首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although the residual layer has already been noted in the classical diurnal cycle of the atmospheric boundary layer,its effect on the development of the convective boundary layer has not been well studied. In this study, based on 3-hourly20 th century reanalysis data, the residual layer is considered as a common layer capping the convective boundary layer. It is identified daily by investigating the development of the convective boundary layer. The region of interest is bounded by(30°–60° N, 80°–120° E), where a residual layer deeper than 2000 m has been reported using radiosondes. The lapse rate and wind shear within the residual layer are compared with the surface sensible heat flux by investigating their climatological means, interannual variations and daily variations. The lapse rate of the residual layer and the convective boundary layer depth correspond well in their seasonal variations and climatological mean patterns. On the interannual scale, the correlation coefficient between their regional averaged(40°–50°N, 90°–110° E) variations is higher than that between the surface sensible heat flux and convective boundary layer depth. On the daily scale, the correlation between the lapse rate and the convective boundary layer depth in most months is still statistically significant during 1970–2012. Therefore, we suggest that the existence of a deep neutral residual layer is crucial to the formation of a deep convective boundary layer near the Mongolian regions.  相似文献   

2.
The local climate and atmospheric circulation pattern exert a clear influence on the atmospheric boundary layer (ABL) formation and development in Northwest China. In this paper, we use field observational data to analyze the distribution and characteristics of the ABL in the extremely arid desert in Dunhuang, Northwest China. These data show that the daytime convective boundary layer and night time stable boundary layer in this area extend to higher altitudes than in other areas. In the night time, the stable boundary layer exceeds 900 m in altitude and can sometimes peak at 1750 m, above which the residual layer may reach up to about 4000 m. The daytime convective boundary layer develops rapidly after entering the residual layer, and exceeds 4000 m in thickness. The results show that the deep convective boundary layer in the daytime is a pre-requisite for maintaining the deep residual mixed layer in the night time. Meanwhile, the deep residual mixed layer in the night time provides favorable thermal conditions for the development of the convective boundary layer in the daytime. The prolonged periods of clear weather that often occurs in this area allow the cumulative effect of the atmospheric residual layer to develop fully, which creates thermal conditions beneficial for the growth of the daytime convective boundary layer. At the same time, the land surface process and atmospheric motion within the surface layer in this area also provide helpful support for forming the particular structure of the thermal ABL. High surface temperature is clearly the powerful external thermal forcing for the deep convective boundary layer. Strong sensible heat flux in the surface layer provides the required energy. Highly convective atmosphere and strong turbulence provide the necessary dynamic conditions, and the accumulative effect of the residual layer provides a favorable thermal environment.  相似文献   

3.
Abstract

The effects of small‐scale surface inhomogeneities on the turbulence structure in the convective boundary layer are investigated using a high‐resolution large‐eddy simulation model. Surface heat flux variations are sinusoidal and two‐dimensional, dividing the total domain into a checkerboard‐like pattern of surface hot spots with a 500‐m wavelength in the x and y directions, or 1/4 of the domain size. The selected wind speeds were 1 and 4 m s‐l, respectively. As a comparison, a simulation of the turbulence structure was performed over a homogeneous surface.

When the wind speed is light, surface heat flux variations influence the horizontally averaged turbulence statistics, including the higher moments despite the small characteristic length of the surface perturbation. Stronger mean wind speeds weaken the effects of inhomogeneous surface conditions on the turbulence structure in the convective boundary layer.

Results from conditional sampling show that when the mean wind speed is small, weak mean circulations occur, with updraft branches above the high heat flux regions and down‐draft branches above the low heat flux regions. The inhomogeneous surface induces significant differences in the turbulence statistics between the high and low heat flux regions. However, the effect of the surface perturbations weaken rapidly when the mean wind speed increases. This research has implications in the explanation of the large‐scale variability commonly encountered in aircraft observations of atmospheric turbulence.  相似文献   

