共查询到20条相似文献,搜索用时 11 毫秒
1.
A high surface heat-flow anomaly on the northern Taranaki Peninsula in the Taranaki Basin (New Zealand) coincides spatially with Quaternary volcanic edifices, but the temporal aspects of heating of the sedimentary column associated with volcanism and any related plutonism have been unclear. A combined analysis of fission track age and vitrinite reflectance data, in particular comparing data from within the high heat-flow anomaly to calibration wells elsewhere in the Taranaki Basin, provides important new constraints. Within the high heat-flow region, apatite fission track (AFT) ages are older and vitrinite reflectance ( R o ) values are lower than in samples from elsewhere in the basin that have undergone similar burial histories. Modelled AFT ages and R o values suggest gradual heating to within about 20 °C of maximum temperature followed by rapid heating of sedimentary strata in the last 1 Myr, perhaps as recently as the last 0.1 Myr. The inferred age of this heating event is younger than the age of the volcanic edifice on which it is centred, suggesting that volcanism precedes heating that may be related to plutonism under the northern peninsula. These results suggest that, if the heating is caused by intrusion, then the intrusion is probably in the upper crust.
相似文献
相似文献
2.
Integrated analysis and modelling of apatite fission track with vitrinite reflectance (VR) data allows the timing, magnitude and pattern of Palaeogene subsidence and Neogene inversion to be established for an uplifted and largely denuded basin: the Buller Coalfield, New Zealand. At the time of maximum subsidence in the late Oligocene, the basin consisted of an extensional half graben, bounded to the west by the Kongahu Fault Zone (KFZ), with up to 6 km of upper Eocene to Oligocene section adjacent to it; currently, only a few tens of metres of basal coal measures on basement are preserved on top of a range 800–1000 m above sea level. Integrated modelling of the VR and fission track data show that the deepest parts of the basin were inverted during two Miocene compressional phases (24–19 Ma and 13–8 Ma), and are consistent with a further phase of inversion during the Quaternary that formed the present topography. Palinspastic restoration of the three phases of inversion shows that the basin was not inverted in a simple way: most of the rock uplift/denudation adjacent to the KFZ occurred during the early Miocene phase, and at the same time burial occurred in the south-eastern part of the basin (maximum temperatures were experienced at different times at different places in the basin); during the middle to late Miocene there was broad uplift in the central and eastern parts of the coalfield. Because the timing and magnitude of uplift have been derived from the zone of inversion, they can be compared independently with the timing of unconformity development and rapid subsidence in the adjacent foredeeps, particularly the Westport Trough. For the middle to late Miocene phase of inversion, we show that during the first 1–2 million years of compression, the uplift within the coalfield also involved the margins of the Westport Trough, contributing to unconformity development; subsequently, uplift continued on the inversion structure but the margins of the Westport Trough subsided rapidly. This is explained by a model of stick slip behaviour on the boundary faults, especially for the KFZ. When compression started the fault zone has locked and uplift extends into the basin, whereas subsequently the fault zone unlocks, and the inversion structure overrides the basin margin, thereby loading it and causing subsidence. 相似文献
3.
A complex basin evolution was studied using various methods, including thermal constraints based on apatite fission‐track (AFT) analysis, vitrinite reflectance (VR) and biomarker isomerisation, in addition to a detailed analysis of the regional stratigraphic record and of the lithological properties. The study indicates that (1) given the substantial amount of data, the distinction and characterisation of successive stages of heating and burial in the same area are feasible, and (2) the three thermal indicators (AFT, VR and biomarkers) yield internally consistent thermal histories, which supports the validity of the underlying kinetic algorithms and their applicability to natural basins. All data pertaining to burial and thermal evolution were integrated in a basin model, which provides constraints on the thickness of eroded sections and on heat flow over geologic time. Three stages of basin evolution occurred in northern Switzerland. The Permo‐Carboniferous strike–slip basin was characterised by high geothermal gradients (80–100°C km?1) and maximum temperature up to 160°C. After the erosion of a few hundreds of metres in the Permian, the post‐orogenic, epicontinental Mesozoic basin developed in Central Europe, with subsidence triggered by several stages of rifting. Geothermal gradients in northern Switzerland during Cretaceous burial were relatively high (35–40°C km?1), and maximum temperature typically reached 75°C (top middle Jurassic) to 100°C (base Mesozoic). At least in the early Cretaceous, a stage of increased heat flow is needed to explain the observed maturity level. After erosion of 600–700 m of Cretaceous and late Jurassic strata during the Paleocene, the wedge‐shaped Molasse Foreland Basin developed. Geothermal gradients were low at this time (≤20°C km?1). Maximum temperature of Miocene burial exceeded that of Cretaceous burial in proximal parts (<35 km from the Alpine front), but was lower in more distal parts (>45 km). Thus, maximum temperature as well as maximum burial depth ever reached in Mesozoic strata occurred at different times in different regions. Since the Miocene, 750–1050 m were eroded, a process that still continues in the proximal parts of the basin. Current average geothermal gradients in the uppermost 2500 m are elevated (32–47°C km?1). They are due to a Quaternary increase of heat flow, most probably triggered by limited advective heat transport along Paleozoic faults in the crystalline basement. 相似文献
4.
