首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have obtained images in solar coronal emission lines under high sky-background conditions by making precise differential measurements between the coronal emission line and the near-by continuum, which is primarily due to scattered light from the solar disk. Chopping between the two wavelengths was performed at 100 kHz to avoid artifacts from fast-flying dust particles and other aerosols, and also from seeing effects. The differential signal was detected with a novel CCD camera that demodulates signals up to 100 kHz. These preliminary observations show coronal emission at the 0.2% level of the scattered-light background and pave the way to efficient and precise imaging of coronal emission features under less than ideal coronal-sky conditions.Operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation.  相似文献   

2.
Singh  Jagdev  Sakurai  Takashi  Ichimoto  Kiyoshi  Muneer  S. 《Solar physics》2003,212(2):343-359
Spectra around the 6374 Å [Fex] and 7892 Å [Fexi] emission lines were obtained simultaneously with the 25-cm coronagraph at Norikura Observatory covering an area of 200 ×500 of the solar corona. The line width, peak intensity and line-of-sight velocity for both the lines were computed using Gaussian fits to the observed line profiles at each location (4 ×4 ) of the observed coronal region. The line-width measurements show that in steady coronal structures the FWHM of the 6374 Å emission line increases with height above the limb with an average value of 1.02 mÅ arc sec–1. The FWHM of the 7892 Å line also increases with height but at a smaller average value of 0.55 mÅ arc sec–1. These observations agree well with our earlier results obtained from observations of the red, green, and infrared emission lines that variation of the FWHM of the coronal emission lines with height in steady coronal structures depends on plasma temperatures they represent. The FWHM gradient is negative for high-temperature emission lines, positive for relatively low-temperature lines and smaller for emission lines in the intermediate temperature range. Such a behaviour in the variation of the FWHM of coronal emission lines with height above the limb suggests that it may not always be possible to interpret an increase in the FWHM of emission line with height as an increase in the nonthermal velocity, and hence rules out the existence of waves in steady coronal structures.  相似文献   

3.
Brynildsen  N.  Maltby  P.  Brekke  P.  Haugan  S.V.H.  Kjeldseth-Moe  O. 《Solar physics》1999,186(1-2):141-191
We present results from a study of the spatial distributions of line emission and relative line-of-sight velocity in the atmosphere above 17 sunspot regions, from the chromosphere, through the transition region and into the corona, based on simultaneous observations of ten EUV emission lines with the Coronal Diagnostic Spectrometer – CDS on SOHO. We find that the spatial distributions are nonuniform over the sunspot region and introduce the notation 'sunspot loop' to describe an enhanced transition region emission feature that looks like a magnetic loop, extending from inside the sunspot to the surrounding regions. We find little evidence for the siphon flow. Attention is given to the time variations since we observe both a rapid variation with a characteristic time of a few to several minutes and a slow variation with a time constant of several hours to 1 day. The most prominent features in the transition region intensity maps are the sunspot plumes. We introduce an updated criterion for the presence of plumes and find that 15 out of 17 sunspots contain a plume in the temperature range logT5.2–5.6. The relative line-of-sight velocity in sunspot plumes is high and directed into the Sun in the transition region. Almost all the sunspot regions contain one or a few prominent, strongly redshifted velocity channels, several of the channels extend from the sunspot plume to considerable distances from the sunspot. The flow appears to be maintained by plasmas at transition region temperatures, moving from regions located at a greater height outside the sunspots and towards the sunspot. The spatial correlation is high to moderate between emission lines formed in the transition region lines, but low between the transition region lines and the coronal lines. From detailed comparisons of intensity and velocity maps we find transition region emission features without any sign of coronal emission in the vicinity. A possible explanation is that the emission originates in magnetic flux tubes that are too cold to emit coronal emission. The comparisons suggest that gas at transition region temperature occur in loops different from loops with coronal temperature. However, we cannot exclude the presence of transition region temperatures close to the footpoints of flux tubes emitting at coronal temperatures. Regions with enhanced transition region line emission tend to be redshifted, but the correlation between line emission and relative line-of-sight velocity is weak. We extend our conditional probability studies and confirm that there is a tendency for line profiles with large intensities and red shifts (blue shifts) above the average to constitute an increasing (decreasing) fraction of the profiles as the wavelength shift increases.  相似文献   

