首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High temperature drop-solution calorimetry in molten 2 PbO · B2O3 at 1044 K for coesite and stishovite polymorphs of silica was carried out to determine the enthalpy of the coesite-stishovite transition. These experiments were performed on high-purity, single-phase samples of coesite and stishovite. Our new value for the enthalpy of the coesitestishovite transition (ΔH 298 0 ) is 29.85 ± 0.78 kJ/mol, which is about 35% lower than previously reported by Akaogi and Navrotsky (1984) and Holm et al. (1967), but which compares well with new measurements by Akaogi et al. (1994b). Using these new data, we have calculated the equilibrium phase boundary between coesite and stishovite and obtained a slope, dP/dT=0.0031 (2) GPa/K. This calculated slope is in good agreement with that determined [0.0026 (2) GPa/K] from the in-situ X-ray diffraction study of Zhang et al. (1996).  相似文献   

2.
The Sauwald area is located at the southern rim of the Bohemian Massif and contains migmatites and high-grade metapelitic and granitic gneisses. These rocks were metamorphosed during the post-collisional high-T/low-P stage of the Variscan metamorphic event (~330 Ma). Metapelitic samples were taken from two localities near Kössldorf and Pyret in Upper Austria and the investigated samples contain the mineral assemblage garnet + cordierite + spinel + sillimanite + K-feldspar + quartz + biotite + muscovite + magnetite + graphite. An important aspect of this study is the evaluation of previously published P-T estimates for these high-grade metapelites (Knop et al. 1995; Tropper et al. 2006) involving Ti-in-biotite, Na-in-cordierite thermometry and the micro-Raman thermometer based upon the degree of crystallization of carbonaceous material. In the two samples studied three texturally and chemically different biotites are distinguished. Biotite inclusions in garnet have the highest Ti contents of 5–6 wt.% TiO2. Matrix biotites contain 2–4 wt.% TiO2 and biotites from late-stage muscovite-biotite symplectites contain <2 wt.% TiO2. This corresponds to temperatures of 730–760°C (stage 1), 600–700°C (stage 2), and 550–610°C (stage 3). Since the Ti-in-biotite thermometer strongly depends on X Mg of biotite, which is susceptible to changes during retrogression the calculated temperatures for stage 1 are interpreted as minimum temperatures of the peak metamorphic stage. The Na contents of the studied cordierites vary from 0.1 to 0.2 wt.% Na2O. Application of the Na-in-cordierite thermometer yields temperatures in the range of 770–900°C; they are strongly dependent on the bulk Na2O content of the samples. The micro-Raman geothermometer of graphite was applied to carbonaceous material, which occurs as inclusions in garnet and cordierite. It yielded a maximum temperature >650°C, i.e. above the calibration limit of this method. This study shows that the obtained temperature estimates agree well with the P-T estimates based on phase equilibrium thermobarometry (Knop et al. 1995; Tropper et al. 2006), thus illustrating the validity of these thermometers. Nevertheless in order to more precisely constrain the metamorphic evolution of these high-grade rocks, better constrained experimental calibrations of, for instance the Na-in-cordierite thermometer, are clearly needed.  相似文献   

3.
Evaluation of the photocatalytic activities of TiO2 nanomaterials based on the chemical oxygen demand (COD) analyses under identical experimental conditions was not previously reported. In this work, COD has been selected as an adequate industrial water quality measure toward the establishment of a representative standard test method. The initial COD values of six organic pollutants representing dye, surfactants, phenols and alcohol were set at 30 ± 2 mg/L. Ten of different commercial and synthesized TiO2 samples representing anatase, rutile and mixed phases were used and characterized. The data of photocatalytic processes were compared to that obtained using the commonly widespread Degussa-P25 TiO2 (TD). The COD of all pollutants was completely removed by TD at UV exposure dose ≤9.36 mWh/cm2. Consequently, the maximum irradiation dose was set at this value in all experiments. The percentages of COD removal as well as the values of the accumulated UV doses required for complete removal of pollutants were measured using the different TiO2 samples. TiO2 samples show different performance abilities toward the various pollutants compared to TD. Based on the obtained data, TiO2 photocatalysts were divided into two categories according to the hydroxyl radical formation rates. Comparison with previous studies reveals that the photocatalytic efficiency evaluation depends on the method of measurement. COD is recommended to be used as an adequate technique of analysis that meets the purpose of water treatment applications.  相似文献   