Constraining the burial history of a sedimentary basin is crucial for accurate prediction of hydrocarbon generation and migration. Although the Ghadames Basin is a prolific hydrocarbon province, with recoverable oil discovered to date in excess of 3.5 billion bbl, exploration on the eastern margin is still limited and the prospectivity of the area depends on the identification of effective source rocks and the timing of hydrocarbon generation. Sonic velocity, apatite fission track (FT) and vitrinite reflectance analysis offer three complementary methods to determine burial history and provide independent analytical techniques to evaluate the timing and amount of exhumation. The results indicate that two phases of tectonic activity had the biggest influence on basin evolution: the Hercynian (Late Carboniferous–Triassic) and Alpine (Late Mesozoic/Cenozoic) tectonic events. Exhumation during the Hercynian tectonic event increases from the SE, where an almost complete Palaeozoic section is preserved, towards the NW. This study quantifies the significant regional Alpine exhumation of the southern and eastern margins of the basin, with important implications for the timing of hydrocarbon maturation and expulsion, particularly for the Silurian source rock interval. Incorporating elevated Alpine exhumation values into burial history models for wells in the eastern (Libyan) part of the basin allows calibration with available maturity (Roeq ) data using moderate values of Hercynian erosion. The result is preservation of the generation potential of Silurian (Tanezzuft) source rocks until maximum burial during Mesozoic/Cenozoic time, which improves the chance for preservation of hydrocarbon accumulations following entrapment. 相似文献
5.
Multiphase cooling and exhumation of the southern Adelaide Fold Belt: constraints from apatite fission track data 总被引:2,自引:0,他引:2
Data from apatite fission track analysis are presented for 20 outcrop samples collected in the southern Adelaide Fold Belt, South Australia. Interpretation of these data, with the aid of numerical models which allow inference of multiphase cooling histories, indicate three discrete cooling events that are likely to correlate with sedimentation events in surrounding depositional settings. An event beginning some time after 85 Ma (Late Cretaceous) was characterized by cooling throughout the study area from temperatures of roughly 50 to 70 °C. An event beginning at 300–270 Ma (Late Palaeozoic) was characterized by cooling from temperatures >120 °C in all areas except for the Mount Lofty Ranges and Murray Bridge region, where peak temperatures were only 95–115 °C prior to Palaeozoic cooling. Some samples from these subregions of relatively cool Late Palaeozoic temperatures also retain evidence for even earlier cooling from temperatures >120 °C, beginning prior to 350 Ma. We interpret the post 85-Ma event as the consequence of regional exhumation from a depth of 1.0–1.6 km. The Late Palaeozoic event (300–270 Ma) is interpreted as cooling associated with the termination of the Alice Springs Orogeny, while cooling prior to 350 Ma probably represents the final stages of Early Middle Palaeozoic unroofing of the southern Adelaide Fold Belt.
The results highlight the importance of regional, episodic postorogenic exhumation of Palaeozoic fold belts, where – in some cases – conventional methods have erroneously suggested relatively long-term stability. 相似文献
The results highlight the importance of regional, episodic postorogenic exhumation of Palaeozoic fold belts, where – in some cases – conventional methods have erroneously suggested relatively long-term stability. 相似文献
6.