4.
A new method for deduction of the sensible heat flux is validated with three sets of published SODAR (sound detection and ranging) data. Although the related expressions have previously been confirmed by the author with surface layer data, they have not yet been validated with observations from the boundary layer before this work. In the study, selected SODAR data are used to test the method for the convective boundary layer. The sensible heat flux (SHF) retrieved from SODAR data is found to decrease linearly with height in the mixed layer. The surface sensible heat fluxes derived from the deduced sensible heat flux profiles under convective conditions agree well with those measured by the eddy correlation method. The characteristics of SHF profiles deduced from SODAR data in different places reflect the background meteorology and terrain. The upper part of the SHF profile (SHFP) for a complicated terrain is found to have a different slope from the lower part. It is suggested that the former reflects the advective characteristic of turbulence in upwind topography. A similarity relationship for the estimation of SHFP in a well mixed layer with surface SHF and zero-heat-flux layer height is presented.  相似文献   

5.
We have conducted large-eddy simulations (LES) of the atmospheric boundary layer with surface heat flux variations on a spatial scale comparable to the boundary layer depth.We first ran a simulation with a horizontally homogeneous heat flux. In general the results are similar to those of previous large-eddy simulations. The model simulates a field of convective eddies having approximately the correct velocity and spatial scales, and with the crucial property that kinetic energy is transported vigorously upwards through the middle levels. However, the resolved temperature variance is only about half what is observed in the laboratory or the atmosphere. This deficiency — which is shared by many other large-eddy simulations — has dynamic implications, particularly in the pressure/temperature interaction terms of the heat flux budget. Recent simulations by other workers at much higher resolution than ours appear to be more realistic in this respect.The surface heat flux perturbations were one-dimensional and sinusoidal with a wavelength equal to 1.3 times the boundary-layer depth. The mean wind was zero. Results were averaged over several simulations and over time. There is a mean circulation, with ascent over the heat flux maxima (vertical velocity ~0.1w *) and descent over the heat flux minima. Turbulence is consistently stronger over the heat flux maxima. The horizontal velocity variance components (calculated with respect to the horizontal average) become unequal, implying that convective eddies are elongated parallel to the surface heat flux perturbations.A consideration of the budgets for temperature and velocity suggests several simplifying concepts.The research reported in this paper was conducted while the first author was on study leave at Colorado State University.  相似文献   

6.
Basic entrainment equations applicable to the sheared convective boundary layer (CBL) are derived by assuming an inversion layer with a finite depth, i.e., the first-order jump model. Large-eddy simulation data are used to determine the constants involved in the parameterizations of the entrainment equations. Based on the integrated turbulent kinetic energy budget from surface to the top of the CBL, the resulting entrainment heat flux normalized by surface heat flux is a function of the inversion layer depth, the velocity jumps across the inversion layer, the friction velocity, and the convection velocity. The developed first-order jump model is tested against large-eddy simulation data of two independent cases with different inversion strengths. In both cases, the model reproduces quite reasonably the evolution of the CBL height, virtual potential temperature, and velocity components in the mixed layer and in the inversion layer.The part of this work was done when the first author visited at NCAR.  相似文献   

7.
A simple model to study the decay of turbulent kinetic energy (TKE) in the convective surface layer is presented. In this model, the TKE is dependent upon two terms, the turbulent dissipation rate and the surface buoyancy fluctuations. The time evolution of the surface sensible heat flux is modelled based on fitting functions of actual measurements from the LITFASS-2003 field campaign. These fitting functions carry an amplitude and a time scale. With this approach, the sensible heat flux can be estimated without having to solve the entire surface energy balance. The period of interest covers two characteristic transition sub-periods involved in the decay of convective boundary-layer turbulence. The first sub-period is the afternoon transition, when the sensible heat flux starts to decrease in response to the reduction in solar radiation. It is typically associated with a decay rate of TKE of approximately t −2 (t is time following the start of the decay) after several convective eddy turnover times. The early evening transition is the second sub-period, typically just before sunset when the surface sensible heat flux becomes negative. This sub-period is characterized by an abrupt decay in TKE associated with the rapid collapse of turbulence. Overall, the results presented show a significant improvement of the modelled TKE decay when compared to the often applied assumption of a sensible heat flux decreasing instantaneously or with a very short forcing time scale. In addition, for atmospheric modelling studies, it is suggested that the afternoon and early evening decay of sensible heat flux be modelled as a complementary error function.  相似文献   

