首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Most of the recent research on rockfall and the development of protective systems, such as flexible rockfall barriers, have been focused on medium to high levels of impacting energy. However, in many regions of the world, the rockfall hazard involves low levels of energy. This is particularly the case in New South Wales, Australia, because of the nature of the geological environments. The state Road and Traffic Authority (RTA) has designed various types of rockfall barriers, including some of low capacity, i.e. 35 kJ. The latter were tested indoors using a pendulum equipped with an automatic block release mechanism triggered by an optical beam. Another three systems were also tested, including two products designed by rockfall specialised companies and one modification of the initial design of the RTA. The research focused on the influence of the system’s stiffness on the transmission of load to components of the barrier such as posts and cables. Not surprisingly, the more compliant the system, the less loaded the cables and posts. It was also found that removing the intermediate cables and placing the mesh downslope could reduce the stiffness of the system designed by the RTA. The paper concludes with some multi-scale considerations on the capacity of a barrier to absorb the energy based on experimental evidence.  相似文献   

2.
The imperative need to protect structures in mountainous areas against rockfall has led to the development of various protection methods. This study introduces a new type of rockfall protection fence made of posts, wire ropes, wire netting and energy absorbers. The performance of this rock fence was verified in both experiments and dynamic finite element analysis. In collision tests, a reinforced-concrete block rolled down a natural slope and struck the rock fence at the end of the slope. A specialized system of measuring instruments was employed to accurately measure the acceleration of the block without cable connection. In particular, the performance of two energy absorbers, which contribute also to preventing wire ropes from breaking, was investigated to determine the best energy absorber. In numerical simulation, a commercial finite element code having explicit dynamic capabilities was employed to create models of the two full-scale tests. To facilitate simulation, certain simplifying assumptions for mechanical data of each individual component of the rock fence and geometrical data of the model were adopted. Good agreement between numerical simulation and experimental data validated the numerical simulation. Furthermore, the results of numerical simulation helped highlight limitations of the testing method. The results of numerical simulation thus provide a deeper understanding of the structural behavior of individual components of the rock fence during rockfall impact. More importantly, numerical simulations can be used not only as supplements to or substitutes for full-scale tests but also in parametric study and design.  相似文献   

3.
Yu  Zhixiang  Luo  Liru  Liu  Chun  Guo  Liping  Qi  Xin  Zhao  Lei 《Landslides》2021,18(7):2621-2637

Flexible rockfall barriers are commonly constructed on steep hillsides to mitigate rockfall. The evaluation of the dynamic response of proprietary flexible rockfall barriers is conventionally performed using full-scale field tests by dropping a block onto the barriers in accordance with the European test standard ETAG 027. The block typically has a spherical or polyhedral shape and cannot reproduce more complex rockfall scenarios encountered in the field. Little attention has been paid to the effects of the block shape on the impact force and structural response. This paper aims to quantitatively reveal the influence of the block shape on the dynamic response of flexible rockfall barriers. First, an ellipsoidal model is established to approximately simulate the block, and the sphericity is employed as the representative index of the block’s shape. A full-scale test on a typical flexible barrier system is carried out and then used to calibrate an advanced three-dimensional finite element model. Finally, the dynamic responses of flexible rockfall barriers are analyzed and discussed, focusing on the effects of the block’s shape. The numerical results show that the sphericity will obviously influence the maximum elongation of flexible barriers, the peak impact force, the peak force of the upslope anchor cable, the peak force of the lower main support cable, the axial peak force of the post, and the peak shear force at the post foundation. The assumption of spherical or polyhedral blocks in the test standard could lead to the defensive failure of flexible rockfall barriers in some impact scenarios.

  相似文献   

4.
Prediction of the Bullet Effect for Rockfall Barriers: a Scaling Approach   总被引:4,自引:2,他引:2  
The so-called “bullet effect” refers to the perforation of a rockfall protection mesh by impact of a small block, which has a kinetic energy lower than the design value, where the design value is determined through tests with relatively large blocks. Despite playing a key role in the overall performance of a flexible rockfall barrier, this phenomenon is still poorly understood at present. An innovative approach for quantitatively characterizing this effect based on dimensional analysis is proposed in this paper. The analysis rests on a hypothesis that the relevant variables in the impact problem can be combined into three strongly correlated dimensionless parameters. The relationship between these dimensionless parameters (i.e., the scaling relationship) is subsequently investigated and validated by means of data generated with a finite element model. The validation process shows that the dimensionless parameters are apt and that the proposed scaling relationship characterizes the bullet effect with a reasonable level of accuracy. An example from the literature involving numerical simulation of a full rock barrier is considered, and satisfactory agreement between the calculated performance of the barrier and that predicted by the established scaling relationship is observed.  相似文献   

