共查询到19条相似文献,搜索用时 62 毫秒
1.
高光谱遥感影像优化分类波段选择 总被引:3,自引:0,他引:3
利用粗糙集关于属性依赖性公式,本文给出一种定义遥感影像波段间相似度的方法,通过模糊聚类,得到对高光谱遥感影像原始波段集合的模糊等价划分,在每个模糊等价波段组中,选择一个代表性波段完成对原始波段集合的初步降维,基于遗传算法并结合粗糙集理论,在降维中的波段集合中进一步进行的分类波段组合的优化选择,实验结果表明,本文给出的高光谱遥感影像优化分类波段组合选择方法是非常有效的。 相似文献
2.
以国产ZY1E高光谱遥感影像作为影像数据源,选取黑龙江省绥化市青冈县为研究区,对ZY1E高光谱遥感影像的光谱特性及多波段组合特性进行研究,并开展了研究区汉麻的提取研究.试验表明:ZY1E高光谱遥感影像可以提供更为丰富的空间信息和地物光谱信息,更利于地物的精细识别,2020年青冈县共种植汉麻0.22万hm2,主要集中在北... 相似文献
3.
4.
薇甘菊是危害最严重的外来入侵物种之一,其生长与传播极其迅速,对我国森林生态系统造成了严重破坏,相关管理部门需要一个有效的薇甘菊监测手段。传统人工调查方式需要投入大量的人力物力,成本高昂、效率低下;近年来快速发展的高光谱遥感技术为薇甘菊的监测提供了新思路。本文以无人机搭载的Nano-Hyperspec高光谱仪获取的广东省增城林场遥感影像数据为基础,对高光谱数据进行几何校正、影像降噪处理、辐射定标及坏带波段剔除等影像预处理;运用最佳指数因子法(OIF)、自适应波段法(ABS)、自动子空间划分(ASP)与自适应波段相结合的波段选择法(ASP+ABS) 3种方法进行波段选择,获取信息量较大且波段间相关性较低的特征波段组成薇甘菊分类最佳波段组合,生成3幅遥感影像;最后采用支持向量机方法(SVM)对生成的3幅不同遥感影像进行分类,以分类结果的精度评价3种波段组合对薇甘菊高光谱特征的响应程度,选出更能反映薇甘菊的光谱特征的波段组合。试验结果表明,针对Nano-Hyperspec遥感影像数据,使用OIF波段选择法,研究区内薇甘菊的制图精度和用户精度分别为74.62%、66.52%;使用ABS波段选择法... 相似文献
5.
6.
基于最佳波段组合的高光谱遥感影像分类 总被引:6,自引:0,他引:6
针对高光谱数据维数高、数据量大、信息冗余多、波段相关性强等特点,在综合各种数据降维方法的基础上,提出一种基于最佳波段组合的高光谱遥感影像分类方法。以美国印第安纳州地区的AVIRIS数据为例,分析各波段信息量和相邻波段的相关性,利用子空间划分、分段波段指数选择法,进行特征波段的选择;并针对难区分地物类别,应用J-M距离模型对其可分性进行判别,获得最佳波段组合。最后采用支持向量机分类器进行分类。实验结果表明,采用最佳波段组合方法,可以有效地提高高光谱的分类精度。 相似文献
7.
8.
高光谱遥感图像最佳波段选择的快速算法研究 总被引:4,自引:0,他引:4
针对现有波段选择方法效率低下的问题,提出3种提高计算速度的解决方案.通过对OMIS数据的试验证实,这3种快速解决方案在所选出的最佳组合波段的质量和算法执行速度两方面都能获得较好的效果. 相似文献
9.
10.
11.
Guo B. Gunn S.R. Damper R.I. Nelson J.D.B. 《Geoscience and Remote Sensing Letters, IEEE》2006,3(4):522-526
Spectral band selection is a fundamental problem in hyperspectral data processing. In this letter, a new band-selection method based on mutual information (MI) is proposed. MI measures the statistical dependence between two random variables and can therefore be used to evaluate the relative utility of each band to classification. A new strategy is described to estimate the MI using a priori knowledge of the scene, reducing reliance on a "ground truth" reference map, by retaining bands with high associated MI values (subject to the so-called "complementary" conditions). Simulations of classification performance on 16 classes of vegetation from the AVIRIS 92AV3C data set show the effectiveness of the method, which outperforms an MI-based method using the associated reference map, an entropy-based method, and a correlation-based method. It is also competitive with the steepest ascent algorithm at much lower computational cost 相似文献
12.
13.