4.
High-pressure phase transitions of CaRhO3 perovskite were examined at pressures of 6–27 GPa and temperatures of 1,000–1,930°C, using a multi-anvil apparatus. The results indicate that CaRhO3 perovskite successively transforms to two new high-pressure phases with increasing pressure. Rietveld analysis of powder X-ray diffraction data indicated that, in the two new phases, the phase stable at higher pressure possesses the CaIrO3-type post-perovskite structure (space group Cmcm) with lattice parameters: a = 3.1013(1) Å, b = 9.8555(2) Å, c = 7.2643(1) Å, V m  = 33.43(1) cm3/mol. The Rietveld analysis also indicated that CaRhO3 perovskite has the GdFeO3-type structure (space group Pnma) with lattice parameters: a = 5.5631(1) Å, b = 7.6308(1) Å, c = 5.3267(1) Å, V m  = 34.04(1) cm3/mol. The third phase stable in the intermediate P, T conditions between perovskite and post-perovskite has monoclinic symmetry with the cell parameters: a = 12.490(3) Å, b = 3.1233(3) Å, c = 8.8630(7) Å, β = 103.96(1)°, V m  = 33.66(1) cm3/mol (Z = 6). Molar volume changes from perovskite to the intermediate phase and from the intermediate phase to post-perovskite are –1.1 and –0.7%, respectively. The equilibrium phase relations determined indicate that the boundary slopes are large positive values: 29 ± 2 MPa/K for the perovskite—intermediate phase transition and 62 ± 6 MPa/K for the intermediate phase—post-perovskite transition. The structural features of the CaRhO3 intermediate phase suggest that the phase has edge-sharing RhO6 octahedra and may have an intermediate structure between perovskite and post-perovskite.  相似文献   

5.
This study presents a new experimental approach for determining H2O solubility in basaltic melt at upper mantle conditions. Traditional solubility experiments are limited to pressures of ~600 MPa or less because it is difficult to reliably quench silicate melts containing greater than ~10 wt% dissolved H2O. To overcome this limitation, our approach relies on the use of secondary ion mass spectrometry to measure the concentration of H dissolved in olivine and on using the measured H in olivine as a proxy for the concentration of H2O in the co-existing basaltic melt. The solubility of H2O in the melt is determined by performing a series of experiments at a single pressure and temperature with increasing amounts of liquid H2O added to each charge. The point at which the concentration of H in the olivine first becomes independent of the amount of initial H2O content of the charge (added + adsorbed H2O) indicates its solubility in the melt. Experiments were conducted by packing basalt powder into a capsule fabricated from San Carlos olivine, which was then pressure-sealed inside a Ni outer capsule. Our experimental results indicate that at 1000 MPa and 1200 °C, the solubility of H2O in basaltic melt is 20.6 ± 0.9 wt% (2 × standard deviation). This concentration is considerably higher than predicted by most solubility models but defines a linear relationship between H2O fugacity and the square of molar H2O solubility when combined with solubility data from lower pressure experiments. Further, our solubility determination agrees with melting point depression determined experimentally by Grove et al. (2006) for the H2O-saturated peridotite solidus at 1000 MPa. Melting point depression calculations were used to estimate H2O solubility in basalt along the experimentally determined H2O-saturated peridotite solidus. The results suggest that a linear relationship between H2O fugacity and the square of molar solubility exists up to ~1300 MPa, where there is an inflection point and solubility begins to increase less strongly with increasing H2O fugacity.  相似文献   