5.
Reinforced concrete barriers are commonly used as defence measures in hilly areas to contain falling boulders and landslide debris. These barriers are conventionally designed to satisfy the conditions of force and momentum equilibrium with a factor of safety. A major limitation of this approach is that the inertial resistance of the barrier is neglected such that the design could be over-conservative. This paper presents a novel displacement-based approach for the assessment of overturning stability of rigid L-shaped barriers subjected to rockfall impacts. Analytical solutions, which are derived based on conservation of momentum and energy, are used to take into account the contributions of the self-weight and, thus, the inertial resistance of the barrier in resisting an impact. The actual amount of energy transferred from the impacting boulder to the barrier is considered by including the coefficient of restitution between the two objects. The accuracy of the analytical solutions has been confirmed by laboratory impact experiments. Numerical assessments conducted using the new solutions indicate that a reasonably sized rigid barrier, due to its own inertial resistance, may adequately withstand the impact action of a heavy boulder rolling down a hillslope without relying on any anchorage to its support. A range of geometric design of the barriers with L-shaped cross sections also has been considered and analysed. The new approach presented in this paper is easy to apply in practice and will be useful for engineers designing concrete barriers as passive rockfall mitigation measures.  相似文献   

6.
马显东  周剑  张路青  黄福有  李蕊瑞 《地球科学》2022,47(12):4559-4573
为获取被动柔性防护网在不同崩塌滚石运动特征下的动态响应规律,以鲁甸803地震震后崩塌滚石造成防护网损坏现场为例,通过无人机倾斜摄影技术实现地质调查,采用Rockyfor3D获取研究区落石的运动特征,并通过被动柔性防护网有限元模型,对不同落石冲击形式下防护网的动态响应规律进行研究.研究显示区内落石弹跳高度普遍在1~2 m,优势路径上的落石会形成稍高速低弹跳的范围冲击.在范围落石冲击下,防护网绳索最大拉力增加可达123.7%;在低弹跳落石冲击下,绳索最大拉力增加可达181.2%.范围落石冲击会导致防护网网面耗能的降低,并导致上拉锚绳拉力的增大.防护网下一级支撑绳对不同落石弹跳高度的响应较为敏感,部分高弹跳落石会对上拉锚绳和上一级支撑绳产生影响.   相似文献   

7.
Flexible steel barriers are commonly constructed on steep hillsides to mitigate rockfall. The evaluation of the dynamic response of proprietary flexible barriers is conventionally performed using full-scale field tests by dropping a weight onto the barriers in accordance with the European test standard ETAG 27. The weight typically has a spherical or polyhedral shape and cannot reproduce more complex rockfall scenarios encountered in the field. A rigid slab may load a barrier over a larger area and its effect has not been investigated. In this study, a calibrated three-dimensional finite-element model was developed to study the performance of vertically and horizontally orientated rockfall barriers under concentrated areal impact loads. A new bilinear force-displacement model was incorporated into the model to simulate the behavior of the energy-dissipating devices on the barriers. The effect of different weight geometries was studied by considering impacts by a rigid single spherical boulder and a rigid slab. Results reveal that areal loading induced by a rigid slab increases the loading on the barrier foundation by up to 40 % in both horizontally and vertically positioned barriers when compared to a concentrated load scenario with a single boulder. This indicates that barriers tested under the current test standard does not give the worst-case scenario in terms of foundation loads, and barrier designers should take into account the possible effect of increased foundation loads by reinforcing the barrier posts and/or increasing their spacing.  相似文献   

8.
A rockfall is a mass instability event frequently observed in road cuts, open pit mines and quarries, steep slopes and cliffs. After its detachment, the rock mass may disaggregate and break due to the impact with the ground surface, thus producing new rock fragments. The consideration of the fragmentation of the rockfall mass is critical for the calculation of the trajectories of the blocks and the impact energies and for the assessment of the potential damage and the design of protective structures. In this paper, we present RockGIS, a GIS-based tool that simulates stochastically the fragmentation of the rockfall, based on a lumped mass approach. In RockGIS, the fragmentation is triggered by the disaggregation of the detached rock mass through the pre-existing discontinuities just before the impact with the ground. An energy threshold is defined in order to determine whether the impacting blocks break or not. The distribution of the initial mass between a set of newly generated rock fragments is carried out stochastically following a power law. The trajectories of the new rock fragments are distributed within a cone. The fragmentation model has been calibrated and tested with a 10,000 m3 rockfall that took place in 2011 near Vilanova de Banat, Eastern Pyrenees, Spain.  相似文献   

