共查询到20条相似文献,搜索用时 10 毫秒
1.
中国CO2地质埋存条件分析及有关建议 总被引:31,自引:0,他引:31
化石燃料燃烧产生的温室气体导致全球气候变暖是人类共同面临的重大环境问题.本文提出减排大气CO2含量最为现实和有效的对策是采取CO2地质埋存技术.在总结国际CO2地质埋存研究成果的基础上,全面分析了中国适宜CO2埋存的地质条件和潜在的埋存区域.初步估算,中国CO2地下贮存总容量约为14548×108t.建议近期加强中国CO2埋存地质条件调查和相关重大科技问题的研究. 相似文献
2.
Large-scale implementation of geological CO2 sequestration requires quantification of risk and leakage potential. One potentially important leakage pathway for the injected
CO2 involves existing oil and gas wells. Wells are particularly important in North America, where more than a century of drilling
has created millions of oil and gas wells. Models of CO2 injection and leakage will involve large uncertainties in parameters associated with wells, and therefore a probabilistic
framework is required. These models must be able to capture both the large-scale CO2 plume associated with the injection and the small-scale leakage problem associated with localized flow along wells. Within
a typical simulation domain, many hundreds of wells may exist. One effective modeling strategy combines both numerical and
analytical models with a specific set of simplifying assumptions to produce an efficient numerical–analytical hybrid model.
The model solves a set of governing equations derived by vertical averaging with assumptions of a macroscopic sharp interface
and vertical equilibrium. These equations are solved numerically on a relatively coarse grid, with an analytical model embedded
to solve for wellbore flow occurring at the sub-gridblock scale. This vertical equilibrium with sub-scale analytical method
(VESA) combines the flexibility of a numerical method, allowing for heterogeneous and geologically complex systems, with the
efficiency and accuracy of an analytical method, thereby eliminating expensive grid refinement for sub-scale features. Through
a series of benchmark problems, we show that VESA compares well with traditional numerical simulations and to a semi-analytical
model which applies to appropriately simple systems. We believe that the VESA model provides the necessary accuracy and efficiency
for applications of risk analysis in many CO2 sequestration problems. 相似文献
3.
CO2深部咸水层地质封存被认为是减缓温室效应的一种有效的工程技术手段。针对神华鄂尔多斯105 t/a CO2捕集与封存(CCS)示范项目,用数值模拟方法对CO2在地层中的运移过程进行了详细地刻画,分析了CO2的流动迁移、地层压力积聚过程及地层封存潜力。数值模型不但可以为工程的顺利进行提供技术支撑,而且可以节省人力财力。首先,根据实际监测数据对模拟参数进行校准,得到了合适的压力拟合曲线,确定了主要的水文地质参数。然后,对为期3 a的CO2续注工程进行预测,详细分析了CO2的晕扩散、溶解情况、地层压力变化情况、储层封存潜力等。得到如下结论:CO2在3 a内的最大迁移距离约为350 m;水裂可以有效提高CO2的注入性;隔离层能有效防止CO2逃逸。研究表明,尽管鄂尔多斯盆地属于低渗咸水层仍然能够有效安全地封存CO2。 相似文献
4.
随着温室效应的加剧,CO2地质储存已成为减缓全球气候变暖的有效方法之一. 可用于CO2 地下储存的场地主要有枯竭的油气田、深部咸水层和深部不可开采的煤层等,我国深部咸水层CO2地质储存潜力占总潜力的98%以上. 在全面分析CO2 地质储存适宜性影响因素的基础上,建立了适宜于沉积盆地深部咸水层CO2 地质储存的适宜性评价体系,主要包括地质安全性、储存规模、社会环境风险和经济适宜性4大指标层,共计28个评价指标,评价方法以层次分析法及指标叠加法为主. 以西宁盆地为研究实例,通过基于排除法的地质条件综合分析与层次分析法的定量评价相互验证,表明该指标体系和评价方法具有广泛的应用价值. 结果表明,西宁盆地一级构造单元中双树坳陷最适宜CO2地质储存,可作为CO2地质储存的优先选区. 相似文献
5.
Possibilities to sequester anthropogenic CO2 in deep geological formations are being investigated worldwide, but the potential within Switzerland has not yet been evaluated.