4.
Chiuderi Drago  F.  Alissandrakis  C.E.  Bastian  T.  Bocchialini  K.  Harrison  R.A. 《Solar physics》2001,199(1):115-132
In this paper we compare simultaneous extreme ultraviolet (EUV) line intensity and microwave observations of a filament on the disk. The EUV line intensities were observed by the CDS and SUMER instruments on board SOHO and the radio data by the Very Large Array and the Nobeyama radioheliograph. The main results of this study are the following: (1) The Lyman continuum absorption is responsible for the lower intensity observed above the filament in the EUV lines formed in the transition region (TR) at short wavelengths. In the TR lines at long wavelengths the filament is not visible. This indicates that the proper emission of the TR at the filament top is negligible. (2) The lower intensity of coronal lines and at radio wave lengths is due to the lack of coronal emission: the radio data supply the height of the prominence, while EUV coronal lines supply the missing hot matter emission measure (EM). (3) Our observations support a prominence model of cool threads embedded in the hot coronal plasma, with a sheath-like TR around them. From the missing EM we deduce the TR thickness and from the neutral hydrogen column density, derived from the Lyman continuum and Hei absorption, we estimate the hydrogen density in the cool threads.  相似文献   

5.
The temporal and spatial variations of EUV emission from a small growing active region were investigated. Frequent localized short term ( few minutes) fluctuations in EUV emission were observed throughout the 7.2 hr interval when the most continuous observations were acquired. Approximately 20% of the 5 x 5 pixels had intensity variations exceeding a factor of 1.3 for the chromospheric L line, a factor of 1.5 for lines formed in the chromospheric-coronal transition region and a factor of 1.4 for the coronal Mg x line. A subflare in the region produced the largest intensity enhancements, ranging from a factor of 2.3 for the chromospheric L line to 8 for the transition region and coronal lines. The EUV fluctuations in this small active region are similar to those observed in coronal bright points, suggesting that impulsive heating is an important, perhaps dominant form of heating the upper chromospheric and lower coronal plasmas in small magnetic bipolar regions. The responsible mechanism most likely involves the rapid release of magnetic energy, possibly associated with the emergence of magnetic flux from lower levels into the chromosphere and corona.  相似文献   

6.
We present observations of the corona at 169 MHz with the Nançay Radioheliograph during the summer of 1984. We compare synoptic maps of the metric radio emission on the solar disk with synoptic charts of the K-corona as well as of the green and the red lines. Local sources of radio emission are not located near regions of enhanced green or red line emission which, in turn, are in general above chromospheric faculae. Thus the radio emissions located in the surroundings of faculae are apparently related to different loop systems, with lower density. The comparison of the radio data with the K-corona showed one radio source associated with enhanced emission both at 1.3 and at 1.7 R , apparently a streamer. Other radio sources did not show any clear associations, but were nevertheless located within the coronal plasma sheet, delineated by the large-scale K-corona emission. Moreover the large-scale structure of the corona at 169 MHz was quite similar to the coronal plasma sheet observed at 1.3 R above the limb. The extent of the radio emission in latitude is very similar to that of the K-corona, while the coronal line emission is more concentrated near the solar equator.  相似文献   

7.
High resolution spectroheliograms in the ultraviolet emission lines He i, He ii, O iv, O v, and Ne vii have been photographed during a sounding rocket flight. Simultaneously, broad band filtergrams of the far ultraviolet solar corona were obtained from the same flight. This paper describes qualitatively the spatial distribution of the UV emission. A comparison with an H filtergram is made. The most significant results can be summarized as follows: We find most of the ultraviolet emission concentrated around spicules, with different degree of concentration, decreasing with higher temperatures. 4 different areas of ultraviolet emission can be distinguished. (1) The normal network, bright in all UV emission lines from the chromosphere into the corona. (2) The coronal holes, bright in all UV emission lines up to 600 000 K but depressed in coronal lines from 1 million degrees upward. (3) The coronal depressions near active centers, absence of all ultraviolet emissions and (4) Active regions, where ultraviolet emission comes from plages, sunspots and coronal loops. High non-thermal Doppler velocities can be found in certain plage kernels around 105 to 2 × 105 K. Sunspots are bright in the ultraviolet, but do not exhibit He i or He ii emission. The corona above sunspots is weak. Sunspots do not show high non-thermal Doppler velocities. The He i and He ii emission does not follow either chromospheric, transition zone or coronal pattern; one can recognize some typical behavior of each.  相似文献   