8.
Buoyancy fluxes in the marine atmospheric boundary layer (MABL) for the cloud street regime, observed during the Genesis of Atlantic Lows Experiment (GALE), have been analyzed using the technique of joint frequency distribution. For the lower half of the MABL, the results suggest that the buoyancy flux is mainly generated by the rising thermals and the sinking compensating ambient air, and is mainly consumed by the entrainment and detrainment of thermals, penetrative convection, and the entrainment from the MABL top.The results are compared to those from previous studies of mesoscale cellular convection (Air-Mass Transformation Experiment, AMTEX), the dry convective boundary layer, and the trade-wind MABL. For the lower MABL, the quadrant buoyancy fluxes, fractional coverages, and flux intensities are in good agreement with those of mesoscale cellular convection (AMTEX) and the dry convective boundary layer. The results suggest that, if the buoyancy flux is primarily driven by the temperature flux, the physical processes for generating buoyancy flux mentioned above are about the same for the lower boundary layers over land and ocean, even with different convective regimes. For the trade-wind MABL, the buoyancy flux is mainly driven by the moisture flux; the quadrant flux intensities are stronger than those of the other three studies except for the buoyant updrafts (thermals). These results suggest that the entrainment and detrainment of thermals are more effective in the trade-wind MABL than in the boundary layers driven by the temperature flux.Scale analysis of the buoyancy flux is in good agreement with that of AMTEX. For the lower half of the MABL, the buoyancy flux is mainly generated by the intermediate scale (200 m to 2 km), which includes the dominant convective thermals in the surface layer and the mixed layer. The scale smaller than 200 m is important only in the surface layer. The scale larger than 2 km, which includes the roll vortices, increases its significance upward. While most of the positive and negative fluxes are associated with the updrafts for the intermediate scale, the downdrafts are as important as updrafts for the larger scale.ST Systems Corporation, Lanham, MD, 20706, U.S.A.  相似文献   

9.
The entrainment flux ratio A e and the inversion layer (IL) thickness are two key parameters in a mixed layer model. A e is defined as the ratio of the entrainment heat flux at the mixed layer top to the surface heat flux. The IL is the layer between the mixed layer and the free atmosphere. In this study, a parameterization of A e is derived from the TKE budget in the firstorder model for a well-developed CBL under the condition of linearly sheared geostrophic velocity with a zero value at the surface. It is also appropriate for a CBL under the condition of geostrophic velocity remaining constant with height. LESs are conducted under the above two conditions to determine the coefficients in the parameterization scheme. Results suggest that about 43% of the shear-produced TKE in the IL is available for entrainment, while the shear-produced TKE in the mixed layer and surface layer have little effect on entrainment. Based on this scheme, a new scale of convective turbulence velocity is proposed and applied to parameterize the IL thickness. The LES outputs for the CBLs under the condition of linearly sheared geostrophic velocity with a non-zero surface value are used to verify the performance of the parameterization scheme. It is found that the parameterized A e and IL thickness agree well with the LES outputs.  相似文献   

10.
For the presentation and analysis of atmospheric boundary-layer (ABL) data, scales are used to non-dimensionalise the observed quantities and independent variables. Usually, the ABL height, surface sensible heat flux and surface scalar flux are used. This works well, so long as the absolute values of the entrainment ratio for both the scalar and temperature are similar. The entrainment ratio for temperature naturally ranges from −0.4 to −0.1. However, the entrainment ratio for passive scalars can vary widely in magnitude and sign. Then the entrainment flux becomes relevant as well. The only customary scalar scale that takes into account both the surface flux and the entrainment flux is the bulk scalar scale, but this scale is not well-behaved for large negative entrainment ratios and for an entrainment ratio equal to −1. We derive a new scalar scale, using previously published large-eddy simulation results for the convective ABL. The scale is derived under the constraint that scaled scalar variance profiles are similar at those heights where the variance producing mechanisms are identical (i.e., either near the entrainment layer or near the surface). The new scale takes into account that scalar variance in the ABL is not only related to the surface flux of that scalar, but to the scalar entrainment flux as well. Furthermore, it takes into account that the production of variance by the entrainment flux is an order of magnitude larger than the production of variance by the surface flux (per unit flux). Other desirable features of the new scale are that it is always positive (which is relevant when scaling standard deviations) and that the scaled variances are always of order 1–10.  相似文献   

