 aB.P. an arid transitional stages occurred with a slightly warmer and wetter climate. From ca. 12 400 to 10 900 aB.P. a period of large climatic fluctuation occurred and from 10900-10 000 aB.P. a warm period developed with deep water and strongly reducing sediments. During ca.10 000-7 200aB.P., a cool transitional period alternating with a warm climate occurred. It was warm and wet during 7 200-5 700aB.P.; some proxies changed violently in 5 050aB.P., reflecting obvious changes in material source and a probable interruption of sedimentation. The east Taihu Lake history from ca. 6 550 to 6 450 aBP, the climate was cold and dry, and gradually turned warm and wet in ca. 6 450-6 050 aBP. It was warm and wet in ca. 6 050-5 800 aBP and had a cold tendency in 5 800-ca. 5 000 aBP. An abrupt change occurred at ca. 5 000 aBP, and the lake sediment in the uppmost part was disturbed by wave action indicating shallow water conditions. 相似文献
6.
The lake sediments, especially in recent years, genuinely record human being''s activities upon the lake environment. The top 30cm sections are of significance in the process of advanced cultural eutrophication and water quality deterioration. Based on the data of 4 core sam-ples obtained in June 19-22, 1997, with VCS in northern, western and southern Taihu Lake, some preliminary results are reported. Further analyses on the physico-chemical items as well as element content may reveal more information of the accelerating cultural eutrophication. 相似文献
7.
Taihu Lake is a mutiple-function fresh water lake situated in the delta of Yangtze River. Nowadays, the serious pollution mainly created by industry and residents'' life has made the water quality of the lake decline continuously. Eutrophication is the main characteristic of the water pollution. The water pollution not only affect the several functions of the lake, but also cause the changes of the aquatic biological community.The pollution control strategies to be adopted include the treatment of the industrial waste water and residents'' life sewage, as well as the agricultural non-point polluting source. Ecological engineering is the useful measure for diminishing the nutrition salts in water. On the basis of pollution control, the ecological restoration methods include the transplanting of the emerged and/loading anchored aquatic plants at first and the restoration of the submerged plants in the next. 相似文献
8.
The water quality of Lake Taihu has declined markedly in the past two or three decades. We used modern non-parametric statistical methods to analyse the water quality record for 1989-1993 (samples collected at 2-monthly intervals). Phytoplankton blooms have been a particular problem, as the very high peak chlorophyll a concentrations in the Meiliang (up to 0.4 g·m-3) and the coastal regions (up to 0.5 g·m-3) indicate. However, over a large area of the middle of the lake, peak chlorophyll a concentrations were much lower (0.01-0.03 g·m-3). In this deeper, turbid part of the lake there may often be insufficient underwater light to support rapid phytoplankton growth; grazing by the abundant benthic bivalves may also be important. Total phosphorus (P) concentrations in the coastal waters increased significantly (p < 5%). Suspended solids concentrations also increased significantly, and as a result transparency decreased. However, phytoplankton probably usually only account for a small proportion of the suspended material, so the parallel increase in total P and suspended solids may be coincidental. Significant increases in chlorophyll a were not observed, but phytoplankton blooms are often short-lived (e.g. days to weeks), and thus may not always be detected by the 2-monthly sampling. 相似文献
9.
The outline of Taihu Lake Basin, including the geographical and hydrometeorological characteristics, its main functions and resource-environmental state and problems facing in Taihu Lake were introduced. 相似文献
10.
Taihu Lake is one of the famous five great freshwater lakes in China. Taihu Lxike Basin (TLB) is a densely populated and economic developed area in China. The surface water quality in TLB was deteriorated from I-Ⅱ grade in the history to IV-V grade at present. To develop a series of technology of most cost-effective and achievable for improving environment in a local water area of most sensitive for society and improving water quality for more and more areas step by step is the key point of the new strategy. Except the measures for reducing the industrial and domestic pollution load to the lake, some research topics are suggested to be emphasized. 相似文献
11.
12.
2007年太湖五里湖浮游植物生态学特征 总被引:13,自引:5,他引:13
研究了2007年太湖五里湖浮游植物的生态学特征.结果表明:五里湖共检出浮游植物8门123种;其中绿藻种类最多,共57种,占浮游植物总种数的46.3%;硅藻次之,共23种,占浮游植物总种教的18.7%;浮游植物种数以冬春季多、夏秋季少.调查期间.浮游植物数量和生物量分别变化在386.2×10~4-5581.9×10~4cells/L和0.541-3.491mg/L,均以绿藻最高;浮游植物数量的季节变化表现为夏季>春季>秋季>冬季;且除绿藻外,浮游植物的季节演替规律与PEG模型基本一致.相似性分析显示,五里湖1、3、4、5月份的生境相似,6、7、8、9、11月份的生境相似.优势度分析显示,五里湖各个月份的浮游植物优势种都在2种以上,优势种主要有小球藻(Chlorella vulgaris)、小球衣藻(ChLamydomonas microsphaera)、尖尾蓝隐藻(Chroomonas acuta)、铜绿微囊藻(Microcystis aeruginisa)等14种,优势种种数较多且优势度不高,变化在0.02-0.78之间;多样性和均匀度分析显示,五里湖浮游植物多样性指数和均匀度指数分别变化在1.5-2.7和0.26-0.59之间,多样性和均匀度都较好:表明2007年五里湖浮游植物群落结构比较复杂、处于较完整状态. 相似文献
13.