8.
G. B. Laing  P. M. Edwin 《Solar physics》1995,157(1-2):103-119
The damping of ducted, fast, magnetohydrodynamic (MHD) waves by ion viscosity and electron heat conduction in a radiating, optically thin, warm, structured atmosphere has been evaluated. Dissipation is more effective in a warm plasma than in a cold one but, for waves ducted by solar coronal loops, dissipation is only efficient if the periods of the waves are shorter than a few tens of seconds and only if the background magnetic field is less than about 15 G. It appears that MHD waves of longer periods and in stronger magnetic fields will survive the dissipative mechanisms considered here and may be manifest as observable coronal oscillations.  相似文献   

9.
In the solar corona the opacities of some of the prominent X-ray emission lines are on the order of 1 over typical coronal path lengths. We present and discuss a particular solution of the radiative transfer problem involving an extended, spherically symmetric coronal shell radiating isotropic, homogeneous emission in which single-scattering also takes place. Within the context of this simplified model we find that scattered radiation is an important contribution to the total emergent resonance line flux and that for the He-like family of resonance (r), intercombination (i), and forbidden (f) lines, the ratio G=(f + i)/r would decrease as a function of optical depth for disk-center emission in an extended spherically symmetric corona.  相似文献   

10.
MARTIN  RENATO  MACCARI  LISA  NOCI  GIANCARLO 《Solar physics》1997,172(1-2):215-223
We investigate the expected emission from coronal transients in the following spectral lines observable with the Ultraviolet Coronagraph Spectrometer (UVCS) on board SOHO: Hi L 1216 Å, Ovi 1032–1037 Å, Nv 1239–1243 Å, Mgx 610–625 Å, Sixii 499–521 Å, and Fexii 1242 Å. We calculate line intensities and profiles for typical CME conditions, and we analyse their relation with the properties of the perturbed coronal region. We find that significant changes in UV line intensities are produced during a coronal transient. An overall decrease of the Hi L intensity is found, which is mainly due to the Doppler dimming produced by the increase in plasma outflow velocity. The emission from heavy ions is instead mainly affected by variations in plasma density and temperature. We expect to compare these results with the future UVCS observations of coronal transients.  相似文献   

11.
We compare observations of an eruptive and a quiescent prominence in order to better understand the energetic processes in an eruptive prominence. Observations of an eruptive prominence were obtained in H, several UV emission lines (1215–1640 Å), and coronal white light at approximately 19:00 UT on September 20, 1980. The data we present shows the development of the eruption in the H and UV emission lines and is compared with the intensities from similar observations of a quiescent prominence. While the event is coincident with some coronal changes, above 1.2 and up to 1.5 solar radii, it does not result in a true coronal mass ejection event.The comparison between the eruptive and quiescent prominences reveals several differences which suggest that the activation consists not only of a mechanical movement of material, but also changes in the temperature of the prominence plasma. Some prominence material that does not seem to participate in the large scale prominence motion is heated during the eruptive event. Most of this material is heated to transition zone temperatures with almost no cool core (i.e., no or very little H emission). The behavior indicates that there are structures that are first cool and then heat up to transition zone temperatures (apparently remaining stable for some time at these temperatures). Since this is an unstable temperature region for prominence type structures the energy transport that allows this is not understood and presents an interesting theoretical problem.Member of the Carrera del Investigador, CONICET, Argentina, presently at The University of Alabama in Huntsville.  相似文献   

12.
The profiles of the Fe xiv, 5303, and Fe x, 6374, emission lines of the solar corona have been observed at different positions using a photoelectric scanning Fabry-Perot interferometer. These profiles were obtained during the eclipse of 7th March 1970, in Mexico and at the Pic-du-Midi coronagraph in October, 1970. The half-widths of these profiles were determined for both the coronal lines and temperatures were derived from these widths. No systematic temperature variation was discovered, however there was some suggestion of the existence of a fluctuation with time in the width of the emission lines.  相似文献   

