首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on an analysis of the catalog of magnetic fields, we have investigated the statistical properties of the mean magnetic fields for OB stars. We show that the mean effective magnetic field B of a star can be used as a statistically significant characteristic of its magnetic field. No correlation has been found between the mean magnetic field strength B and projected rotational velocity of OB stars, which is consistent with the hypothesis about a fossil origin of the magnetic field. We have constructed the magnetic field distribution function for B stars, F(B), that has a power-law dependence on B with an exponent of ≈−1.82. We have found a sharp decrease in the function F(B) for B ⩽ 400 G that may be related to rapid dissipation of weak stellar surface magnetic fields.  相似文献   

2.
For a conservative dynamical system withn deg. of freedom we show that the equations of variation along an orbit may be written with respect to an orthonormal moving frame (a generalized Frenet frame) in which the tangential variation is given by a quadrature and the normal andn-2 binormal variations are solutions ofn-1 coupled second order equations of the form of Hill's equation.  相似文献   

3.
Spin–orbit coupling can be described in two approaches. The first method, known as the “MacDonald torque”, is often combined with a convenient assumption that the quality factor Q is frequency-independent. This makes the method inconsistent, because derivation of the expression for the MacDonald torque tacitly fixes the rheology of the mantle by making Q scale as the inverse tidal frequency. Spin–orbit coupling can be treated also in an approach called “the Darwin torque”. While this theory is general enough to accommodate an arbitrary frequency-dependence of Q, this advantage has not yet been fully exploited in the literature, where Q is often assumed constant or is set to scale as inverse tidal frequency, the latter assertion making the Darwin torque equivalent to a corrected version of the MacDonald torque. However neither a constant nor an inverse-frequency Q reflect the properties of realistic mantles and crusts, because the actual frequency-dependence is more complex. Hence it is necessary to enrich the theory of spin–orbit interaction with the right frequency-dependence. We accomplish this programme for the Darwin-torque-based model near resonances. We derive the frequency-dependence of the tidal torque from the first principles of solid-state mechanics, i.e., from the expression for the mantle’s compliance in the time domain. We also explain that the tidal torque includes not only the customary, secular part, but also an oscillating part. We demonstrate that the lmpq term of the Darwin–Kaula expansion for the tidal torque smoothly passes zero, when the secondary traverses the lmpq resonance (e.g., the principal tidal torque smoothly goes through nil as the secondary crosses the synchronous orbit). Thus, we prepare a foundation for modeling entrapment of a despinning primary into a resonance with its secondary. The roles of the primary and secondary may be played, e.g., by Mercury and the Sun, correspondingly, or by an icy moon and a Jovian planet. We also offer a possible explanation for the “improper” frequency-dependence of the tidal dissipation rate in the Moon, discovered by LLR.  相似文献   

4.
Orbital period variations of two neglected Algol type binaries, CC Her and XZ Aql, are studied based on all available times of minima. In the case of CC Her, it is found that the OC curve displays a tilted sinusoidal variation with an eccentricity of 0.54 ± 0.03 and a period of 52.4 ± 0.4 yr, which can be explained by the light‐time effect due to the presence of an unseen component. The course of the orbital period change in XZ Aql appears less reliable but its OC curve can be represented by a periodic variation with a period of 36.7 ± 0.6 yr superimposed on an upward parabola. The parabolic variation indicates a secular period increase with a rate of dP /dt = 7.1 s per century. The corresponding conservative mass transfer from less massive component to the more massive one is about 3.26 × 10–7 M yr–1. It is interesting to see that the OC variation of CC Her displays no evidence (as upward parabola) on the mass transfer characteristic for Algols. The periodic change of the orbital period of XZ Aql, like CC Her, may be caused by the presence of the thirdbody. The lower limits of the masses of the hypothetical unseen components for CC Her and XZ Aql are found to be 2.69 M and 0.47 M, respectively. The third body of CC Her should be detectable not only spectroscopically but also photoelectrically, if it exists. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
It is shown that for a class of force-free magnetic fields, i.e., ∇ × B = α B with α = constant, the magnetic field cannot be determined uniquely from the observed vertical component of the photospheric magnetic field given in an area of limited extent. Then it is proposed how some functions, the additional knowledge of which permits the magnetic field to be determined uniquely, could be chosen as a first approximation.  相似文献   