11.
陆气相互作用对中尺度对流系统影响的研究进展   总被引:1,自引:1,他引:0  
单机坤  沈学顺  李维京 《气象》2013,39(11):1413-1421
文章回顾了大气对地表性质的敏感性研究,以及陆气相互作用对中尺度天气过程的影响,说明了地表性质与积云对流及对流降水之间的联系。地表性质的改变对行星边界层的热通量、水汽通量、对流有效位能产生影响,并通过湍流的垂直输送,进而影响到其上大气的性质。陆气之间存在着复杂的、非线性的相互作用。性质不均匀的下垫面造成地表向大气感热通量和潜热通量的差异,从而在近地层大气中形成温度和气压梯度,产生局地环流,在条件适合的情况下可以形成对流,并产生降水,而降水的不均匀分布,又维持了下垫面的不均匀性。土壤湿度对对流的影响受到多个因素的制约,其中天气尺度过程的影响是很显著的;由非均匀的下垫面所产生的局地环流能够触发积云对流。  相似文献   

12.
Turbulent convection forced by a surface heat flux into a stably stratified region is a feature of both the atmospheric and oceanic planetary boundary layers. Of particular interest is the interface between the convective layer and the stable stratification, where the entrainment of fluid into the convective layer by penetrating plumes may lead to a reverse buoyancy flux, and an enhancement of the stable stratification. Whereas in the atmosphere the influence of rotation on this penetrative convection is negligible, oceanic convection may be subjected to lower Rossby numbers and hence greater rotational influence. To isolate the effects of rotation, we present three numerical solutions for turbulent penetrative convection, characterised by different rotation rates, with all other parameters being held constant. Our results indicate that at lower Rossby numbers the lateral scale of the plumes is reduced, whereas the vertical vorticity of the plumes is much enhanced. Vertical transports of buoyancy and kinetic energy across the convective layer are reduced, leading to less efficient penetration at the interface with the stratified layer, and hence less reverse buoyancy flux in this region.  相似文献   

13.
The development of the atmospheric boundary layer is closely connected with the exchange of momentum, heat, and mass near the Earth’s surface, especially for a convective boundary layer (CBL). Besides being modulated by the buoyancy flux near the Earth’s surface, some studies point out that a neutrally stratified residual layer is also crucial for the appearance of a deep CBL. To verify the importance of the residual layer, the CBLs over two deserts in northwest China (Badan Jaran and Taklimakan) were investigated. The summer CBL mean depth over the Taklimakan Desert is shallower than that over the Badan Jaran Desert, even when the sensible heat flux of the former is stronger. Meanwhile, the climatological mean residual layer in the Badan Jaran Desert is much deeper and neutrally stratified in summer. Moreover, we found a significant and negative correlation between the lapse rate of the residual layer and the CBL depth over the Badan Jaran Desert. The different lapse rates of the residual layer in the two regions are partly connected with the advection heating from large-scale atmospheric circulation. The advection heating tends to reduce the temperature difference in the 700 to 500-hPa layer over the Badan Jaran Desert, and it increases the stability in the same atmospheric layer over the Taklimakan Desert. The advection due to climatological mean atmospheric circulation is more effective at modulating the lapse rate of the residual layer than from varied circulation. Also, the interannual variation of planetary boundary layer (PBL) height over two deserts was found to covary with the wave train.  相似文献   

14.
利用北京大学的微脉冲激光雷达(MPL)观测的偏南气流条件下的混合层高度和夹卷层厚度探测资料,研究简单天气条件下城市混合层的发展机制并与GB94的参数化方案相互映证.通过激光雷达遥感的混合层高度和夹卷层厚度计算了混合层顶的夹卷率A,得到其平衡夹卷阶段的值为0.24.在不考虑机械混合前提下反演了地面感热通量,结果表明遥感的反演值与梯度法的计算值有系统性偏差,但总体上仍旧有较好的相关.偏差量的大小反映了影响混合层发展的机械湍流的参数B,进一步通过GB91模式的模拟确定该参数的最佳值约为3.5.在此基础上讨论了混  相似文献   