非监督波段选择方法是高光谱图像降维的主要方法,但现有方法应用到实际高光谱图像分类时,分类精度并不理想。本文提出一种改进的基于聚类的高光谱图像非监督波段选择方法,主要通过对传统的K-means聚类算法进行两方面改进:一方面是相似性度量函数;另一方面是聚类中心的选取。然后,通过实验数据用支持向量机法(SVM)对所提算法及现有的三种非监督波段选择方法进行分类。最后,用总体精度(OA)和Kappa系数评价分类结果。表明本文所提方法在分类精度方面优于其他现有方法。 相似文献
14.
高光谱影像波段众多且相关性强,导致分类存在信息冗余且计算量较大。提出了可分离非负矩阵分解方法来选取高光谱影像的代表性波段子集,在保证分类精度的同时降低计算量。该方法假设高光谱影像的波段集合具有可分离特性,改进传统非负矩阵分解模型,将波段选择转换为可分离非负矩阵分解问题,采用迭代投影方法来依次选取能够非负线性表达其他波段的代表性波段。在此基础上,利用两个公开高光谱数据集对比几种主流方法,采用定量评价和分类精度指标来综合评价所提的波段选择方法的效果。实验结果表明,可分离非负矩阵分解方法的分类精度高于其他几种方法,而且计算效率排名第2,能够选取合适的波段子集以满足高光谱遥感的应用需求。 相似文献
15.
粒子群优化算法用于高光谱遥感影像分类的自动波段选择 总被引:1,自引:0,他引:1
针对传统SVM分类方法的缺点,采用粒子群优化(particle swarm optimization,PSO)算法自动选择合适的渡段影像并对SVM核函数参数进行优化,提出一种新的PSO-BSSVM分类模型.经过对高光谱遥感影像的分类试验,并与K_最近邻(K-NN)、径向基神经网络(RBF-NN)和标准的支持向量机(SVM)三种分类方法进行对比实验,证明PSO-BSSVM方法能优选高光谱遥感影像的波段和优化SVM参数,明显提高影像的分类精度. 相似文献
16.
一种改进的高光谱遥感数据波段选择方法的研究 总被引:4,自引:0,他引:4
高光谱遥感数据波段多、数据量大的优点同样给数据处理带来了极大的困难,通过对已有常见波段选择方法的研究,发现其无法同时满足所选择波段相关性小、所含信息量大且光谱可分性好等要求。针对以上问题,本文提出了一种新的方法,综合使用了子空间划分、自适应波段选择和光谱可分性距离等方法,得到最优波段组合。 相似文献
17.
对高光谱数据进行波段组合,可以减少信息量的冗余,提高数据的处理速度。对黄河口入海口湿地进行分类,对合理利用、开发保护该地区湿地资源具有重要意义。本文首先分析了“珠海一号”高光谱数据各个波段的信息量及波段之间的相关系数,然后利用最佳波段指数(OIF)方法选出波段组合B7-B8-B32,进一步在OIF基础上设置信息量与相关系数阈值,选出波段组合B7-B18-B32,实验结果证明分类精度提高了5.4%。最后,根据地物的光谱特征分析,选择光谱差异较大的波段进行组合B6-B13-B18,分类后精度比OIF筛选出的波段组合精度高12.6694%。经实验验证,结合地物光谱特征的波段组合可以大大提高分类精度。 相似文献
18.
《测绘科学技术学报》2013,(2)
最佳波段选择是高光谱影像降维的常用手段,将本征维数估计与核偏最小二乘法,相结合,提出一种基于核偏最小二乘法的最佳波段选择方法。首先利用自适应最大似然法估计高光谱数据的本征维数;然后将核方法引入到偏最小二乘法中,利用核偏最小二乘法对高光谱影像进行最佳波段选择,所需选择的波段数即为本征维数。实验分析表明,与其他最佳波段选择方法比较,本文方法输出的最佳波段用于地物分类,取得了较高的分类精度。 相似文献
19.
提出一种稀疏自表达方法来研究高光谱影像分类中的波段选择问题。该方法利用字典矩阵等于测量矩阵的条件来改进多观测向量的稀疏表达模型,将波段子集看作高光谱影像波段集合中的代表子集。稀疏自表达方法将波段选择转换为寻求多观测向量中稀疏系数矩阵的非零行向量问题,通过引入混合范数来限定非零元素行向量的个数,利用快速交替方向乘子方法求解稀疏系数矩阵,并聚类非零行向量,实现波段的有效选择。基于两个公开高光谱影像数据集并对比其他4种波段选取方法来验稀疏自表达方法。实验结果证明,稀疏自表达方法能够在计算效率明显优于基于波段相关性的线性限制最小方差方法的同时,取得与该方法和非负稀疏矩阵分解方法相匹甚至略高的总体分类精度。 相似文献