6.
I provide evidence for the importance of the Jeffreys law of error in the analysis of O-C residuals. This law is used to show that, under uniform metrological conditions, an experiment is considered to be performed correctly only if the O-C values have a t-distribution with five to nine degrees of freedom (ν) or Jeffreys’s form of the Pearson type VII distribution with the exponent m of three to five. Under nonuniform conditions, the left boundary for ν can move to the left but cannot be less than three, and the left boundary for m can also move to the left but cannot be less than two.  相似文献   

7.
In this paper a slightly different approach is proposed for the process of determining the functions S m and H m * of the algorithm of the canonical version of Hori method. This process will be referred to as integration theory of the mth order equation of the method. It will be shown that the ordinary differential equation with an auxiliary parameter t * as independent variable, introduced through Hori auxiliary system, can be replaced by a partial differential equation in the time t. In this way, the mth order equation of the algorithm assumes a form very similar to the one of other perturbation methods. In virtue of this new approach of the integration theory for Hori method, Lagrange's variational equations introduced by Sessin are revised. As an example, the Duffing equation is solved through this new approach.  相似文献   

8.
In the solar system satellite systems of Jupiter, Saturn and Uranus are typical ones. The distribution of the semi-major axis of satellite orbits in each system may be expressed by an empirical formula corresponding to the Titius-Bode law. We found that it can be written as an = B′ · Bn, where B′ and B are constants. Values of B′ and B depend on formation conditions of each system. Satellites should be formed in the gas-satellitesimal disk around a planet and by aggregation of satellitesimals. The gas is the major component in the disk and its damping effect must play an important role in the process of aggregation of satellitesimals. It may be proved that radial small perturbation in the disk can cause the gravitational instability and the formation of gaseous rings with increased density, where satellitesimals can easy aggregat into satellites.  相似文献   

9.
How the Method of Minimization of Action Avoids Singularities   总被引:4,自引:0,他引:4  
The method of minimization of action is a powerful technique of proving the existence of particular and interesting solutions of the n-body problem, but it suffers from the possible interference of singularities. The minimization of action is an optimization and, after a short presentation of a few optimization theories, our analysis of interference of singularities will show that:(A) An n-body solution minimizing the action between given boundary conditions has no discontinuity: all n-bodies have a continuous and bounded motion and thus all eventual singularities are collisions;(B) A beautiful extension of Lambert's theorem shows that, for these minimizing solutions, no double collision can occur at an intermediate time;(C) The proof can be extended to triple and to multiple collisions. Thus, the method of minimization of action leads to pure n-body motions without singularity at any intermediate time, even if one or several collisions are imposed at initial and/or final times.This method is suitable for non-infinitesimal masses only. Fortunately, a similar method, with the same general property with respect to the singularities, can be extended to n-body problems including infinitesimal masses.  相似文献   

10.
In this paper we apply a numerical method to determine unmodeled perturbations in an attempt to explain the observed discrepancies in the motion of Uranus. We find that the estimated perturbation shows some significant periods that could be attributed to insufficient knowledge of the perturbations from some of the known planets. On the assumption that the gravitational attraction of an unknown planet is the origin of the deviations, the best planar solution of the inverse problem is a planet of 0.6 Earth masses, with true longitude of 133° (1990.5), semi major axis a = 44 AU and eccentricity e = 0.007.  相似文献   

11.
We present the results of the simultaneous XMM‐Newton and Chandra observations of the bright Seyfert 1.9 galaxy MCG–5‐23‐16, which is one of the best known examples of a relativistically broadened iron Kα line. We find that: a) the soft X‐ray emission is likely to be dominated by photoionized gas, b) the complex iron emission line is best modelled with a narrow and a broad component with a FWHM ∼44000 km/s. This latter component has an EW ∼50 eV and its profile is well described with an emission line mainly originating from the accretion disk a few tens of gravitational radii from the central black hole and viewed with an inclination angle ∼40°. We found evidence of a possible sporadic absorption line at ∼7.7 keV which, if associated with Fe XXVI Kα resonance absorption, is indicative of a possible high velocity (v ∼ 0.1c) outflow. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
A Kelvin-Helmholtz instability has been identified numerically on an azimuthally symmetric Alfvén resonant layer in an axially bounded, straight cylindrical coronal loop. The physical model employed is an incompressible, reduced magnetohydrodynamic (MHD) model including resistivity, viscosity, and density variation. The set of equations is solved numerically as an initial value problem. The linear growth rate of this instability is shown to be approximately proportional to the Alfvén driving amplitude and inversely proportional to the width of the Alfvén resonant layer. It is also shown that the linear growth rate increases linearly with m - 1 up to a certain m, reaches its maximum value for the mode whose half wavelength is comparable to the Alfvén resonant layer width, and decreases at higher m's. (m is the azimuthal mode number.)  相似文献   