15.
Summary An aircraft-based experimental investigation of the atmospheric boundary layer (ABL) structure and of the energy exchange processes over heterogeneous land surfaces is presented. The measurements are used for the validation of the mesoscale atmospheric model “Lokal-Modell” (LM) of the German Weather Service with 2.8 km resolution. In addition, high-resolution simulations using the non-hydrostatic model FOOT3DK with 250 m resolution are performed in order to resolve detailed surface heterogeneities. Two special observation periods in May 1999 show comparable convective boundary layer (CBL) conditions. For one case study vertical profiles and area averages of meteorological quantities and energy fluxes are investigated in detail. The measured net radiation is highly dependent on surface albedo, and the latent heat flux exhibits a strong temporal variability in the investigation area. A reduction of this variability is possible by aggregation of multiple flight patterns. To calculate surface fluxes from aircraft measurements at low altitude, turbulent energy fluxes were extrapolated to the ground by the budget method, which turned out to be well applicable for the sensible heat flux, but not for the latent flux. The development of the ABL is well captured by the LM simulation. The comparison of spatiotemporal averages shows an underestimation of the observed net radiation, which is mainly caused by thin low-level clouds in the LM compared to observed scattered CBL clouds. The sensible heat flux is reproduced very well, while the latent flux is highly overestimated especially above forests. The realistic representation of surface heterogeneities in the investigation area in the FOOT3DK simulations leads to improvements for the energy fluxes, but an overestimation of the latent heat flux still persists. A study of upscaling effects yields more structures than the LM fields when averaged to the same scale, which are partly caused by the non-linear effects of parameter aggregation on the LM scale.  相似文献   

16.
Large-eddy simulations (LES) are performed to investigate the entrainment andthe structure of the inversion layer of the convective boundary layer (CBL) withvarying wind shears. Three CBLs are generated with the constant surface kinematicheat flux of 0.05 K m s-1 and varying geostrophic wind speeds from 5 to 15m s-1. Heat flux profiles show that the maximum entrainment heat flux as afraction of the surface heat flux increases from 0.13 to 0.30 in magnitude withincreasing wind shear. The thickness of the entrainment layer, relative to the depthof the well-mixed layer, increases substantially from 0.36 to 0.73 with increasingwind shear. The identification of vortices and extensive flow visualizations nearthe entrainment layer show that concentrated vortices perpendicular to the meanboundary-layer wind direction are identified in the capping inversion layer for thecase of strong wind shear. These vortices are found to develop along the mean winddirections over strong updrafts, which are generated by convective rolls and to appearas large-scale wavy motions similar to billows generated by the Kelvin–Helmholtzinstability. Quadrant analysis of the heat flux shows that in the case of strong windshear, large fluctuations of temperature and vertical velocity generated by largeamplitude wavy motions result in greater heat flux at each quadrant than that inthe weak wind shear case.  相似文献   

17.
Turbulence and heat fluxes in the marine atmospheric boundary layer (MABL) for the roll vortex regime, observed during the Genesis of Atlantic Lows Experiment (GALE) over the western Gulf Stream, have been studied. The spectral analysis suggests that cloud streets (roll vortices) are vertically organized convection in the MABL having the same roll scale for both the cloud layer and subcloud layer, and that the roll spacing is about three times the MABL depth. The roll circulations contribute significantly to the sensible (temperature) and latent heat (moisture) fluxes with importance increasing upward. Near the MABL top, these fluxes are primarily due to roll vortices which transfer both sensible heat and moisture upward in the lower half of the convective MABL. Near the MABL top, the roll circulations transfer sensible heat downward and moisture upward in the clear thermal-street region, but roll vortices influenced by evaporative cooling can transfer sensible heat upward and moisture downward in the cloud-street region. Near the cloud-top, the upward buoyancy flux due to evaporative cooling is highly related to the roll circulations near the inversion.For the lower half of the MABL, the normalized temperature flux decreases upward more rapidly than the humidity flux, which is mainly because potential temperature () increases slightly upward while humidity (q) decreases slightly upward above the unstable surface layer. The gradient production (associated with the gradient) is a source for the temperature flux in the unstable surface layer but changes to a sink in the mixed layer, while the gradient production (associated with the q gradient) acts as a source for the humidity flux in both the unstable surface and mixed layers. The results suggest that the entrainment at the MABL top might affect the budgets of temperature and humidity fluxes in the lower MABL, but not in the unstable surface layer.Caelum Research Corporation, Silver Spring, MD, 20901, U.S.A.  相似文献   