The combination of vitrinite reflectance, apatite fission track and present‐day borehole temperature data is very useful when performing tectonic and thermal reconstructions in sedimentary basins which, in turn, are essential for assessing risk in hydrocarbon exploration and for testing hypotheses of basin evolution. Releasing the full potential of the combined data set requires that the predictive models are accurate in themselves. Here, we calibrate a new kinetic vitrinite reflectance model ‘basin%Ro’ using borehole data from a number of sedimentary basins and vitrinite reflectance data from laboratory maturation experiments. The entire data set is inverted for the kinetic parameters of the reflectance model under consideration of uncertainty in the temperature histories of the calibration samples. The method is not sensitive to inconsistent calibration data, which are revealed by significant corrections to the temperature histories. The performance of the model is tested on independent well data from the East China Sea and the Nova Scotian Shelf. The widely used easy%Ro‐model overestimates vitrinite reflectance in the interval 0.5–1.7% Ro by up to 0.35%. Delimiting of oil generating intervals by prediction of vitrinite reflectance may lead to significant underestimation of the generative potential, which may call for a revision of some petroleum systems. The overestimation by easy%Ro may have fuelled the idea of pressure retardation of vitrinite reflectance evolution under sedimentary basin conditions, where pressures in fact are too low for this to be important. 相似文献
7.
As sediment accumulation indicates basin subsidence, erosion often is understood as tectonic uplift, but the amplitude and timing may be difficult to determine because the sedimentary record is missing. Quantification of erosion therefore requires indirect evidence, for example thermal indicators such as temperature, vitrinite reflectance and fission tracks in apatite. However, as always, the types and quality of data and the choice of models are important to the results. For example, considering only the thermal evolution of the sedimentary section discards the thermal time constant of the lithosphere and essentially ignores the temporal continuity of the thermal structure. Furthermore, the types and density of thermal indicators determine the solution space of deposition and erosion, the quantification of which calls for the use of inverse methods, which can only be successful when all models are mutually consistent. Here, we use integrated basin modelling and Markov Chain Monte Carlo inversion of four deep boreholes to show that the erosional pattern along the Sorgenfrei–Tornquist Zone (STZ) in the eastern North Sea is consistent with a tectonic model of tectonic inversion based on compression and relaxation of an elastic plate. Three wells in close proximity SW of the STZ have different data and exhibit characteristic differences in erosion estimates but are consistent with the formation of a thick chalk sequence, followed by minor Cenozoic erosion during relaxation inversion. The well on the inversion ridge requires ca. 1.7 km Jurassic-Early Cretaceous sedimentation followed by Late Cretaceous–Palaeocene erosion during inversion. No well demands thick Cenozoic sedimentation followed by equivalent significant Neogene exhumation. When data are of high quality and models are consistent, the thermal indicator method yields significant results with important tectonic and geodynamic implications. 相似文献
8.
Peter van der Beek Xavier Robert Jean-Louis Mugnier Matthias Bernet Pascale Huyghe Erika Labrin 《Basin Research》2006,18(4):413-434
Thermochronological analysis of detrital sediments derived from the erosion of mountain belts and contained in the sedimentary basins surrounding them allows reconstructing the long-term exhumation history of the sediment source areas. The effective closure temperature of the thermochronological system analysed determines the spatial and temporal resolution of the analysis through the duration of the lag time between closure of the system during exhumation and its deposition in the sedimentary basin. Here, we report apatite fission-track (AFT) data from 31 detrital samples collected from Miocene to Pliocene stratigraphic sections of the Siwalik Group in western and central Nepal, as well as three samples from modern river sediments from the same area, that complement detrital zircon fission-track (ZFT) and U–Pb data from the same samples presented in a companion paper. Samples from the upper part of the stratigraphic sections are unreset and retain a signal of source-area exhumation; they show spatial variations in source-area exhumation rates that are not picked up by the higher-temperature systems. More deeply buried samples have been partially reset within the Siwalik basin and provide constraints on the thermal and kinematic history of the fold-and-thrust belt itself. The results suggest that peak source-area exhumation rates have been constant at ∼1.8 km Myr−1 over the last ∼7 Ma in central Nepal, whereas they ranged between 1 and ∼1.5 km Myr−1 in western Nepal over the same time interval; these spatial variations may be explained by either a tectonic or climatic control on exhumation rates, or possibly a combination of the two. Increasing lag times within the uppermost part of the sections suggest an increasing component of apatites that have been recycled within the Siwalik belt and are corroborated by AFT ages of modern river sediment downstream as well as the record of the distal Bengal Fan. The most deeply buried and most strongly annealed samples record onset of exhumation of the frontal Siwaliks along the Himalayan frontal thrust at ∼2 Ma and continuous shortening at rates comparable with the present-day shortening rates from at least 0.3 Ma onward. 相似文献
9.