13.
In a closed expanding-contracting Universe, matter will be subject to an inward acceleration large enough to prevent perpetual expansion. A closed Universe must also perform a simple harmonic motion, which might consist either of one single cycle or of an infinite series of oscillations about a central point. It is the purpose of this study to find the rate ofa 0, the cosmic acceleration, from which the gravitational constantG can be determined. It will be shown from Ampère's equation and Planck's radiation law that it is possible to derivea 0=7.623×10–12 ms–2, a value which also conforms with the uncertainty principle. The relationship betweena 0 and electromagnetic radiation is based on the concept that charges (such as electrons) must emit radiation while accelerating. The rate ofa 0 yields a universal gravitational constant ofG=6.645×10–11 N m2 kg–2.  相似文献   

14.
T. Takakura 《Solar physics》1987,107(2):283-297
Numerical simulation for the dynamics of a coronal filamentary magnetic loop has been made under the assumption that the field is initially force-free and an electric resistivity suddenly increases at a given moment due to an appearance of ion sound waves, which can be excited due to a high current density if a characteristic radius r 0 of the magnetic loop is about 3 km or less in a magnetic field B 0 of 1000 G. During the resistive decay of the magnetic field a strong field-aligned electric field is created and maintained for a sufficient time to acceleratie both electrons and protons to a high energy, which is proportional to B 0/r 0 and can be 100 MeV if r 0 = 10 km and B 0 = 1000 G. If the coronal magnetic tube is composed of many such filamentary loops, the total number of accelerated electrons is consistent with the observations.  相似文献   

15.
Families of orbits of a conservative, two degree-of-freedom system are represented by an unsteady velocity field with componentsu(x, y, t) andv(x, y, t). Intrinsic stability properties depend on velocity field divergence and curl, whose dynamical evolution is determined by a matrix Riccati equation. Near equilibrium, divergence-free or irrotational fields are dynamically compatible with the conservative force field. It is shown that a necessary condition for stable periodic orbits is satisfied when the orbitaveraged divergence is zero, which results in bounded normal variations. A sufficient condition for stability is derived from the requirement that tangential variations do not exhibit secular growth.In a steady, divergence-free field, velocity component functionsu(x, y) andv(x, y) may be continuedanalytically from any initial condition, except when velocity is parallel to U or at equilibria. In an unsteady field, the orbit-averaged divergence is zero when the vorticity function is periodic. When such a field exists, initial conditions for stable periodic orbits (i.e., characteristic loci) may be determinedanalytically.  相似文献   

16.
The objective of this paper is to draw attention to the close similarity between the observable universe and the photon mean free path sphere. It is hoped that by analyzing in depth this apparent connection one will be able to explain why our present epoch appears to have special properties. It is shown that some theoretical arguments point to an equality between the number of particles in the observable universe and the number of particles in the largest self-gravitating photon mean free path sphere (MxPhMFPS.) This equality, supported by observational data, leads to a series of equations that relate in simple manner characteristics of the observable universe with characteristics of the MxPhMFPS, and allows a more precise approximation of the values of the main cosmological parameters. It is also shown that by replacing the protons in the MxPhMFPS with positrons, the radiation resulted by their interaction with the existing electrons has an energy equal to the energy of the electromagnetic radiation in the observable universe.  相似文献   

17.
J. K. Lawrence 《Solar physics》1991,135(2):249-259
Recent observations have indicated that magnetic field elements are distributed on the Sun in fractal patterns with dimension D < 2. We suggest that the transport of magnetic field elements across the solar surface should be treated as diffusion on a fractal geometry. We review a semi-analytical, theoretical treatment of fractal diffusion. Comparison with observations of small-scale motions of solar magnetic flux concentrations indicates that fractal diffusion may be taking place with dimension in the range 1.3 to 1.8. It is shown that, compared to the predictions that would be made for two-dimensional diffusion, fractal diffusion in this range would lead to an increased level of in situ flux cancellation in decaying active regions by 7% to 35%. Other work in specialities outside of solar physics may be useful in explaining solar magnetic phenomena.  相似文献   