This study presents a first-order appraisal based solely on geological criteria collated from the literature. The Swiss Molasse
Basin (SMB) and the adjacent Folded Jura are the only realms of the country where CO2 could conceivably be stored in saline aquifers. Evaluation of geological criteria at the basin-wide scale shows that the
SMB–Jura has moderate potential (score of 0.6 on a scale from 0 to 1) when compared to basins elsewhere. At the intrabasinal
scale, inspection of the stratigraphy reveals four regional candidate aquifers that are sealed by suitable caprocks: top Basement
plus basal Mesozoic sandstones, all sealed by the Anhydrite Group; Upper Muschelkalk sealed by the Gipskeuper; Hauptrogenstein
sealed by the Effinger Member, and Upper Malm plus Lower Cretaceous sealed by the Lower Freshwater Molasse. Nine geological
criteria are defined to evaluate the storage potential of these and other smaller scale candidates. A numerical scoring and
weighting scheme allows the criteria to be assessed simultaneously, permitting the storage potential to be depicted using
the 0–1 scale in contoured maps. Approximately 5,000 km2 of the central SMB exhibits potentials between 0.6 and 0.96. The Fribourg–Olten–Luzern area is the most favoured owing to
the presence of several sealed aquifers within the preferred 800–2,500 m depth interval, and to its low seismicity, low geothermal
gradient, low fault density, and long groundwater residence times. Smaller areas with good potential lie between Zürich and
St. Gallen. In contrast, western Switzerland, the Jura and the southern SMB have markedly poorer potential. Considering only
the portions of the aquifers with potential above 0.6, the theoretical, effective storage capacity of the basin is estimated
to be 2,680 million tonnes of CO2. 相似文献
6.
在地下流动系统问题的研究中,热-水动力-力学(THM)耦合过程是研究的热点问题。在地下多相非等温数值模拟软件TOUGH2的框架内,基于Biot固结理论和摩尔-库仑破坏判定准则,建立了THM耦合模型;采用积分有限差和有限元联合的空间离散方法,开发了THM模拟器TOUGH2Biot。该模拟器中热和水动力过程是全耦合,力学过程是部分耦合。通过与解析解的对比,验证了其正确性。基于鄂尔多斯盆地CCS示范工程,采用TOUGH2Biot研究了CO2注入地层后的THM响应。结果显示CO2的注入引起流体压力急剧增加,地层有效应力减小,地表隆起,隆起大小在几十个厘米,同时孔渗增加,利于CO2注入引起的压力上升向外消散。CO2注入最有可能导致剪切破坏的位置位于最大速率注入点上部盖层,其次为靠近地表的位置。 相似文献
7.
9.
Giordano Montegrossi Barbara Cantucci Franco Tassi Orlando Vaselli Fedora Quattrocchi 《中国地球化学学报》2006,25(B08):277-277
In this work we present a new approach to modeling the effects of CO2 sequestration that was tested in the Weyburn test site. The Weyburn oil-pull is recovered from Midale Beds (at 1300-1500 m depth). This formation consists of Mississippian shallow marine evaporific carbonates that can be divided into two units: (1) the dolomific "Marly" and ii) the underlying calcitic "Vuggy', sealed by an anhydrite cap-rock. Presently, about 3 billions mc of supercrifical CO2 have been injected into the "Phase Al" injection area. The aim of our model is to reconstruct (1) the chemical composition of the reservoir; (2) the geochemical evolution of the reservoir with time as CO2 is injected and (3) the boundary conditions. The geochemical modeling was performed by using the code PRHEEQC (V2.11) software package. The "primitive brine" composition was calculated on the basis of the chemical equilibriums among the various phases, assuming reservoir equilibrium conditions for the mineral assemblage with respect to a Na-Cl (Cl/Na= 1.2) water, at T of 62℃ and P of 150 bars via thermodynamic corrections to the code database. A comparison between the chemical composition of the "primitive brine" and that analytically determined on water samples collected before the CO2 injection shows an agreement within 10%. Furthermore, we computed the kinetic evolution of the reservoir by considering the local equilibrium and the kinetically controlled reactions while taking it into account the CO2 injected during four years of monitoring. The calculated chemical composition after CO2 injection is consistent with the analytical data of samples collected in 2004, with the exception of calcium and magnesium contents. 相似文献
10.