9.
Full-scale Modelling of Falling Rock Protection Barriers   总被引:1,自引:0,他引:1  
Full-scale impact tests, carried out to evaluate the behaviour of flexible falling rock protection barriers, are described and relevant results presented and discussed. Falling rock protection barriers, which may be numbered among passive measures against rockfall, are designed to intercept and stop falling rocks by dissipation of impact energies through the elasto-plastic deformation of a system made up of metallic nets and supporting and connecting components. The testing programme involved models of barriers subjected to the impact of free-falling blocks of kinetic energy ranging from 500 to 5,000 kJ. The experimental test site, set-up in Fonzaso (Italy), and the experimental procedure were developed according to the new European testing standards (ETAG 027) on falling rock protection kits. The paper is aimed at presenting an extensive and high quality database, which can be extremely useful for a better understanding of the actual response of such structures and for any subsequent analytical and numerical modelling.  相似文献   

10.
A fractal fragmentation model for rockfalls   总被引:1,自引:0,他引:1  
The impact-induced rock mass fragmentation in a rockfall is analyzed by comparing the in situ block size distribution (IBSD) of the rock mass detached from the cliff face and the resultant rockfall block size distribution (RBSD) of the rockfall fragments on the slope. The analysis of several inventoried rockfall events suggests that the volumes of the rockfall fragments can be characterized by a power law distribution. We propose the application of a three-parameter rockfall fractal fragmentation model (RFFM) for the transformation of the IBSD into the RBSD. A discrete fracture network model is used to simulate the discontinuity pattern of the detached rock mass and to generate the IBSD. Each block of the IBSD of the detached rock mass is an initiator. A survival rate is included to express the proportion of the unbroken blocks after the impact on the ground surface. The model was calibrated using the volume distribution of a rockfall event in Vilanova de Banat in the Cadí Sierra, Eastern Pyrenees, Spain. The RBSD was obtained directly in the field, by measuring the rock block fragments deposited on the slope. The IBSD and the RBSD were fitted by exponential and power law functions, respectively. The results show that the proposed fractal model can successfully generate the RBSD from the IBSD and indicate the model parameter values for the case study.  相似文献   

11.
Ge Gao  M. A. Meguid 《Landslides》2018,15(2):219-232
In this study, the dynamic behavior of rock clusters falling on rough slopes and impacting a vertical barrier is investigated experimentally and numerically using discrete element analysis. A specially designed laboratory setup that involves a flume of adjustable slope lined with a bumpy surface and equipped with an instrumented wall at the toe is used in the experimental investigation. The velocity profiles and impact forces were measured for three inclination angles using two different rock clusters. Three-dimensional discrete element analysis is then conducted to investigate the mechanical behavior of the rockfall and examine the role of sphericity of the rock cluster on the overall behavior of the system. This was achieved by explicitly simulating the complex shapes of the used rocks and the rough surface of the slope. The material coefficient of friction was measured using heap tests, and the results are compared with those obtained numerically using four different particle sphericities. Conclusions are made regarding the effect of slope inclination angle and the volume of the cluster on the impact forces exerted on rigid barriers. This study suggests that rock sphericity plays important roles on the dynamic behavior of the system and should be taken into consideration in simulating rockfall problems.  相似文献   

12.
This paper presents a discrete framework for the modelling of composite structures for rockfall protection. The model is applied to analyse the dynamic response of a cylindrical damping module upon impact of a boulder. The damping module consists of a cylindrical wire mesh, two steel rings, a boundary rope, a geotextile lining and a granular filling material. The chain-link wire mesh, the steel rings and the boundary rope are represented with deformable cylinder elements. The geotextile lining is incorporated into the openings of the wire mesh by using deformable facets. The filling material is represented using spherical particles.  相似文献   