18.
Seasonal and inter-annual variability of the mixed layer temperature in the Southern South China Sea (SSCS) is investigated using a regional ocean circulation model simulation. The mixed layer depth (MLD) over the SSCS exhibits a strong seasonal signal with deeper MLDs during the northeast and southwest monsoons. The main factor that drives the mixed layer temperature variation in the SSCS is the air-sea heat fluxes, with vertical ocean processes acting as a relatively weak negative feedback. In general, the budget analysis demonstrates a net balance between the vertical ocean processes and surface heat flux during the pre-monsoon and southwest monsoon. Northeast monsoon period is noted by an offsetting of surface heat flux, horizontal and vertical ocean processes. The first dominant mode of mixed layer temperature inter-annual variability in the SSCS shows significant correlation (0.34) with the El Nino phenomenon in the Pacific Ocean and is best correlated (0.67) with a lag of 5 months.  相似文献   

19.
This paper evaluates convective boundary layer (CBL) budget methods as a tool for estimating regionally averaged sensible and latent heat fluxes for the study region used in OASIS (Observations at Several Interacting Scales). This is an agricultural region of mixed cropping and grazing extending about 100 km west of the town of Wagga Wagga, NSW, Australia.The analysis proceeds in three stages: first, a simpleone-dimensional model of the well-mixed layer (the CBL slab model), forced with measurements of the surface heat and evaporation fluxes, is evaluated by comparing measured and modelled CBL temperature, humidity and depths. A comparison of several entrainment schemes shows that a simple model, where the entrainment kinetic energy is parameterised as a fraction (3) of the surface sensible heat flux, works well if is set to 0.5. Second, the slab model is coupled to a Penman–Monteith model of surface evaporation to predict regional scale evaporation and thence heat fluxes. Finally, the integral CBL budget approach, which is an inverse method using theone-dimensional slab model, is used to infer regional heat and evaporation fluxes from measured time series of CBL temperature and humidity.We find that the simple CBL slab model works reasonably well for predicting CBL depth and very well for CBL temperature, especially if approximate estimates of subsidence velocity and warming due to advection are included. Regional sensible heat fluxes estimated from the integral CBL method match those measured, although the method is very sensitive to measurement errors. Measurement-model differences were larger for short integration times, because the well-mixed assumptions are violated at particular times of the day. The corollary is that `whole-day' (0530–1530 h) estimates are in reasonable agreement with measured values. Integral methods could not be used to infer the regional evaporation flux directly because CBL humidity profiles were complex and often not well mixed until mid-afternoon. We recommend that regional evaporation fluxes be predicted either from a coupled Penman–Monteith – CBL slab model, or inferred as a residual term from estimates of the regionally averaged available energy and sensible heat flux. Furthermore, we show that inferring fluxes via integral methods will always be difficult when the scalar concentrations have either a large surface source and free atmosphere sink (in the case of water vapour and methane), or a large surface sink and upper level source (in the case of CO2).  相似文献   

20.
Large-eddy simulation is used to study secondary circulations in the convective boundary layer modulated as a result of horizontally varying surface properties and surface heat fluxes over flat terrain. The presence of heat flux heterogeneity and its alignment with respect to geostrophic wind influences the formation, strength and orientation of organized thermals. Results show boundary-attached roll formation along heat flux maxima in the streamwise direction. The streamwise organization of the updrafts and downdrafts formed downwind of heterogeneities leads to counter-rotating secondary circulations in the crosswind plane. The distribution of resolved-scale pressure deviations shows large pressure gradients in the crosswind plane. Spanwise and vertical velocity variances and heat flux profiles depict considerable spatial variability compared to a homogeneous forest simulation. Secondary circulations are observed for various ambient wind scenarios parallel and perpendicular to heterogeneities. In the presence of increased wind speed, thermals emerging from the heat flux heterogeneity are elongated, and organize along and downwind of large-scale heterogeneity in the streamwise direction. Simulation with a reduced heat flux shows a shallower circulation with a lower aspect ratio. Point measurements of heat flux inside the roll circulation could be overestimated by up to 15–25% compared to a homogeneous case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号