首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Strong gravitational lensing by galaxies in MOdified Newtonian Dynamics (MOND) has until now been restricted to spherically symmetric models. These models were able to account for the size of the Einstein ring of observed lenses, but were unable to account for double-imaged systems with collinear images, as well as four-image lenses. Non-spherical models are generally cumbersome to compute numerically in MOND, but we present here a class of analytic non-spherical models that can be applied to fit double-imaged and quadruple-imaged systems. We use them to obtain a reasonable MOND fit to 10 double-imaged systems, as well as to the quadruple-imaged system Q2237+030 which is an isolated bulge-disc lens producing an Einstein cross. However, we also find five double-imaged systems and three quadruple-imaged systems for which no reasonable MOND fit can be obtained with our models. We argue that this is mostly due to the intrinsic limitation of the analytic models, even though the presence of small amounts of additional dark mass on galaxy scales in MOND is also plausible.  相似文献   

3.
We study the amplitude of the weak gravitational lensing signal as a function of stellar mass around a sample of relatively isolated galaxies. This selection of lenses simplifies the interpretation of the observations, which consist of data from the Red-Sequence Cluster Survey and the Sloan Digital Sky Survey. We find that the amplitude of the lensing signal as a function of stellar mass is well described by a power law with a best-fitting slope  α= 0.74 ± 0.08  . This result is inconsistent with modified Newtonian dynamics (MOND), which predicts  α= 0.5  (we find  α > 0.5  with 99.7 per cent confidence). As a related test, we determine the MOND mass-to-light ratio as a function of luminosity. Our results require dark matter for the most luminous galaxies ( L ≳ 1011 L). We rule out an extended halo of gas or active neutrinos as a way of reconciling our findings with MOND. Although we focus on a single alternative gravity model, we note that our results provide an important test for any alternative theory of gravity.  相似文献   

4.
We apply the modified acceleration law obtained from Einstein gravity coupled to a massive skew symmetric field,   F μνλ  , to the problem of explaining X-ray galaxy cluster masses without exotic dark matter. Utilizing X-ray observations to fit the gas mass profile and temperature profile of the hot intracluster medium (ICM) with King 'β-models', we show that the dynamical masses of the galaxy clusters resulting from our modified acceleration law fit the cluster gas masses for our sample of 106 clusters without the need of introducing a non-baryonic dark matter component. We are further able to show for our sample of 106 clusters that the distribution of gas in the ICM as a function of radial distance is well fitted by the dynamical mass distribution arising from our modified acceleration law without any additional dark matter component. In a previous work, we applied this theory to galaxy rotation curves and demonstrated good fits to our sample of 101 low surface brightness, high surface brightness and dwarf galaxies including 58 galaxies that were fitted photometrically with the single-parameter mass-to-light ratio ( M / L )stars. The results obtained there were qualitatively similar to those obtained using Milgrom's phenomenological Modified Newtonian Dynamics (MOND) model, although the determined galaxy masses were quantitatively different, and MOND does not show a return to Keplerian behaviour at extragalactic distances. The results obtained here are compared to those obtained using Milgrom's phenomenological MOND model which does not fit the X-ray galaxy cluster masses unless an auxiliary dark matter component is included.  相似文献   

5.
We compare orbits in a thin axisymmetric disc potential in Modified Newtonian Dynamics (MOND) with those in a thin disc plus near-spherical dark matter halo predicted by a ΛCDM cosmology. Remarkably, the amount of orbital precession in MOND is nearly identical to that which occurs in a mildly oblate CDM Galactic halo (potential flattening   q = 0.9  ), consistent with recent constraints from the Sagittarius stream. Since very flattened mass distributions in MOND produce rounder potentials than in standard Newtonian mechanics, we show that it will be very difficult to use the tidal debris from streams to distinguish between a MOND galaxy and a standard CDM galaxy with a mildly oblate halo.
If a galaxy can be found with either a prolate halo or one that is more oblate than   q ∼ 0.9  this would rule out MOND as a viable theory. Improved data from the leading arm of the Sagittarius dwarf – which samples the Galactic potential at large radii – could rule out MOND if the orbital pole precession can be determined to an accuracy of the order of  ±1°  .  相似文献   

6.
We investigate strong gravitational lensing in the concordance ΛCDM cosmology by carrying out ray tracing along past light cones through the Millennium Simulation, the largest simulation of cosmic structure formation ever carried out. We extend previous ray-tracing methods in order to take full advantage of the large volume and the excellent spatial and mass resolution of the simulation. As a function of source redshift we evaluate the probability that an image will be highly magnified, will be highly elongated or will be one of a set of multiple images. We show that such strong lensing events can almost always be traced to a single dominant lensing object and we study the mass and redshift distribution of these primary lenses. We fit analytic models to the simulated dark haloes in order to study how our optical depth measurements are affected by the limited resolution of the simulation and of the lensing planes that we construct from it. We conclude that such effects lead us to underestimate total strong lensing cross-sections by about 15 per cent. This is smaller than the effects expected from our neglect of the baryonic components of galaxies. Finally we investigate whether strong lensing is enhanced by material in front of or behind the primary lens. Although strong lensing lines of sight are indeed biased towards higher than average mean densities, this additional matter typically contributes only a few per cent of the total surface density.  相似文献   