13.
陈泰江  章广成  向欣 《岩土力学》2022,43(1):277-285
落石冲击棚洞结构作用过程复杂,缺乏统一的落石冲击力表达式。首先,将落石简化为刚性球体,基于Hertz接触理论,推导得到落石冲击力半正弦算法的理论表达式,考虑落石冲击下棚洞的非弹性特征,根据落石与材料碰撞过程中落石加速度曲线特征,采用函数拟合法推导得到落石法向冲击下其冲击力的理论计算方法;然后,基于ANSYS/LS-DYNA软件建立落石冲击棚洞数值计算模型,研究不同冲击速度下落石冲击棚洞动力特征;最后,与现存常见的多种方法进行对比,得出以下结论:Hertz半正弦法得到的落石冲击力远大于函数拟合法和数值法,而函数拟合法和数值法得到的落石冲击力时程曲线相接近,表明函数拟合法更能反映落石与棚洞接触碰撞动力关系;对比其他计算方法可以得到,Hertz算法适用于分析无能量损失下的弹性碰撞问题,而Logistic算法适用于材料大塑性变形的情况,弹塑性接触理论结果和动力有限元结果存在差异,而采用函数拟合推导的计算方法得到的落石最大冲击力和落石冲击作用时间与动力有限元法更接近,更能反映落石冲击棚洞动力响应特征,推导的落石冲击力计算方法可为工程实践中棚洞防护设计提供理论参考。  相似文献   

14.
滚石是突发于人工边坡或自然边坡上的一类特殊的地质灾害,对坡下的人类活动和基础设施的安全构成极大威胁.柔性防护系统是滚石灾害防治的重要方法之一,而摩擦制动环是应用于钢绳拦石网并起到关键缓冲作用的部件.作者发现,当前使用的摩擦制动环存在着缓冲效率较低、较易损坏、成本较高等诸多不足.针对这些不足,提出了一种可应用于滚石柔性防护系统的簧式缓冲器.理论研究表明,它具有缓冲效率较高、不易损坏、价格较低等优点,可望在滚石柔性防护系统中得到广泛应用.  相似文献   

15.
In order to protect infrastructures against rockfalls, civil-engineered mitigation measures are widely used. Flexible metallic fences are particularly well suited to stop the propagation of blocks of rock whose kinetic energy can reach 5000?kJ before impact. This paper focuses on the design of highly flexible rockfall fences under the new European guideline ETAG027. The experimental testing and the numerical modeling using the discrete element method (DEM) of a new metallic rockfall fence are presented. Several scales of study were considered; the mesh, the net and the entire structure. The calibration of the DEM models is described and a parametrical study is proposed. The latter aims to underline the type of information that can be obtained from numerical simulations of such a system to enhance its design.  相似文献   

16.
This paper presents a new numerical strategy for the design and verification of flexible falling rock barriers: passive protection measures for risk mitigation of potentially unstable rock slopes. The key point of the proposed approach is that notwithstanding the complexity of the simulated phenomenon, the resulting highly non-linear, dynamic model is simple and produces an accurate prediction of all the relevant parameters for barrier design, such as anchorage forces, net panel elongations and residual heights.The modelling procedure has been assessed using detailed experimental data obtained from a set of full-scale tests on three barrier prototypes with various energy absorption capacities (5000 kJ, 3000 kJ and 500 kJ). By comparison with the experimental results, the numerical model has shown to be reliable in capturing very accurately the barrier response to a block impact. Consequently, this method can be extended to investigate the behaviour of flexible falling rock protection barriers under conditions different from those encountered in full-scale tests. Therefore, the numerical procedure can be regarded as an effective tool used for designing and testing these structures.  相似文献   

17.
The Ajanta caves are situated in Deccan Trap basalt and declared as one of the World Heritage Sites by UNESCO. The present study aims to investigate and understand the damage of caves and to protect the life of the visitors from the rockfall phenomenon at and around the caves. Information related to the detached rock mass/block was acquired by using Barton–Bandis model in Universal Distinct Element Code. Parameters for rockfall simulation were determined by rigorous field study and laboratory experiment and then calibrated some of the parameters by back analysis. RocFall 4.0 program has been used to calculate maximum bounce heights, total kinetic energies, and translational velocities of the falling blocks of different weights. The maximum bounce height varies from 14.0 to 19.0 m for the weight of the block size ranging from 500 to 2,000 kg, whereas the maximum velocity and maximum kinetic energy are 30.0 m/s and 917.66 kJ, respectively. Finally, the results of simulation have been used to find out the position of the barrier and its capacity to design the protection barrier. The barrier capacity was found to be 325 kJ for 2,000 kg of falling blocks at a height of 50.0 m.  相似文献   