Basalt-hosted hydrogeologic systems have been proposed for geologic CO2 sequestration based on laboratory research suggesting rapid mineralization rates. However, despite this theoretical appeal, little is known about the impacts of basalt fracture heterogeneity on CO2 migration at commercial scales. Evaluating the suitability of basalt reservoirs is complicated by incomplete knowledge of in-situ fracture distributions at depths required for CO2 sequestration. In this work, a numerical experiment is used to investigate the effects of spatial reservoir uncertainty for geologic CO2 sequestration in the east Snake River Plain, Idaho (USA). Two criteria are investigated: (1) formation injectivity and (2) confinement potential. Several theoretical tools are invoked to develop a field-based approach for geostatistical reservoir characterization and their implementation is illustrated. Geologic CO2 sequestration is simulated for 10?years of constant-rate injection at ~680,000 tons per year and modeled by Monte Carlo simulation such that model variability is a function of spatial reservoir heterogeneity. Results suggest that the spatial distribution of heterogeneous permeability structures is a controlling influence on formation injectivity. Analysis of confinement potential is less conclusive; however, in the absence of confining sedimentary interbeds within the basalt pile, rapid mineralization may be necessary to reduce the risk of escape. 相似文献
11.
12.
Hysteresis effects in geological CO2 sequestration processes: A case study on Aneth demonstration site,Utah, USA 下载免费PDF全文
Realistic models for saturation, capillary pressure and relative permeability s-pc-kr relations are essential for accurate predictions in multiphase flow simulations. The primary object of this work is to investigate their influence on geological CO2 sequestration processes. In this work, the hysteresis effects on simulation results predicting geological CO2 storage are investigated on a synthetic 2D model and a geological setting built according to Aneth demonstration site. Simulation results showed that hysteretic relative permeability model should be included while the residual trapping mechanism is under investigation. The effects of hysteresis and WAG schemes were studied with a series of numerical simulations on a geological setting based on Aneth site. Our simulations demonstrate that the hysteresis effect is strong on residual trapping mechanisms and there is no significant effects of alternative WAG schemes for long term residual trapping in our conceptual model. The effects of WAG schemes and hysteresis are weak on dissolution trapping mechanisms. 相似文献
13.
V. Bhola F. Swalaha R. Ranjith Kumar M. Singh F. Bux 《International Journal of Environmental Science and Technology》2014,11(7):2103-2118
An economic and environmentally friendly approach of overcoming the problem of fossil CO2 emissions would be to reuse it through fixation into biomass. Carbon dioxide (CO2), which is the basis for the formation of complex sugars by green plants and microalgae through photosynthesis, has been shown to significantly increase the growth rates of certain microalgal species. Microalgae possess a greater capacity to fix CO2 compared to C4 plants. Selection of appropriate microalgal strains is based on the CO2 fixation and tolerance capability together with lipid potential, both of which are a function of biomass productivity. Microalgae can be propagated in open raceway ponds or closed photobioreactors. Biological CO2 fixation also depends on the tolerance of selected strains to high temperatures and the amount of CO2 present in flue gas, together with SOx and NOx. Potential uses of microalgal biomass after sequestration could include biodiesel production, fodder for livestock, production of colorants and vitamins. This review summarizes commonly employed microalgal species as well as the physiological pathway involved in the biochemistry of CO2 fixation. It also presents an outlook on microalgal propagation systems for CO2 sequestration as well as a summary on the life cycle analysis of the process. 相似文献
14.