基于2008-2018年环太湖江苏段入湖河道污染物通量及湖区水质数据,从时空变化及相关关系两个方面探讨了入湖污染物通量与湖区水质的响应关系,并分析了污染物进入湖体影响水质的主要因子.结果表明:太湖污染减排已见成效,氨氮、总氮、高锰酸盐指数和化学需氧量入湖污染物通量整体呈下降趋势,年均下降率分别为8.0%、2.0%、1.6%和2.2%,湖体氨氮和总氮时间格局响应较好,年均下降率分别为2.1%和2.3%.湖体氨氮、总氮、总磷、高锰酸盐指数和化学需氧量与入湖污染物通量整体由西北部、西部湖区向东南部、东部湖区递减,空间格局上响应基本一致.全湖区年尺度总氮、氨氮浓度与入湖河道污染物通量分别呈显著正相关、极显著正相关关系;影响湖区总氮、氨氮的主要因子为入湖河道的总氮、氨氮浓度,其次为入湖河道浓度与原湖区水质差值,因此亟需加强入湖河道水质浓度的控制. 相似文献
14.
太湖定振波的初步研究 总被引:1,自引:0,他引:1
初步分析研究了太湖定振波的变化规律,结果表明:(1)东、西太湖有各自的振动周期,东太湖变化范围在181—292min,平均为243min;西太湖在120—540min,平均为400min。(2)观测到的最大振幅(1/2波高)为120—130mm。(3)用差分法对定振波的特征值进行了近似估算,其周期误差为20min。(4)定振波引起的湖流相当大,当振幅为100mm时,最大流速可达±20cm/s。(5)定振波振幅的突变与气压场、风场和降水分布不均匀并在短期内发生突变有关。 相似文献
15.
太湖梅梁湾冬季湖流特征 总被引:1,自引:1,他引:1
2003年元月在盛行西北偏北风的情况下,对位于太湖北部的梅梁湾进行了面上湖流调查,发现梅梁湾湾口的湖流较为稳定,以向南流为主,且流速相对较大,最大达8cm/s,梅梁湾西岸有稳定的向北流,而从五里湖口至拖山附近的梅梁湾东线湖水由北向南流动,且在中部附近分为两支,一支向西,再流向北以补偿西岸的向北流,另一支扩散至整个梅梁湾南部,向南流经湾口进入太湖.在梅梁湾东北部,发现有弱辐合中心,该范围内Chl.a和TP、TN的含量明显高于周围水域.从所有点的垂直运动判断,梅梁湾水流以弱上升运动为主,大小为2cm/s以下.从水量平衡分析,以梅梁湾流入太湖为主要特征,水量补给主要来自于北部的五里湖和直湖港及武进港. 相似文献
16.
太湖五里湖生态重建示范工程—大型围隔试验 总被引:30,自引:5,他引:30
五里湖是太湖北部富营养化程度最为严重的一湖湾.从2004年1月起,为了改善水质,重建五里湖生态环境,在五里湖南岸建立了一个面积为10×104m2示范工程试验区,采用多技术措施集成应用,开展湖泊生态重建技术研究.经过近2年的生态重建研究与实践,在示范工程试验区内建立了挺水植物、浮叶植物和沉水植物群丛23个,水生植物种类从生态重建前的零上升至15科、22属、32种,水生植物的多样性指数(Shannon-Wieher index)达到2.33,覆盖度达到40%- 55%.水质监测结果表明,示范工程区内水体的TN、TP、NH4-N、NO3-N、NO2-N及PO4-P的平均值分别比示范工程区外下降了20.7%、23.8%、35.2%、21.1%、45.6%和54.0%,TN、TP分别下降至2.50mg/L、0.080mg/L以下,水质得到明显改善,达到或低于“浅水湖泊稳态转换理论”指出的向“稳定清水态”转换的临界值,水体透明度(SD)平均值也有较大幅度提高,平均从0.39m提高至0.70m;初步实现湖泊水体从藻类占优势浊水态向大型水生植物占优势的清水态转变.因此重建与恢复湖泊生态系统要从沿岸带着手,首先重建湖滨带结构与功能,通过湖滨带水生生物一系列反馈机制, 逐步改善湖泊水质,最终实现沉水植被恢复;湖泊敞水区应主要采用生物操纵技术措施来实现湖泊生态恢复. 相似文献
17.
太湖梅梁湾水动力及相关过程的研究 总被引:43,自引:13,他引:43
太湖是位于长江下游的一个大型水湖泊,水动力过程和要素对浅水湖泊的环境演化有着复杂和深远的影响,本文基于1998年开展的有关太湖梅梁湾的水动力过程的野外调查结果,总结了梅梁湾在夏季盛行风向条件下湖流特征,发现了梅梁湾在夏季偏南风条件下,表层湖流以顺时针环流为主要特征,但在湾内靠近梁溪河口地区,流场受地形影响而有所不同,反映在叶绿素浓度和总磷、总氮浓度分布上,因受湖流影响较大而富集在梁溪河口周转,即偏 相似文献