13.
Zhang  Z.  Smartt  R.N.  Landman  D.A. 《Solar physics》2002,207(1):63-71
Coronal images recorded above the limb in Fexiv (530.3 nm) and Fex (637.5 nm) sometimes have localized regions of anomalously low emission, with the appearance of an abrupt gap in the background corona. These dark spaces have been previously described in the literature in the case of the 530.3 nm line and tentatively explained by reduced coronal plasma density and/or a decrease in the line intensity due to temperatures above or below the optimal ionization temperature for Fexiv. However, loops are sometimes observed spanning gaps, with diminished loop brightness over the region of the gap. It is concluded that at least some of these regions of reduced brightness are caused by absorption of the coronal emission. An analysis reveals that absorption by coronal ions is inadequate as a mechanism to explain the phenomenon. Absorption by neutral hydrogen is, however, consistent with the observations in terms of the reduced brightness of the gaps. The concentration of cool material in the coronal environment associated with large magnetic fields on the disk could explain the gaps. Hence, neutral hydrogen continuum absorption appears to provide a plausible interpretation of, at least, some coronal gaps. Based on this result and from measured intensities, the electron density in the region of a gap is derived and found to be consistent with estimates derived elsewhere.  相似文献   

14.
We investigate the morphology and temporal variability of a quiet-Sun network region in different solar layers. The emission in several extreme ultraviolet (EUV) spectral lines through both raster and slot time-series, recorded by the EUV Imaging Spectrometer (EIS) on board the Hinode spacecraft is studied along with \(\mbox{H}\upalpha\) observations and high-resolution spectropolarimetric observations of the photospheric magnetic field. The photospheric magnetic field is extrapolated up to the corona, showing a multitude of large- and small-scale structures. We show for the first time that the smallest magnetic structures at both the network and internetwork contribute significantly to the emission in EUV lines, with temperatures ranging from \(8\times 10^{4}~\mbox{K}\) to \(6\times 10^{5}~\mbox{K}\). Two components of transition region emission are present, one associated with small-scale loops that do not reach coronal temperatures, and another component that acts as an interface between coronal and chromospheric plasma. Both components are associated with persistent chromospheric structures. The temporal variability of the EUV intensity at the network region is also associated with chromospheric motions, pointing to a connection between transition region and chromospheric features. Intensity enhancements in the EUV transition region lines are preferentially produced by \(\mbox{H}\upalpha\) upflows. Examination of two individual chromospheric jets shows that their evolution is associated with intensity variations in transition region and coronal temperatures.  相似文献   

15.
B. Li  Iver H. Cairns 《Solar physics》2014,289(3):951-976
Detailed simulations based on quasi-linear theory are presented for fundamental ( $f_{\rm p}$ ) emission of type III bursts produced in non-Maxwellian, suprathermal, background coronal plasma by injection of energetic electrons during flares with a power-law or Maxwellian velocity distribution, where $f_{\rm p}$ is the electron plasma frequency. The background plasma is assumed to have a kappa (κ) distribution, as inferred from solar wind data and proposed by theories for the corona and solar wind. The predicted type III beam speeds, Langmuir wave levels, and the drift rate and flux of $f_{\rm p}$ emission are strongly sensitive to the presence of suprathermal background electrons in the corona. The simulations show the following results. i) Fast beams with speeds $v_{\rm b}>0.5c$ are produced for coronal background electrons with small κ (κ?5) by injected electrons with power-law spectra. ii) Moderately fast beams with $v_{\rm b} \approx0.3\,\mbox{--}\,0.5c$ are generated in coronal plasma with κ?8 by injections of power-law or Maxwellian electrons. iii) Slow beams with $v_{\rm b}<0.3c$ are produced for coronal background electrons with large κ (κ>8), including the asymptotic limit κ→∞ where the electrons are Maxwellian, for both power-law and Maxwellian injections. The observation of fast type III beams (with $v_{\rm b}>0.5c$ ) thus suggests that these beams are produced in coronal regions where the background electron distribution has small κ by injected electrons with power-law spectra, at least when such beams are observed. The simulations, from the viewpoint of type III bursts, thus support: i) the presence, at least sometimes, of suprathermal background electrons in the corona and the associated mechanisms for coronal heating and solar wind acceleration; ii) power-law spectra for injected energetic electrons, consistent with observations of such electrons in situ and of X-ray emission.  相似文献   

16.
The flash spectra of the solar chromosphere and corona were measured with a slitless spectrograph before, after, and during the totality of the solar eclipse of 11 July 2010, at Easter Island, Chile. This eclipse took place at the beginning of Solar Cycle 24, after an extended minimum of solar activity. The spectra taken during the eclipse show a different intensity ratio of the red and green coronal lines compared with those taken during the total solar eclipse of 1 August 2008, which took place toward the end of Solar Cycle 23. The characteristic coronal emission line of forbidden Fe xiv (5303 Å) was observed on the east and west solar limbs in four areas relatively symmetrically located with respect to the solar rotation axis. Subtraction of the continuum flash-spectrum background led to the identification of several extremely weak emission lines, including forbidden Ca xv (5694 Å), which is normally detected only in regions of very high excitation, e.g., during flares or above large sunspots. The height of the chromosphere was measured spectrophotometrically, using spectral lines from light elements and compared with the equivalent height of the lower chromosphere measured using spectral lines from heavy elements.  相似文献   