Wei ZHANG Yilian LI Tianfu XU Wei QIANG Shangping XIAO 《中国地球化学学报》2006,25(B08):58-58
Since industrial revolution, the "greenhouse effect" is one of the most important global environmental issues. Of all the greenhouse gases, CO2 is responsible for about 64% of the enhanced "greenhouse effect", making it the target for mitigation, so reducing anthropogenic discharge of carbon dioxide attracts more and more attention. Geological sequestration of CO2 in deep saline aquifers is one of the most promising options. But because unknown fractures and faults may exist in the caprock layers which can prevent the leakage of CO2, CO2 will leak upward into upper potable aquifers, and lead to adverse impacts on the shallow potable aquifers. In order to assess the potential effect of CO2 leakage from underground storage reservoirs on fractures and water quality of potable aquifers, this study used the non-isothermal reactive geochemical transport code TOUGHREACT developed by Xu et al to establish a simplified 2-D model of CO2 underground sequestration system, which includes deep saline aquifers, caprock layers, and shallow potable aquifers, and study and analyze the changes of mineral and aqueous components. The simulation results indicated that the minerals of deep saline aquifers and fractures should be mainly composed of aluminosilicate and silicate minerals, which not only enhance the mass of CO2 sequestrated by mineral trapping, but also decrease the porosity and permeability of caprock layers and fractures to prevent and reduce CO2 leakage. The results from deep saline aquifers showed that the mass of carbon dioxide trapped by minerals and solution phases is limited, the rest remained as a supercritical phase, and so once the caprock aquifers have some unknown fractures, the free carbon dioxide phase may leak from CO2 geologic sequestration reservoirs by buoyancy. 相似文献
15.
煤层CO2地质封存可实现CO2减排和增产煤层气双重目标,是一种极具发展前景的碳封存技术。相对于其他封存地质体而言,煤的微孔极其发育,煤层CO2封存机制与煤中气、水微观作用关系密切,其内在影响机理尚不清楚。以2个烟煤样品的系统煤岩学分析测试为基础,构建了煤的大分子结构及板状孔隙空间模型,进一步采用分子动力学方法模拟了不同温、压条件下、不同煤基质类型表面的CO2和水的润湿行为,揭示煤层CO2注入后引起的水润湿性变化规律,初步阐明煤层CO2封存的可注性、封存潜力、封存有效性等影响因素及微观作用机理。结果表明:(1)影响煤润湿性的主要因素是煤中极性含氧官能团,其含量越高煤的润湿性越强;(2)煤中注入CO2后,CO2通过溶解作用穿透水分子层与水分子发生竞争吸附,从而减小水在煤表面润湿性;(3)随注入压力增大和温度降低,煤表面CO2吸附量增多,对氢键破坏作用增强,润湿性减弱越明显;(4)亲水性煤层CO<... 相似文献
16.
Yanfeng Liu Xiaohui Lu 《中国地球化学学报》2006,25(B08):280-280
It has been proved to be one effective means to reduce emissions of CO2 to mitigate the worsening global climate change through lots of projects and tests about CO2 geological storage. The sites that are suitable for CO2 geological storage include coal seams that can not be mined, deep saline aquifers, oil fields, and depleted gas fields. The emission of CO2 from fuel combustion is about 3.54 Gt in China in 2003, which is the second biggest in the world. Because the energy consumption in China mainly depends on fossil fuels for a long time in the future, China will become a country with the biggest emission of CO2 in the world, which will make China have to reduce the emissions of CO2 by some methods including geological storage. Based on lots of information about the reserves of coal seam methane and the rank of coal in the 68 coal basins in China, the total CO2 storage capacity in these coal basins was estimated according to the recovery coefficient and exchange ratio of CO2 to CHa.The total storage capacity in deep saline aquifers can be regarded as the total quantity of CO2 that can be dissolved in the saline aquifers at the depth from 1000m to 3000m under ground. The quantity can be estimated by multiplying the solubility of CO2 in the saline water and the volume of the appropriate aquifers. According to the reserve and quality of crude oil in 46 main oil basins in China, the CO2 storage capacity and the quantity of enhanced oil were calculated. The storage capacity of depleted gas fields can be derived from the reserve and depth of the gas fields. The total CO2 geological storage capacity is about 196.2 Gt CO2 that is as against 55.4 times the CO2 emission from fuel combustion in China in 2003. According to the results of the finished projects and tests about CO2-EOR and CO2-ECBM, the CO2 geological storage capacities in coal seams, deep saline aquifers, oil fields and depleted gas fields will be estimated. 相似文献
17.