6.
α-PbO2–type TiO2 (space group Pbcn, a thermodynamically predicted high-pressure polymorph of rutile) was synthesized by a number of investigators using shock and static compression experiments. Recently, in situ high-pressure and high-temperature studies employing the multi-anvil device and white-beam (using a synchrotron radiation source) energy-dispersive method indicated that the transformation pressure is lower for nanophase material (~4 GPa and 900°C) than for the bulk (~6 GPa and 850°C). In addition, the phase boundary of rutile/α-PbO2-type TiO2 changes from a negative to a positive slope with increasing temperature. This timely knowledge provides indicative pressure-temperature (P-T) constraints on the natural occurrence of α-PbO2-type TiO2, recently identified by analytical electron microscopy as an epitaxial nanometer-thick slab between twinned rutile bicrystals in almandine-rich garnet of diamondiferous quartzofeldspathic rocks from the Saxonian Erzgebirge, Germany. The stability field of “bulk” α-PbO2-structured TiO2 shows that the minimum stabilization pressure of transition is ~6 GPa and could have been up to 2 GPa lower as a result of the nanophase effect. This suggests burial of continental crustal rocks to depths of at least 130-200 kilometers. Thus, α-PbO2-type TiO2 inclusions in garnet may be a useful P-T indicator in the diamond stability field. Furthermore, the possibility of finding α-PbO2-type TiO2 or even a higher-P polymorph (e.g., baddeleyite-structured TiO2) at impact sites of meteorite craters is increased, in view of the recent identification of post-stishovite (isostructure of rutile) SiO2 polymorphs in the meteorite Shergotty, and the alleged identification of α-PbO2-type TiO2 by Raman spectroscopy in shocked gneisses from the Ries Meteorite Crater, Germany.  相似文献   

7.
We performed high strain (up to 47 %) axial compression experiments on natural quartz single crystals with added rutile powder (TiO2) and ~0.2 wt% H2O to investigate the effects of deformation on the titanium-in-quartz (TitaniQ) geothermobarometer. One of the objectives was to study the relationships between different deformation mechanisms and incorporation of Ti into recrystallized quartz grains. Experiments were performed in a Griggs-type solid-medium deformation apparatus at confining pressures of 1.0–1.5 GPa and temperatures of 800–1,000 °C, at constant strain rates of 1 × 10?6 or 1 × 10?7 s?1. Mobility of Ti in the fluid phase and saturation of rutile at grain boundaries during the deformation experiments are indicated by precipitation of secondary rutile in cracks and along the grain boundaries of newly recrystallized quartz grains. Microstructural analysis by light and scanning electron microscopy (the latter including electron backscatter diffraction mapping of grain misorientations) shows that the strongly deformed quartz single crystals contain a wide variety of deformation microstructures and shows evidence for subgrain rotation (SGR) and grain boundary migration recrystallization (GBMR). In addition, substantial grain growth occurred in annealing experiments after deformation. The GBMR and grain growth are evidence of moving grain boundaries, a microstructure favored by high temperatures. Electron microprobe analysis shows no significant increase in Ti content in recrystallized quartz grains formed by SGR or by GBMR, nor in grains grown by annealing. This result indicates that neither SGR nor moving grain boundaries during GBMR and grain growth are adequate processes to facilitate re-equilibration of the Ti content in experimentally deformed quartz crystals at the investigated conditions. More generally, our results suggest that exchange of Ti in quartz at low H2O contents (which may be realistic for natural deformation conditions) is still not fully understood. Thus, the application of the TitaniQ geothermobarometer to deformed metamorphic rocks at low fluid contents may not be as straightforward as previously thought and requires further research.  相似文献   

8.
Cylinders of synthetic periclase single crystals were annealed at 0.15–0.5 GPa and 900–1200 °C under water-saturated conditions for 45 min to 72 h. Infrared spectra measured on the quenched products show bands at 3,297 and 3,312 cm?1 indicating V OH ? centers (OH-defect stretching vibrations in a half-compensated cation vacancy) in the MgO structure as a result of proton diffusion into the crystal. For completely equilibrated specimens, the OH-defect concentration, expressed as H2O equivalent, was calculated to 3.5 wt ppm H2O at 1,200 °C and 0.5 GPa based on the calibration method of Libowitzky and Rossmann (Am Min 82:1111–1115, 1997). This value was confirmed via Raman spectroscopy, which shows OH-defect-related bands at identical wavenumbers and yields an H2O equivalent concentration of about 9 wt ppm using the quantification scheme of Thomas et al. (Am Min 93:1550–1557, 2008), revised by Mrosko et al. (Am Mineral 96:1748–1759, 2011). Results of both independent methods give an overall OH-defect concentration range of 3.5–9 (+4.5/?2.6) ppm H2O. Proton diffusion follows an Arrhenius law with an activation energy E a = 280 ± 64 kJ mol?1 and the logarithm of the pre-exponential factor logDo (m2 s?1) = ?2.4 ± 1.9. IR spectra taken close to the rims of MgO crystals that were exposed to water-saturated conditions at 1,200 °C and 0.5 GPa for 24 h show an additional band at 3,697 cm?1, which is related to brucite precipitates. This may be explained by diffusion of molecular water into the periclase, and its reaction with the host crystal during quenching. Diffusion of molecular water may be described by logDH2O (m2 s?1) = ?14.1 ± 0.4 (2σ) at 1,200 °C and 0.5 GPa, which is ~ 2 orders of magnitude slower than proton diffusion at identical P-T conditions.  相似文献   

