首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
We present sixth- and eighth-order Hermite integrators for astrophysical N-body simulations, which use the derivatives of accelerations up to second-order (snap) and third-order (crackle). These schemes do not require previous values for the corrector, and require only one previous value to construct the predictor. Thus, they are fairly easy to implement. The additional cost of the calculation of the higher-order derivatives is not very high. Even for the eighth-order scheme, the number of floating-point operations for force calculation is only about two times larger than that for traditional fourth-order Hermite scheme. The sixth-order scheme is better than the traditional fourth-order scheme for most cases. When the required accuracy is very high, the eighth-order one is the best. These high-order schemes have several practical advantages. For example, they allow a larger number of particles to be integrated in parallel than the fourth-order scheme does, resulting in higher execution efficiency in both general-purpose parallel computers and GRAPE systems.  相似文献   

2.
We present a data format for the output of general N-body simulations, allowing the presence of individual time steps. By specifying a standard, different N-body integrators and different visualization and analysis programs can all share the simulation data, independent of the type of programs used to produce the data. Our Particle Stream Data Format, PSDF, is specified in YAML, based on the same approach as XML but with a simpler syntax. Together with a specification of PSDF, we provide background and motivation, as well as specific examples in a variety of computer languages. We also offer a web site from which these examples can be retrieved, in order to make it easy to augment existing codes in order to give them the option to produce PSDF output.  相似文献   

3.
We use a hybrid N-body program to study the evolution of massive black hole binaries in the centers of galaxies, mainly to understand the factors affecting the binary eccentricity, the response of the galaxy to the binary merger, and the effect of loss-cone depletion on the merger time. The scattering experiments from paper I (Quinlan, 1996)[NewA, 1, 35] showed that the merger time is not sensitive to the eccentricity growth unless a binary forms with at least a moderate eccentricity. We find here that the eccentricity can become large under some conditions if a binary forms in a galaxy with a flat core or with a radial bias in its velocity distribution, especially if the dynamical friction is enhanced by resonances as suggested by Rauch & Tremaine (1996)[NewA, 1, 149]. But the necessary conditions seem unlikely, and our prediction from paper I remains unchanged: in most cases the eccentricity will start and remain small. The ejection of stars caused by the hardening of a binary may explain why large elliptical galaxies have weaker density cusps than smaller galaxies. If so, the central velocity distributions in those galaxies should have strong tangential anisotropies. The wandering of a binary from the center of a galaxy counteracts the effects of loss-cone depletion and helps the binary merge.  相似文献   

4.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号