《Basin Research》2018,30(3):502-521
The Menderes Massif is a Tertiary metamorphic core complex tectonically exhumed in the late Oligocene–Miocene during coeval development of a series of E–W‐trending basins. This study analyses the source‐to‐sink evolution of the Gediz Graben and the exhumation pattern of the Central Menderes Massif at the footwall and hanging wall of the Gediz Detachment Fault. We use a comprehensive approach to detrital apatite fission track dating combining analysis of modern river sediments, analysis of fossil sedimentary successions and mineral fertility determinations. This approach allowed us to: (i) define the modern short‐term erosion pattern of the study area, (ii) unravel the long‐term exhumation history, (iii) identify major exhumation events recorded in the sedimentary basin fill and (iv) constrain the maximum depositional age of the sedimentary succession. Three main exhumation events are recorded in the analysed detrital samples: (i) a late Oligocene/early Miocene exhumation event involving the whole Menderes Massif; (ii) a late Miocene event involving the northern edge of the Central Menderes Massif; (iii) a Plio‐Quaternary more localized event involving only the western part of the southern margin of the basin (Salihli area) and bringing to the surface the Gediz Detachment and its intrusive footwall (Salihli granodiorite). The modern short‐term erosion pattern closely reflects this latter Plio‐Quaternary event. Single grain‐age distributions in the sedimentary basin fill highlight drainage pattern reorganizations in correspondence of the transition between different stratigraphic units, and allowed to better constrain the depositional age of the sedimentary units of the basin pointing to a possible onset of sedimentation in the basin during the middle Miocene. 相似文献
10.
M. Danišík R. F. Sachsenhofer W. Frisch V. A. Privalov E. A. Panova C. Spiegel 《Basin Research》2010,22(5):681-698
The Donbas Foldbelt (DF) is the compressionally deformed segment of a large Late Palaeozoic rift cross‐cutting the southern part of the East European Craton and is traditionally described as a classic example of an inverted intracratonic rift basin. Proposed formational models are often controversial and numerous issues are still a matter of speculation, primarily due to the lack of absolute time constraints and insufficient knowledge of the thermal evolution. We investigate the low‐temperature thermal history of the DF by means of zircon fission track and apatite fission track (AFT) thermochronology applied to Upper Carboniferous sediments. In all samples, the AFT chronometer was reset shortly after deposition in the Early Permian (~275 Ma). Samples contained kinetically variable apatites that are sensitive to different temperatures and using statistic‐based component analysis incorporating annealing characteristics of individual grains assessed by Dpar , we identified several distinct age populations, ranging from the Late Permian (~265 Ma) to the Late Cretaceous (~70 Ma). We could thus constrain the thermal history of the DF during a ~200 Myr long period following the thermal maximum. We found that earliest cooling of Permian and Permo‐Triassic age is recorded on the basin margins whereas the central parts were residing in or slowly cooling through the apatite partial annealing zone during Jurassic and most of Cretaceous times, and then finally cooled to near‐surface conditions latest around the Cretaceous/Palaeogene boundary. Our data show that Permian erosion was less significant and Mesozoic erosion more significant than generally assumed. Inversion and pop‐up of the DF occurred in the Cretaceous and not in the Permian as previously thought. This is indicated by overall Cretaceous AFT ages in the central parts of the basin. 相似文献
11.
12.