18.
In this paper the new approach for the integration theory of the canonical version of Hori method recently proposed is extended to the non-canonical one. It will be shown that the non-homogeneous ordinary differential equation with an auxiliary parameter t* associated with the mth order equation of the algorithm can also be replaced by a non-homogeneous partial differential equation in the time t. Using a generalized canonical approach, the general algorithm proposed by Sessin is then revised; as well as the Lagrange variational equations for the non-canonical version of Hori method. A simplified algorithm derived from Sessin's algorithm is presented for non-linear oscillations problem.  相似文献   

19.
Abstract— Using visual observations that were reported 140 years ago in the Comptes Rendus de l'Académie des Sciences de Paris, we have determined the atmospheric trajectory and the orbit of the Orgueil meteorite, which fell May 14, 1864, near Montauban, France. Despite the intrinsic uncertainty of visual observations, we were able to calculate a reasonably precise atmospheric trajectory and a moderately precise orbit for the Orgueil meteoroid. The atmosphere entry point was ?70 km high and the meteoroid terminal point was ?20 km high. The calculated luminous path was ?150 km with an entry angle of 20°. These characteristics are broadly similar to that of other meteorites for which the trajectory is known. Five out of six orbital parameters for the Orgueil orbit are well constrained. In particular, the perihelion lies inside the Earth's orbit (q ?0.87 AU), as is expected for an Earth‐crossing meteorite, and the orbital plane is close to the ecliptic (i ?0°). The aphelion distance (Q) depends critically on the pre‐atmospheric velocity. From the calculated atmospheric path and the fireball duration, which was reported by seven witnesses, we have estimated the pre‐atmospheric velocity to be larger than 17.8 km/sec, which corresponds to an aphelion distance Q larger than 5.2 AU, the semi‐major axis of Jupiter orbit. These results suggest that Orgueil has an orbit similar to that of Jupiter‐family comets (JFCs), although an Halley‐type comet cannot be excluded. This is at odds with other meteorites that have an asteroidal origin, but it is compatible with 140 years of data‐gathering that has established the very special nature of Orgueil compared to other meteorites. A cometary origin of the Orgueil meteorite does not contradict cosmochemistry data on CI1 chondrites. If CI1 chondrites originate from comets, it implies that comets are much more processed than previously thought and should contain secondary minerals. The forthcoming return of cometary samples by the Stardust mission will provide a unique opportunity to corroborate (or contradict) our hypothesis.  相似文献   

20.
The minimum dissipative rate (MDR) method for deriving a coronal non-force-free magnetic field solution is partially evaluated. These magnetic field solutions employ a combination of three linear (constant-α) force-free-field solutions with one being a potential field (i.e., α=0). The particular case of the solutions where the other two α’s are of equal magnitude but of opposite sign is examined. This is motivated by studying the SOLIS (Synoptic Optical Long-term Investigation of the Sun (SOLIS), a National Solar Observatory facility) vector magnetograms of AR 10987, which show a global α value consistent with an α=0 value as evaluated by (×B) z /B z over the region. Typical of the current state of the observing technology, there is no definitive twist for input into the general MDR method. This suggests that the special α case, of two α’s with equal magnitudes and opposite signs, is appropriate given the data. Only for an extensively twisted active region does a dominant, nonzero α normally emerge from a distribution of local values. For a special set of conditions, is it found that (i) the resulting magnetic field is a vertically inflated magnetic field resulting from the electric currents being parallel to the photosphere, similar to the results of Gary and Alexander (Solar Phys. 186:123, 1999), and (ii) for α≈(α max /2), the Lorentz force per unit volume normalized by the square of the magnetic field is on the order of 1.4×10−10 cm−1. The Lorentz force (F L) is a factor of ten higher than that of the magnetic force d(B 2/8π)/dz, a component of F L. The calculated photospheric electric current densities are an order of magnitude smaller than the maximum observed in all active regions. Hence both the Lorentz force density and the generated electric current density seem to be physically consistent with possible solar dynamics. The results imply that the field could be inflated with an overpressure along the neutral line. However, the implementation of this or any other extrapolation method using the electric current density as a lower boundary condition must be done cautiously, with the current magnetography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号