《上海国土资源》2015,(1)
CO2地质封存可以减少化石燃料燃烧排放的CO2量,有效减缓温室效应。储层渗透率可以决定CO2通道的形成,进而改变其在储层中的运移规律,因而是影响CO2地质封存的重要因素。根据研究区基本地质数据、三维地震勘探结果和统计规律确定了渗透率的分布情况,运用储层多相流模拟软件TOUGH2-MP分析了渗透率的非均质性对CO2地质封存的影响。结果表明:(1)渗透率的分布情况对CO2储存量和注入压力的影响很大,相比于均值模型,CO2的注入总量明显减少,到达最大允许压力积聚所需的时间要比均质模型短;(2)在保证注入速率和压力积聚不超过允许最大值的双重要求下,定压和定量两种注入方案都有待改进,建议考虑如人工压裂等工程措施;(3)渗透率的非均质性使得CO2晕呈现出不规则扩散,经过20年的注入,其最大扩散距离约800m,比均质情况下小150m,须做好相应的监测工作。 相似文献
18.
Vincent Artus Louis J. Durlofsky Jérôme Onwunalu Khalid Aziz 《Computational Geosciences》2006,10(4):389-404
The determination of the optimal type and placement of a nonconventional well in a heterogeneous reservoir represents a challenging optimization problem. This determination is significantly more complicated if uncertainty in the reservoir geology is included in the optimization. In this study, a genetic algorithm is applied to optimize the deployment of nonconventional wells. Geological uncertainty is accounted for by optimizing over multiple reservoir models (realizations) subject to a prescribed risk attitude. To reduce the excessive computational requirements of the base method, a new statistical proxy (which provides fast estimates of the objective function) based on cluster analysis is introduced into the optimization process. This proxy provides an estimate of the cumulative distribution function (CDF) of the scenario performance, which enables the quantification of proxy uncertainty. Knowledge of the proxy-based performance estimate in conjunction with the proxy CDF enables the systematic selection of the most appropriate scenarios for full simulation. Application of the overall method for the optimization of monobore and dual-lateral well placement demonstrates the performance of the hybrid optimization procedure. Specifically, it is shown that by simulating only 10% or 20% of the scenarios (as determined by application of the proxy), optimization results very close to those achieved by simulating all cases are obtained. 相似文献
19.
安全性和封存效果是二氧化碳(CO2)地质封存(GCS)最受关注的问题,其中以断层/裂缝引起的场地不确定性因素较为复杂。利用储层多相流模拟软件TOUGH2/ECO2N,研究了不同情境下注入深部咸水层中的CO2沿断层发生泄漏的时间、速率、泄漏量等特征。通过15个场地尺度的模型结果分析表明,CO2注入方案、断层性质(发育位置、产状、几何形态、内部结构)、系统内岩层的组合形态对CO2泄漏均有影响。相同储存环境和断层发育条件下,CO2注入速率从1.59 kg/s增加至6.34 kg/s,CO2泄漏时间提前3 706 d,泄漏量在20 a后增加至注入总量的32.43%。断层发育位置对CO2封存影响极为显著,本次研究,距注入井100 m位置的断层可造成CO2的泄漏量在20 a后高达总注入量的63.39%。相同条件下,倾斜/窄小的断层比垂直/宽厚的断层对CO2及储层咸水的泄漏影响更小。断层渗透率增加一倍,可导致CO2泄漏量增加2.11%,泄漏速率约提高0.006~0.01 kg/s。 相似文献
20.
人类活动造成的CO2排放是全球气候变暖面临的主要挑战之一。CO2封存有望成为全世界减少碳排放份额最大的单项技术。海洋碳捕获、利用和封存(OCCUS)可以在较短时间内提供最大的碳封存能力,与其他地质封存方法相比更加安全有效。而且,多相态形式的CO2(气态、液态、固态和水合物)可以在海洋纵深尺度上实现直接注入。海洋碳封存是一项发展潜力巨大、优势明显的新兴碳封存技术,是实现大规模碳减排的重要措施之一,具有广阔的应用前景。因此,笔者等系统地阐述了海洋CO2直接注入、封存(OCS)的基本原理、技术现状、监测与评估,以及环境方面的影响,并对高效CO2注入技术,CO2泄漏的检测、防范与补救技术,以及海洋碳封存的生态后效等方面进行了展望。 相似文献