18.
The Saptashrungi gad temple (SGT) situated on basaltic hills belongs to Deccan volcanic of Upper Cretaceous to Lower Eocene, is one among the 51 Shakti Peeths and most holy place for pilgrims. Rockfall is a major problem in the past and causing danger to the lives of the villagers settled at the toe of the SGT hill as well as the pilgrims who perform parikrama along the tracks. On the evening of 16 April 2011, an old woman died due to rockfall at SGT hill when she was performing parikrama, moreover, two persons got injured during the deliverance process of this old woman from the continuous rockfall activity. The problem of rockfall could be linked to rainfall, jointing, weathering, man-made or the compounding of all. In this research, the rockfall hazard analysis at SGT hill is assessed using both 2D and 3D rockfall programs along the two parikrama paths: Parikrama Path 1 (or the Badi Parikrama Path ‘BPP’), and Parikrama Path 2 (or the Chhoti Parikrama Path ‘CPP’). Also, the study area of the SGT hill has been divided into eight zones (Zone#01 to Zone#08), based on field observations, orientations of joint sets and hill slope faces and eighteen topographic profiles (AA' to RR') have been taken from these eight zones for rockfall analysis. A detailed topographic survey along with field investigation has been carried out along the temple for ascertaining the nature of rock, discontinuity orientations, and slope geometry. DEM has been generated using topographic profile in ArcGIS to facilitate the 3D rockfall analysis. Maximum rock block sizes are taken into the analysis and run-out distance, bounce height, kinetic energy and velocity of the basaltic blocks are evaluated separately. Based on the analyzed data, the rockfall hazard zone map has been prepared and site having potential rockfall risks have been identified. Finally, wire/net meshing has been proposed after removal of unstable blocks as a stabilization and protection measures.It is worth mentioning here that for the first time rockfall hazard assessment was made in such detail for a site. Suggestions made are implemented by the State Government for the protection of the temple as well as the life of pilgrims performing the parikrama from the rockfall.  相似文献   

19.
2008年“5.12”汶川特大地震诱发了大量的震裂山体危岩崩塌灾害。这类危岩发育位置高、冲击能量大,存在主动加固措施难以实施且被动防护网防护能级不足的问题,为此在汶川、芦山、九寨沟地震灾区逐渐广泛使用桩板拦石墙结构用于防治高位崩塌落石,取得了非常好的效果,但同时也存在部分桩板拦石墙墙后因未设缓冲层或挂废旧轮胎而被落石直接撞击并损毁的现象。为避免落石直接与此类钢筋混凝土(RC)板碰撞造成刚性破坏,工程上常采用就地开挖的碎石土、砂土作为缓冲层以减缓落石冲击力,为研究冲击作用下不同类型缓冲层消能效果及RC板的动力响应特征,基于室外搭建的落石冲击试验平台,开展了不同缓冲层及其相互组合的系列落石冲击试验。结果表明,总厚度相同前提下,EPS泡沫-砂土组合缓冲层的消能效果最优,其次为碎石土,砂最差。与其他两种缓冲层消能方式相比,落石锤与组合缓冲层碰撞过程中发生多次反弹且接触时长远大于其他两种;相同的冲击工况下,EPS中心位置压溃并下陷,且产生大量辐射状宽大裂缝;组合缓冲层能够有效减小RC板的跨中位移,在3,5,7 m冲击高度下,比砂作为缓冲层时跨中位移减小了37%~46%。在R4落石锤冲击下,RC板跨中位移显著增加且产生明显塑性位移,随冲击能量增大跨中裂缝自下而上延伸,RC板最终破坏时表现为典型的弯曲破坏特征。  相似文献   

20.
Because the flexible net barrier is a gradually developed open-type debris-flow counter-measure, there are still uncertainties in its design criterion. By using several small-scale experimental flume model tests, the dynamical evolution properties of debris flows controlled by large and small mesh-sized (equal to D90 and D50, respectively) flexible net barriers are studied, including the debris flow behaviors, segregation, and permeability of sediments, as well as the energy absorption rates and potential overtopping occurring when debris flows impact the small mesh-sized one. Experimental results reveal that (a) two sediment deposition patterns are observed depending on variations in debris flow textures and mesh sizes; (b) the aggregation against flexible net barriers is dominated by flow dynamics; (c) the segregation and permeable functions of the barrier are determined by the mesh size, concentration, and flow dynamics; and (d) the smaller mesh-sized flexible net barrier tends to be more efficient in restraining more turbulent debris flows and can absorb greater rate of kinematic energy, and finally, the great kinematic energy dissipation that occurs when secondary debris flows interact with the post-deposits in front of the small mesh-sized flexible net barrier is believed to cause the failure of overtopping phenomenon. The mesh size is concluded to be the decisive parameter that should be associated with debris flow textures to design the control functions of flexible net barriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号