Stéphane Homke Jaume Vergés Peter Van Der Beek Manel Fernàndez Eduard Saura Luis Barbero Balazs Badics Erika Labrin 《Basin Research》2010,22(5):659-680
We present the first fission‐track (FT) thermochronology results for the NW Zagros Belt (SW Iran) in order to identify denudation episodes that occurred during the protracted Zagros orogeny. Samples were collected from the two main detrital successions of the NW Zagros foreland basin: the Palaeocene–early Eocene Amiran–Kashkan succession and the Miocene Agha Jari and Bakhtyari Formations. In situ bedrock samples were furthermore collected in the Sanandaj‐Sirjan Zone. Only apatite fission‐track (AFT) data have been successfully obtained, including 26 ages and 11 track‐length distributions. Five families of AFT ages have been documented from analyses of in situ bedrock and detrital samples: pre‐middle Jurassic at ~171 and ~225 Ma, early–late Cretaceous at ~91 Ma, Maastrichtian at ~66 Ma, middle–late Eocene at ~38 Ma and Oligocene–early Miocene at ~22 Ma. The most widespread middle–late Eocene cooling phase, around ~38 Ma, is documented by a predominant grain‐age population in Agha Jari sediments and by cooling ages of a granitic boulder sample. AFT ages document at least three cooling/denudation periods linked to major geodynamic events related to the Zagros orogeny, during the late Cretaceous oceanic obduction event, during the middle and late Eocene and during the early Miocene. Both late Cretaceous and early Miocene orogenic processes produced bending of the Arabian plate and concomitant foreland deposition. Between the two major flexural foreland episodes, the middle–late Eocene phase mostly produced a long‐lasting slow‐ or nondepositional episode in the inner part of the foreland basin, whereas deposition and tectonics migrated to the NE along the Sanandaj‐Sirjan domain and its Gaveh Rud fore‐arc basin. As evidenced in this study, the Zagros orogeny was long‐lived and multi‐episodic, implying that the timing of accretion of the different tectonic domains that form the Zagros Mountains requires cautious interpretation. 相似文献
13.
Elisabet Beamud Josep Anton Muñoz Paul G. Fitzgerald Suzanne L. Baldwin Miguel Garcés Lluis Cabrera James R. Metcalf 《Basin Research》2011,23(3):309-331
The syntectonic continental conglomerates of the South‐Central Pyrenees record the late stages of thin‐skinned transport of the South‐Pyrenean Central Units and the onset of exhumation of the Pyrenean Axial Zone (AZ) in the core of the orogen. New magnetostratigraphic data of these syntectonic continental conglomerates have established their age as Late Lutetian to Late Oligocene. The data reveal that these materials were deposited during intense periods of tectonic activity of the Pyrenean chain and not during the cessation of the deformation as considered previously. The magnetostratigraphic ages have been combined with new detrital apatite fission track (AFT) thermochronology from AZ‐derived granite cobbles within the syntectonic conglomerates. Distribution of the granitic cobbles with different AFT ages and track lengths combined with their depositional ages reveal information on the timing and rate of episodes of exhumation in the orogen. Some AFT ages are considerably older than the AFT ages of the outcropping AZ granitic massifs, indicating erosion from higher crustal levels within the massifs than presently exposed or from completely eroded plutons. Inverse thermal modelling reveals two well‐defined periods of rapid cooling in the hinterland at ca. 50–40 and ca. 30–25 Ma, with another poorly defined cooling episode at ca. 70–60 Ma. The lowest stratigraphic samples experienced postburial annealing caused by the deposition of younger syntectonic sediments during progressive burial of the south Pyrenean thrust and fold belt. Moreover, samples from the deeper stratigraphic levels also reveal postorogenic cooling during the Late Miocene as a response to the excavation of the Ebro River towards the Mediterranean Sea. Our data strongly support previous ideas about the burial of the South Pyrenean fold and thrust belt by Late Palaeogene syntectonic conglomerates and their subsequent re‐excavation and are consistent with other thermochronological data and thermal modelling from the interior part of the orogen. 相似文献
14.
