首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Ozone tendencies due to chemistry and transport are calculated by a mesoscale model using a fine horizontal resolution (3 km × 3 km), over South-Eastern France. Over that region where the anthropogenic emissions are very strong, ozone pollution is highlighted during two intensive observations periods of the ESCOMPTE campaign, when the sea breeze penetrates far into the Durance and Rhone valleys and the up-slope breezes are developed. From a fine analysis of time series of ozone concentration at different ground stations along these valleys and from numerical results, it is possible to discriminate the tendency due to chemistry from the tendency due to dynamical processes. We can distinguish both processes, either local chemical production/loss or dynamical increase/decrease (transport, deposition) on maps of ozone budget according to the meteorological conditions. In particular, we show that the variations due to transport can be have the same order of magnitude than those due to chemistry, reaching 20 ppbv h−1, whereas those due to chemistry are around 30 ppbv h−1.  相似文献   

2.
3.
In this paper the correlation analysis, factor analysis, fuzzy classification, and principal component analysis (PCA) are performed for the southern oscillation index (SOI) from the Climate Analysis Center (CAC) at the NOAA. It is shown that the 12-month SOI can be classified into two groups: one from January through April and the other from May through December. They differ in persistency and correlation. It is also found that the year of strong or weak SO can be defined by the first principal component of the SOI. The 11 years of weak SO thus defined contain 9 El Nino events.In addition, the relations between the SOI and 500 hPa geopotential height, mean monthly zonal height, mean monthly interzonal height differences, centers of atmospheric activities, characteristics of the atmospheric circulation (the intensity index of the north polar vortex, the area index of the subtropical West Pacific high, mean monthly zonal and meridional circulation indexes in Asia and Eurasia) in the period of 24 months from January through December of the next year have been examined on the basis of the monthly data from 1951 through 1984. The correlation coefficients and Mahalanobis distances are thus presented. Analysis indicates that in the early part of the low SOI year, i.e., in April, the 500 hPa geopotential height north of 75oN is significantly low and then becomes higher in May. It is found that in April the trough of the first harmonic wave is in the Eastern Hemisphere and the contribution of its variance is smaller than in May. Analysis shows that the opposite is true in the high SOI year. Such variation in the height field during the April-May period is an early signal of the SO at higher latitudes.In the end, a statistical prediction model for the SOI is presented, by means of which a low SOI year as well as an El Nino event has been successfully predicted for 1986.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号