17.
SWAP images from PROBA2 taken at 174 Å in the Fe ix/x lines are compared with simultaneous slitless flash spectra obtained during the solar total eclipse of 11 July 2010. Myriad faint low-excitation emission lines together with the He i and He ii Paschen α chromospheric lines are recorded on eclipse spectra where regions of limb prominences are obtained with space-borne imagers. We analyzed a deep flash spectrum obtained by summing 80 individual spectra to evaluate the intensity modulations of the continuum. Intensity deficits are observed and measured at the prominences boundaries in both eclipse and SWAP images. The prominence cavities interpreted as a relative depression of plasma density, produced inside the corona surrounding the prominences, and some intense heating occurring in these regions, are discussed. Photometric measurements are shown at different scales and different, spectrally narrow, intervals for both the prominences and the coronal background.  相似文献   

18.
By means of a photographic polarimeter, we attempted to measure both the amount and direction of linear polarization of all emission lines between 3400 and 9000 Å in the inner corona (1.034 r/r 0 1.085). Only the green and red coronal lines have been analyzed in detail. Neither of these lines shows polarization exceeding the probable error of 1.0% for 5303 and 1.8% for 6374. None of the other 17 coronal lines observed during the 7 March, 1970 solar eclipse show any obvious (>5%) polarization.Presently at the Sacramento Peak Observatory.  相似文献   

19.
Slit spectrograms of a quiescent prominence and the inner corona (h2.5 arc min) in the range 3400–7000 Å (dispersion 6–10 Å/mm) were obtained. From an analysis of the Stark effect on the Balmer lines (up to number 36) the electron density in the prominence n e = (7 ± 3) × 1010 cm–3 was deduced. The kinetic temperature T k and the non-thermal velocities t, found from a simultaneous consideration of the Balmer and metal lines, are T k 10 000 K and v t6 km/s. Also the emission measure of the prominence along the line-of-sight was found: ME = 1031 cm–5.In the coronal spectrum 24 coronal lines were found. Thirteen of these lines were identified and measured photometrically to get their absolute intensities, profiles and halfwidths. For nine lines the intensities as a function of the height were studied and on this basis the coronal lines were divided into a few groups. The line-of-sight and non-thermal velocities are r 10 km/s and t 25 km/s. The coronal lines originate in at least three types of regions with different temperatures. The emission measure as a function of the ionization temperature was determined. The abundances of four elements of the iron group (V, Cr, Mn, Co) were estimated. The abundances of the other elements of the same group (A, Ca, Fe, Ni), found from EUV-data, are in a good agreement with our observations. The degree of inhomogeneity in the corona was estimated: .  相似文献   

20.
An analysis is made of the Martens-Kuin filament eruption model in relation to observations of coronal mass ejections (CMEs). The field lines of this model are plotted in the vacuum or infinite resistivity approximation with two background fields. The first is the dipole background field of the model and the second is the potential streamer model of Low. The assumption is made that magnetic field evolution dominates compression or other effects which is appropriate for a low- coronal plasma. The Martens-Kuin model predicts that, as the filament erupts, the overlying coronal magnetic field lines rise in a manner inconsistent with observations of CMEs associated with eruptive filaments. Initially, the bright arc of a CME broadens in time much more slowly than the dark cavity between it and the filament, whereas in the model they broaden at the same rate or the bright arc broadens more rapidly than the dark cavity, depending on the background field. Thus, this model and, by generalization the whole class of so-called Kuperus-Raadu configurations in which a neutral point occurs below the filament, are of questionable utility for CME modeling. An alternate case is considered in which the directions of currents in the Martens-Kuin model are reversed resulting in a so-called normal polarity configuration of the filament magnetic field. In this case, a neutral line occurs above the current-carrying filament. The background field lines now distort to support the filament and help eject it. While the vacuum field results make this configuration appear very promising, a full two- or more-dimensional MHD simulation is required to properly analyze the dynamics resulting from this configuration.Presently NRC Senior Research Associate at NOAA, Space Environment Laboratory, Boulder, Colorado, U.S.A.At the NASA National Space Data Center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号