The USARP Mountains comprise two N–S‐aligned mountain ranges (Daniels Range, Pomerantz Tableland) located along the western margin of the Rennick Glacier in Northern Victoria Land (NVL). Four zircon and titanite fission track (FT) ages from granitic samples from the Pomerantz Tableland fall in a common range of 369–392 Ma. The apatite FT ages from 20 Granite Harbour Intrusive rocks sampled throughout the USARP Mountains are distinctively younger (86–270 Ma); their mean track lengths (MTL) vary between 11.0 and 13.9 μm. Six samples from Renirie Rocks and the Kavrayskiy Hills east of the USARP Mountains have even younger, concordant apatite FT ages of 43–71 Ma, and MTL of 12.2–14.0 μm. Thermal history modelling of the thermochronological data indicate that both the Daniels Range and Pomerantz Tableland experienced a common Phanerozoic geologic history consisting of a mid‐Devonian pulse of rapid denudation, followed by a protracted denudation stage between the Carboniferous and Jurassic. This latter period of denudation was contemporaneous with the formation of the Transantarctic Basin to the east. We consequently suggest that the USARP Mountains were one of the major source areas for the Beacon Supergroup that formed the fill of the Transantarctic Basin. Subsequent to the deposition of the Beacon sequence, the now‐outcropping rocks of the USARP Mountains were buried to a maximum depth of 4.2 km. A palaeogeothermal gradient of 25±8°C km?1 was inferred at the time of maximum burial. Inversion of the Transantarctic Basin due to the breakup of Gondwana, and in response to Cenozoic rifting and uplift of the Transantarctic Mountains, has triggered the final denudation stages recorded in NVL since the Cretaceous. Thereby, the amounts of denudation increase eastward. Whereas 2.4–4.2 km of crustal unloading are recognized for the USARP Mountains since the Cretaceous, more than 4 km of denudation has occurred towards the Rennick Graben alone since the Eocene. This denudation was associated with major fault activities involving early ENE–WSW to E–W‐directed extension. Related structures were reactivated by dominant NW–SE to NNW–SSE‐oriented right‐lateral shear genetically linked to the formation and inversion of the structural depression of the Rennick Graben in Cenozoic times. 相似文献
15.
Characterization of active fault scarps from LiDAR data: a case study from Central Apennines (Italy)
Carlo Alberto Brunori Riccardo Civico Francesca Romana Cinti 《International journal of geographical information science》2013,27(7):1405-1416
A high-resolution digital elevation model (DEM, 1 ms spacing) derived from an airborne light detection and ranging (LiDAR) campaign was used in an attempt to characterize the structural and erosive elements of the geometry of the Pettino fault, a seismogenic normal fault in Central Apennines (Italy). Four 90- to 280 m-long fault scarp segments were selected and the surface between the base and the top of the scarps was analyzed through the statistical analysis of the following DEM-derived parameters: altitude, height of the fault scarp, and distance along strike, slope, and aspect. The results identify slopes of up to 40° in faults lower reaches interpreted as fresh faces, 34° up the faces. The Pettino fault maximum long-term slip rate (0.6–1.1 mm/yr) was estimated from the scarp heights, which are up to 12–19 m in the selected four segments, and the age (ca. 18 ka) of the last glacial erosional phase in the area. The combined analysis of the DEM-derived parameters allows us to (a) define aspects of three-dimensional scarp geometry, (b) decipher its geomorphological significance, and (c) estimate the long-term slip rate. 相似文献
16.
17.
18.
《Basin Research》2018,30(5):926-941
Constraining the thermal, burial and uplift/exhumation history of sedimentary basins is crucial in the understanding of upper crustal strain evolution and also has implications for understanding the nature and timing of hydrocarbon maturation and migration. In this study, we use Vitrinite Reflectance (VR) data to elucidate the paleo‐physiography and thermal history of an inverted basin in the foreland of the Atlasic orogeny in Northern Tunisia. In doing so, it is the primary aim of this study to demonstrate how VR techniques may be applied to unravel basin subsidence/uplift history of structural domains and provide valuable insights into the kinematic evolution of sedimentary basins. VR measurements of both the onshore Pelagian Platform and the Tunisian Furrow in Northern Tunisia are used to impose constraints on the deformation history of a long‐lived structural feature in the studied region, namely the Zaghouan Fault. Previous work has shown that this fault was active as an extensional structure in Lower Jurassic to Aptian times, before subsequently being inverted during the Late Cretaceous Eocene Atlas I tectonic event and Upper Miocene Atlas II tectonic event. Quantifying and constraining this latter inversion stage, and shedding light on the roles of structural inheritance and the basin thermal history, are secondary aims of this study. The results of this study show that the Atlas II WNW‐ESE compressive event deformed both the Pelagian Platform and the Tunisian Furrow during Tortonian‐Messinian times. Maximum burial depth for the Pelagian Platform was reached during the Middle to Upper Miocene, i.e. prior to the Atlas II folding event. VR measurements indicate that the Cretaceous to Ypresian section of the Pelagian Platform was buried to a maximum burial depth of ~3 km, using a geothermal gradient of 30°C/km. Cretaceous rock samples VR values show that the hanging wall of the Zaghouan Fault was buried to a maximum depth of <2 km. This suggests that a vertical km‐scale throw along the Zaghouan Fault pre‐dated the Atlas II shortening, and also proves that the fault controlled the subsidence of the Pelagian Platform during the Oligo‐Miocene. Mean exhumation rates of the Pelagian Platform throughout the Messinian to Quaternary were in the order of 0.3 mm/year. However, when the additional effect of Tortonian‐Messinian folding is accounted for, exhumation rates could have reached 0.6–0.7 mm/year. 相似文献
19.