9.
The phase boundary between wadsleyite and ringwoodite in Mg2SiO4 has been determined in situ using a multi-anvil apparatus and synchrotron X-rays radiation at SPring-8. In spite of the similar X-ray diffraction profiles of these high-pressure phases with closely related structures, we were able to identify the occurrence of the mutual phase transformations based on the change in the difference profile by utilizing a newly introduced press-oscillation system. The boundary was located at ~18.9 GPa and 1,400°C when we used Shim’s gold pressure scale (Shim et al. in Earth Planet Sci Lett 203:729–739, 2002), which was slightly (~0.8 GPa) lower than the pressure as determined from the quench experiments of Katsura and Ito (J Geophys Res 94:15663–15670, 1989). Although it was difficult to constrain the Clapeyron slope based solely on the present data due to the kinetic problem, the phase boundary [P (GPa)=13.1+4.11×10−3×T (K)] calculated by a combination of a PT position well constrained by the present experiment and the calorimetric data of Akaogi et al. (J Geophys Res 94:15671–15685, 1989) reasonably explains all the present data within the experimental error. When we used Anderson’s gold pressure scale (Anderson et al. in J Appl Phys 65:1535–1543, 1989), our phase boundary was located in ~18.1 GPa and 1,400°C, and the extrapolation boundary was consistent with that of Kuroda et al. (Phys Chem Miner 27:523–532, 2000), which was determined at high temperature (1,800–2,000°C) using a calibration based on the same pressure scale. Our new phase boundary is marginally consistent with that of Suzuki et al. (Geophys Res Lett 27:803–806, 2000) based on in situ X-ray experiments at lower temperatures (<1,000°C) using Brown’s and Decker’s NaCl pressure scales.  相似文献   

10.
Growth rates of monomineralic, polycrystalline åkermanite (Ca2MgSi2O7) rims produced by solid-state reactions between monticellite (CaMgSiO4) and wollastonite (CaSiO3) single crystals were determined at 0.5 GPa dry argon pressure, 1,000–1,200°C and 5 min to 60 h, using an internally heated pressure vessel. Inert Pt-markers, initially placed at the monticellite–wollastonite interface, indicate symmetrical growth into both directions. This and mass balance considerations demonstrate that rim growth is controlled by transport of MgO. At 1,200°C and run durations between 5 min and 60 h, rim growth follows a parabolic rate law with rim widths ranging from 0.4 to 16.3 μm indicating diffusion-controlled rim growth. The effective bulk diffusion coefficient \( D_{\text{eff,MgO}}^{\text{Ak}} \) is calculated to 10?15.8±0.1 ms?1. Between 1,000°C and 1,200°C, the effective bulk diffusion coefficient follows an Arrhenius law with E a = 204 ± 18 kJ/mol and D 0 = 10?8.6±1.6 ms?1. Åkermanite grains display a palisade texture with elongation perpendicular to the reaction interface. At 1,200°C, average grain widths measured normal to elongation, increase with the square root of time and range from 0.4 to 5.4 μm leading to a successive decrease in the grain boundary area fraction, which, however, does not affect \( D_{\text{eff,MgO}}^{\text{Ak}} \) to a detectible extent. This implies that grain boundary diffusion only accounts for a minor fraction of the overall chemical mass transfer, and rim growth is essentially controlled by volume diffusion. This is corroborated by the agreement between our estimates of the effective MgO bulk diffusion coefficient and experimentally determined volume diffusion data for Mg and O in åkermanite from the literature. There is sharp contrast to the MgO–SiO2 binary system, where grain boundary diffusion controls rim growth.  相似文献   

11.
The liquidus water content of a haplogranite melt at high pressure (P) and temperature (T) is important, because it is a key parameter for constraining the volume of granite that could be produced by melting of the deep crust. Previous estimates based on melting experiments at low P (≤0.5 GPa) show substantial scatter when extrapolated to deep crustal P and T (700–1000 °C, 0.6–1.5 GPa). To improve the high-P constraints on H2O concentration at the granite liquidus, we performed experiments in a piston–cylinder apparatus at 1.0 GPa using a range of haplogranite compositions in the albite (Ab: NaAlSi3O8)—orthoclase (Or: KAlSi3O8)—quartz (Qz: SiO2)—H2O system. We used equal weight fractions of the feldspar components and varied the Qz between 20 and 30 wt%. In each experiment, synthetic granitic composition glass + H2O was homogenized well above the liquidus T, and T was lowered by increments until quartz and alkali feldspar crystalized from the liquid. To establish reversed equilibrium, we crystallized the homogenized melt at the lower T and then raised T until we found that the crystalline phases were completely resorbed into the liquid. The reversed liquidus minimum temperatures at 3.0, 4.1, 5.8, 8.0, and 12.0 wt% H2O are 935–985, 875–900, 775–800, 725–775, and 650–675 °C, respectively. Quenched charges were analyzed by petrographic microscope, scanning electron microscope (SEM), X-ray diffraction (XRD), and electron microprobe analysis (EMPA). The equation for the reversed haplogranite liquidus minimum curve for Ab36.25Or36.25Qz27.5 (wt% basis) at 1.0 GPa is \(T = - 0.0995 w_{{{\text{H}}_{ 2} {\text{O}}}}^{ 3} + 5.0242w_{{{\text{H}}_{ 2} {\text{O}}}}^{ 2} - 88.183 w_{{{\text{H}}_{ 2} {\text{O}}}} + 1171.0\) for \(0 \le w_{{{\text{H}}_{ 2} {\text{O}}}} \le 17\) wt% and \(T\) is in °C. We present a revised \(P - T\) diagram of liquidus minimum H2O isopleths which integrates data from previous determinations of vapor-saturated melting and the lower pressure vapor-undersaturated melting studies conducted by other workers on the haplogranite system. For lower H2O (<5.8 wt%) and higher temperature, our results plot on the high end of the extrapolated water contents at liquidus minima when compared to the previous estimates. As a consequence, amounts of metaluminous granites that can be produced from lower crustal biotite–amphibole gneisses by dehydration melting are more restricted than previously thought.  相似文献   

12.
The phase assemblages and compositions in a K-free lherzolite + H2O system were determined between 4 and 6 GPa and 700–800°C, and the dehydration reactions occurring at subarc depth in subduction zones were constrained. Experiments were performed on a rocking multi-anvil apparatus using a diamond-trap setting. The composition of the fluid phase was measured using the recently developed cryogenic LA–ICP–MS technique. Results show that, at 4 GPa, the aqueous fluid coexisting with residual lherzolite (~85 wt% H2O) doubles its solute load when chlorite transforms to the 10-Å phase between 700 and 750°C. The 10-Å phase breaks down at 4 and 5 GPa between 750 and 800°C and at 6 GPa between 700 and 750°C, leaving a dry lherzolite coexisting with a fluid phase containing 58–67 wt% H2O, again doubling the total dissolved solute load. The fluid fraction in the system increases from 0.2 when a hydrous mineral is present to 0.4 when coexisting with a dry lherzolite. Our data do not reveal the presence of a hydrous peridotite solidus below 800°C. The directly measured fluid compositions demonstrate a fundamental change in the (MgO + FeO) to SiO2 mass ratio of fluid solutes occurring at a depth of ca. 120–150 km (in the temperature window of 700–800°C), from (MgO–FeO)-dominated at 4 GPa [with (MgO + FeO)/SiO2 ratio of 1.41–1.56] to SiO2-dominated at 5–6 GPa (ratios of 0.61–0.82). The mobility of Al2O3 increases by more than one order of magnitude across this P–T interval and demonstrates that Al2O3 is compatible in an aqueous fluid coexisting with the anhydrous ol-opx-cpx ± grt assemblage. This shift in the fluid composition correlates with changes in the phase assemblage of the residual silicates. The hitherto unknown fundamental change in (MgO + FeO)/SiO2 ratio and prominent increase in Al2O3 of the aqueous fluid with progressive subduction will likely inspire novel concepts on mantle wedge metasomatism by slab fluids.  相似文献   