Eight cases of large-scale gravitational movements (with evidence of rock-slide type displacements) evolving close to Quaternary faults have been analysed in the Central Apennines. Geomorphological and structural surveys have defined the relationship between the gravitational displacements and the tectonically-controlled modifications of the landscape. The evolution of all the investigated cases has been conditioned by the presence of fault planes located along the mountain slopes. In most cases (Mt. Cefalone, Cima della Fossa, Villavallelonga, Casali d'Aschi, Gioia dei Marsi), the faults played or are playing a primary role in increasing the local relief and their activity represents the main geomorphic factor conditioning the gravitational movements. This kind of relationship has been observed along mountain slopes bordering depressions which have not been drained for most of their geomorphic history or have been characterised by an evolution of the hydrographic network that has been conditioned only by the local tectonic subsidence. In such cases, the gravitational movements develop in the footwalls of the faults. In other cases (Fiamignano, Pescasseroli) the faults have played a passive role, since they only bound the sliding masses and coincide with the surficial expressions of the sliding planes. Therefore, the gravitational displacements develop in the hangingwall of the faults. The evolution is conditioned by the incision of the hydrographic network in response to regional Quaternary uplift. The illustrated case studies provide a wide range of examples of the gravitational response of slopes to the modifications of the landscape due to linear and areal tectonics. The identification of the geomorphic traces of the large-scale gravitational movements along fault-controlled mountain fronts has implications for hazard, particularly for the evolution of the displacement. The quantitative analysis of the vertical displacements and data on the characteristics of the surface breaking during historical earthquakes demonstrate that along-fault offsets strongly increases where the unstable large-scale rock masses are located. Therefore, the large coseismic vertical offset may represent a major problem for the displacement of utilities and may represent a potential cause for the sudden and catastrophic evolution of the gravitational movement. 相似文献
20.
Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines (Italy) 总被引:12,自引:1,他引:12
The role of root strength is important in stabilising steep hillslopes which are seasonally affected by storm-induced shallow landslides. In the Italian Apennines, steep (25–40°) slopes underlain by mudstone are generally stable if they are covered by shrubs whose roots anchor into the soil mantle. To quantify the mechanical reinforcement of roots to soil, the root tensile breaking force and the root tensile strength of three autochthonous shrub species commonly growing on stiff clay soils of the Northern Italian Apennines, Rosa canina (L.), Inula viscosa (L.) and Spartium junceum (L.), were measured by means of field and laboratory tests. For each test approximately 150 root specimens were used. The tensile force increases with increasing root diameter following a second-order polynomial regression curve. The tensile strength decreases with increasing root diameter following a power law curve. The field in situ tensile force required to break a root is always smaller than that obtained from laboratory tests for the same root diameter, although their difference becomes negligible if the root diameter is smaller than 5 mm. The influence of root tensile strength on soil shear strength was verified based on the infinite slope stability model. The root reinforcement was calculated using the number and mean diameter of roots. The factor of safety was calculated for three different soil thickness values (0.1, 0.3, and 0.6 m) and topographic slopes between 10° and 45°. The factor of safety for the combination of 0.6 m soil thickness, slopes smaller than 30°, and vegetation of I. viscosa (L.) or S. junceum (L.) is always larger than 1. If a slope is steeper, the factor of safety may be smaller than 1 for I. viscosa (L.), although it is still larger than 1 for S. junceum (L.). In the stiff clayey areas of the Northern Italian Apennines, I. viscosa (L.) mainly colonizes fan/cone/taluses and stabilises these zones up to a topographic gradient < 30° for a soil 0.6 m thick. S. junceum (L.) colonizes not only fan/cone/taluses but also headwalls and cliffs and, for a 0.6 m thick soil, it stabilises these areas up to 45°. The effectiveness of this reinforcement, however, depends strongly on the frequency of soil and seasonal grass vegetation removal due to shallow landsliding before the entrance of the shrub species. 相似文献