13.
The combination of cathodoluminescence (CL) analysis, temperature and temperature–time calculations, and microstructural numerical modelling offers the possibility to derive the time-resolved evolution of a metamorphic rock. This combination of techniques is applied to a natural laboratory, namely the Ballachulish contact aureole, Scotland. Analysis of the Appin Quartzite reveals that the aureole was produced by two distinct magmatic events and infiltrated by associated fluids. Developing microstructures allow us to divide the aureole into three distinct regions. Region A (0–400?m, 663°C?<?T max?<?714°C) exhibits a three-stage grain boundary migration (GBM) evolution associated with heating, fluid I and fluid II. GBM in region B (400–700?m, 630°C?<?T max?<?663°C) is associated with fluid II only. Region C (>700?m of contact, T max?<?630°C) is characterised by healed intragranular cracks. The combination of CL signature analysis and numerical modelling enables us to recognise whether grain size increase occurred mainly by surface energy-driven grain growth (GG) or strain-induced grain boundary migration (SIGBM). GG and SIGBM result in either straight bands strongly associated with present-day boundaries or highly curved irregular bands that often fill entire grains, respectively. At a temperature of ~620°C, evidence for GBM is observed in the initially dry, largely undeformed quartzite samples. At this temperature, evidence for GG is sparse, whereas at ~663°C, CL signatures typical for GG are commonplace. The grain boundary network approached energy equilibrium in samples that were at least 5?ka above 620°C.  相似文献   

14.
Investigation by Raman spectroscopy of samples from different geological settings shows that the occurrence of TiO2 polymorphs other than rutile can hardly be predicted, and furthermore, the occurrence of anatase is more widespread than previously thought. Metamorphic pressure and temperature, together with whole rock chemistry, control the occurrence of anatase, whereas variation of mineral assemblage characteristics and/or fluid occurrence or composition takes influence on anatase trace element characteristics and re-equilibration of relict rutiles. Evaluation of trace element contents obtained by electron microprobe in anatase, brookite, and rutile shows that these vary significantly between the three TiO2 phases. Therefore, on the one hand, an appropriation to source rock type according to Nb and Cr contents, but as well application of thermometry on the basis of Zr contents, would lead to erroneous results if no phase specification is done beforehand. For the elements Cr, V, Fe, and Nb, variation between the polymorphs is systematic and can be used for discrimination on the basis of a linear discriminant analysis. Using phase group means and coefficients of linear discriminants obtained from a compilation of analyses from samples with well-defined phase information together with prior probabilities of groupings from a natural sample compilation, one is able to calculate phase grouping probabilities of any TiO2 analysis containing at least the critical elements Cr, V, Fe, and Nb. An application of this calculation shows that for the appropriation to the phase rutile, a correct-classification rate of 99.5% is obtained. Hence, phase specification by trace elements proves to be a valuable tool besides Raman spectroscopy.  相似文献   

15.
In order to evaluate the effect of trace and minor elements (e.g., P, Y, and the REEs) on the high-temperature solubility of Ti in zircon (zrc), we conducted 31 experiments on a series of synthetic and natural granitic compositions [enriched in TiO2 and ZrO2; Al/(Na + K) molar ~1.2] at a pressure of 10 kbar and temperatures of ~1,400 to 1,200 °C. Thirty of the experiments produced zircon-saturated glasses, of which 22 are also saturated in rutile (rt). In seven experiments, quenched glasses coexist with quartz (qtz). SiO2 contents of the quenched liquids range from 68.5 to 82.3 wt% (volatile free), and water concentrations are 0.4–7.0 wt%. TiO2 contents of the rutile-saturated quenched melts are positively correlated with run temperature. Glass ZrO2 concentrations (0.2–1.2 wt%; volatile free) also show a broad positive correlation with run temperature and, at a given T, are strongly correlated with the parameter (Na + K + 2Ca)/(Si·Al) (all in cation fractions). Mole fraction of ZrO2 in rutile $ \left( {\mathop X\nolimits_{{{\text{ZrO}}_{ 2} }}^{\text{rt}} } \right) $ in the quartz-saturated runs coupled with other 10-kbar qtz-saturated experimental data from the literature (total temperature range of ~1,400 to 675 °C) yields the following temperature-dependent expression: $ {\text{ln}}\left( {\mathop X\nolimits_{{{\text{ZrO}}_{ 2} }}^{\text{rt}} } \right) + {\text{ln}}\left( {a_{{{\text{SiO}}_{2} }} } \right) = 2.638(149) - 9969(190)/T({\text{K}}) $ , where silica activity $ a_{{{\text{SiO}}_{2} }} $ in either the coexisting silica polymorph or a silica-undersaturated melt is referenced to α-quartz at the P and T of each experiment and the best-fit coefficients and their uncertainties (values in parentheses) reflect uncertainties in T and $ \mathop X\nolimits_{{{\text{ZrO}}_{2} }}^{\text{rt}} $ . NanoSIMS measurements of Ti in zircon overgrowths in the experiments yield values of ~100 to 800 ppm; Ti concentrations in zircon are positively correlated with temperature. Coupled with values for $ a_{{{\text{SiO}}_{2} }} $ and $ a_{{{\text{TiO}}_{2} }} $ for each experiment, zircon Ti concentrations (ppm) can be related to temperature over the range of ~1,400 to 1,200 °C by the expression: $ \ln \left( {\text{Ti ppm}} \right)^{\text{zrc}} + \ln \left( {a_{{{\text{SiO}}_{2} }} } \right) - \ln \left( {a_{{{\text{TiO}}_{2} }} } \right) = 13.84\left( {71} \right) - 12590\left( {1124} \right)/T\left( {\text{K}} \right) $ . After accounting for differences in $ a_{{{\text{SiO}}_{2} }} $ and $ a_{{{\text{TiO}}_{2} }} $ , Ti contents of zircon from experiments run with bulk compositions based on the natural granite overlap with the concentrations measured on zircon from experiments using the synthetic bulk compositions. Coupled with data from the literature, this suggests that at T ≥ 1,100 °C, natural levels of minor and trace elements in “granitic” melts do not appear to influence the solubility of Ti in zircon. Whether this is true at magmatic temperatures of crustal hydrous silica-rich liquids (e.g., 800–700 °C) remains to be demonstrated. Finally, measured $ D_{\text{Ti}}^{{{\text{zrc}}/{\text{melt}}}} $ values (calculated on a weight basis) from the experiments presented here are 0.007–0.01, relatively independent of temperature, and broadly consistent with values determined from natural zircon and silica-rich glass pairs.  相似文献   

16.
We present H2O analyses of MgSiO3 pyroxene crystals quenched from hydrous conditions in the presence of olivine or wadsleyite at 8–13.4 GPa and 1,100–1,400°C. Raman spectroscopy shows that all pyroxenes have low clinoenstatite structure, which we infer to indicate that the crystals were high clinoenstatite (C2/c) during conditions of synthesis. H2O analyses were performed by secondary ion mass spectrometry and confirmed by unpolarized Fourier transform infrared spectroscopy on randomly oriented crystals. Measured H2O concentrations increase with pressure and range from 0.08 wt.% H2O at 8 GPa and 1,300°C up to 0.67 wt.% at 13.4 GPa and 1,300°C. At fixed pressure, H2O storage capacity diminishes with increasing temperature and the magnitude of this effect increases with pressure. This trend, which we attribute to diminishing activity of H2O in coexisting fluids as the proportion of dissolved silicate increases, is opposite to that observed previously at low pressure. We observe clinoenstatite 1.4 GPa below the pressure stability of clinoenstatite under nominally dry conditions. This stabilization of clinoenstatite relative to orthoenstatite under hydrous conditions is likely owing to preferential substitution of H2O into the high clinoenstatite polymorph. At 8–11 GPa and 1,200–1,400°C, observed H2O partitioning between olivine and clinoenstatite gives values of D ol/CEn between 0.65 and 0.87. At 13 GPa and 1,300°C, partitioning between wadsleyite and clinoenstatite, D wd/CEn, gives a value of 2.8 ± 0.4.  相似文献   

17.
The crystal structure of Pb6Bi2S9 is investigated at pressures between 0 and 5.6 GPa with X-ray diffraction on single-crystals. The pressure is applied using diamond anvil cells. Heyrovskyite (Bbmm, a = 13.719(4) Å, b = 31.393(9) Å, c = 4.1319(10) Å, Z = 4) is the stable phase of Pb6Bi2S9 at ambient conditions and is built from distorted moduli of PbS-archetype structure with a low stereochemical activity of the Pb2+ and Bi3+ lone electron pairs. Heyrovskyite is stable until at least 3.9 GPa and a first-order phase transition occurs between 3.9 and 4.8 GPa. A single-crystal is retained after the reversible phase transition despite an anisotropic contraction of the unit cell and a volume decrease of 4.2%. The crystal structure of the high pressure phase, β-Pb6Bi2S9, is solved in Pna2 1 (a = 25.302(7) Å, b = 30.819(9) Å, c = 4.0640(13) Å, Z = 8) from synchrotron data at 5.06 GPa. This structure consists of two types of moduli with SnS/TlI-archetype structure in which the Pb and Bi lone pairs are strongly expressed. The mechanism of the phase transition is described in detail and the results are compared to the closely related phase transition in Pb3Bi2S6 (lillianite).  相似文献   

18.
 From heat capacities measured adiabatically at low temperatures, the standard entropies at 298.15 K of synthetic rutile (TiO2) and nepheline (NaAlSiO4) have been determined to be 50.0 ± 0.1 and 122.8 ± 0.3 J mol−1 K, respectively. These values agree with previous measurements and in particular confirm the higher entropy of nepheline with respect to that of the less dense NaAlSiO4 polymorph carnegieite. Received: 23 July 2001 / Accepted: 12 October 2001  相似文献   

19.
Phase relations for a natural serpentinite containing 5 wt% of magnetite have been investigated using a multi-anvil apparatus between 6.5 and 11 GPa and 400–850 °C. Post-antigorite hydrous phase assemblages comprise the dense hydrous magnesium silicates (DHMSs) phase A (11.3 wt% H2O) and the aluminous phase E (Al-PhE, 11.9 wt% H2O). In addition, a ferromagnesian hydrous silicate (11.1 wt% H2O) identified as balangeroite (Mg,Fe)42Si16O54(OH)40, typically described in low pressure natural serpentinite, was found coexisting with Al-PhE between 650 and 700 °C at 8 GPa. In the natural antigorite system, phase E stability is extended to lower pressures (8 GPa) than previously reported in simple chemical systems. The reaction Al-phase E?=?garnet?+?olivine?+?H2O is constrained between 750 and 800 °C between 8 and 11 GPa as the terminal boundary between hydrous mineral assemblages and nominally anhydrous assemblages, hence restricting water transfer into the deep mantle to the coldest slabs. The water storage capacity of the assemblage Al-PhE?+?enstatite (high-clinoenstatite)?+?olivine, relevant for realistic hydrated slab composition along a relatively cold temperature path is estimated to be ca. 2 wt% H2O. Attempts to mass balance run products emphasizes the role of magnetite in phase equilibria, and suggests the importance of ferric iron in the stabilization of hydrous phases such as balangeroite and aluminous phase E.  相似文献   

20.
The carbon molecular sieves (CMSs) prepared by carbonaceous materials as precursors are effective in CO2/N2 separation. However, selectivity of these materials is too low, since hydrocarbon cracking for developing the desired microporosity in carbonaceous materials has not been done effectively. Hence, in this study, cobalt and nickel impregnation on the precursor was conducted to introduce catalysts for hydrocarbon cracking. Cobalt and nickel impregnation, carbonization under N2 atmosphere, and chemical vapor deposition (CVD) by benzene were conducted on the extruded mixtures of activated carbon and coal tar pitch under different conditions to prepare CMSs. The best CMS prepared by carbon deposition on the cobalt-impregnated samples exhibited CO2 adsorption capacity of 54.79 mg/g and uptake ratio of 28.9 at 0 °C and 1 bar. In terms of CO2 adsorption capacity and uptake ratio, CMSs prepared by carbon deposition on non-impregnated and cobalt-impregnated samples presented the best results, respectively. As benzene concentration and CVD time increased, equilibrium adsorption capacity of CO2 decreased, and uptake ratio increased. Cobalt was found to be the best catalyst for benzene cracking in the CVD process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号