7.
Clusters of galaxies offer a robust test bed for probing the nature of dark matter that is insensitive to the assumption of the gravity theories. Both Modified Newtonian Dynamics (MOND) and General Relativity (GR) would require similar amounts of non-baryonic matter in clusters as MOND boosts the gravity only mildly on cluster scales. Gravitational lensing allows us to estimate the enclosed mass in clusters on small (∼20–50 kpc) and large (∼several 100 kpc) scales independent of the assumptions of equilibrium. Here, we show for the first time that a combination of strong and weak gravitational lensing effects can set interesting limits on the phase-space density of dark matter in the centres of clusters. The phase-space densities derived from lensing observations are inconsistent with neutrino masses ranging from 2–7 eV, and hence do not support the 2 eV-range particles required by MOND. To survive, the most plausible modification for MOND may be an additional degree of dynamical freedom in a covariant incarnation.  相似文献   

8.
We use the Millennium Simulation (MS) to measure the cross-correlation between halo centres and mass (or equivalently the average density profiles of dark haloes) in a Lambda cold dark matter (ΛCDM) cosmology. We present results for radii in the range  10  h −1 kpc < r < 30  h −1 Mpc  and for halo masses in the range  4 × 1010 < M 200 < 4 × 1014  h −1 M  . Both at   z = 0  and at   z = 0.76  these cross-correlations are surprisingly well fitted if the inner region is approximated by a density profile of NFW or Einasto form, the outer region by a biased version of the linear mass autocorrelation function, and the maximum of the two is adopted where they are comparable. We use a simulation of galaxy formation within the MS to explore how these results are reflected in cross-correlations between galaxies and mass. These are directly observable through galaxy–galaxy lensing. Here also we find that simple models can represent the simulation results remarkably well, typically to ≲10 per cent. Such models can be used to extend our results to other redshifts, to cosmologies with other parameters, and to other assumptions about how galaxies populate dark haloes. Our galaxy formation simulation already reproduces current galaxy–galaxy lensing data quite well. The characteristic features predicted in the galaxy–galaxy lensing signal should provide a strong test of the ΛCDM cosmology as well as a route to understanding how galaxies form within it.  相似文献   

9.
We present a series of high-resolution radio and optical observations of the CLASS gravitational lens system B1152+199 obtained with the Multi-Element Radio-Linked Interferometer Network, Very Long Baseline Array and Hubble Space Telescope . Based on the milliarcsecond-scale substructure of the lensed radio components and precise optical astrometry for the lensing galaxy, we construct models for the system and place constraints on the galaxy mass profile. For a single galaxy model with surface mass density  Σ(r)∝r− β   , we find that  0.95 β 1.21  at 2 σ confidence. Including a second deflector to represent a possible satellite galaxy of the primary lens leads to slightly steeper mass profiles.  相似文献   

10.
Many current and future astronomical surveys will rely on samples of strong gravitational lens systems to draw conclusions about galaxy mass distributions. We use a new strong lensing pipeline (presented in Paper I of this series) to explore selection biases that may cause the population of strong lensing systems to differ from the general galaxy population. Our focus is on point-source lensing by early-type galaxies with two mass components (stellar and dark matter) that have a variety of density profiles and shapes motivated by observational and theoretical studies of galaxy properties. We seek not only to quantify but also to understand the physics behind selection biases related to: galaxy mass, orientation and shape; dark matter profile parameters such as inner slope and concentration; and adiabatic contraction. We study how all of these properties affect the lensing Einstein radius, total cross-section, quad/double ratio and image separation distribution, with a flexible treatment of magnification bias to mimic different survey strategies. We present our results for two families of density profiles: cusped and deprojected Sérsic models. While we use fixed lens and source redshifts for most of the analysis, we show that the results are applicable to other redshift combinations, and we also explore the physics of how our results change for very different redshifts. We find significant (factors of several) selection biases with mass; orientation, for a given galaxy shape at fixed mass; cusped dark matter profile inner slope and concentration; concentration of the stellar and dark matter deprojected Sérsic models. Interestingly, the intrinsic shape of a galaxy does not strongly influence its lensing cross-section when we average over viewing angles. Our results are an important first step towards understanding how strong lens systems relate to the general galaxy population.  相似文献   

11.
Central gravitational image detection is very important for the study of the mass distribution of the inner parts (∼100 pc) of lens galaxies. However, the detection of such images is extremely rare and difficult. We present a 1.7-GHz High Sensitivity Array (HSA) observation of the double-image radio lens system B1030+074. The data are combined with archive Very Long Baseline Array and global very long baseline interferometry (VLBI) observations, and careful consideration is given to the effects of noise, clean ing and self-calibration. An upper limit is derived for the strength of the central image of 180 μJy (90 per cent confidence level), considerably greater than would have been expected on the basis of a simple analysis. This gives a lower limit of ∼103 for the ratio of the brightest image to the central image. For cusped models of lens mass distributions, we have made use of this non-detection to constrain the relation between inner power-law slope β of the lensing galaxy mass profile, and its break radius r b. For   r b > 130 pc  the power-law slope is required to be close to isothermal  (β > 1.8)  . A flatter inner slope is allowed if a massive black hole is present at the centre of the lensing galaxy, but the effect of the black hole is small unless it is ∼10 times more massive than that implied by the relation between black hole mass and stellar velocity dispersion. By comparing four epochs of VLBI observations, we also detected possible superluminal motion in the jet in the brighter image A. The B jet remains unresolved, as expected from a simple lens model of the system.  相似文献   

12.
We investigate how strong gravitational lensing in the concordance ΛCDM cosmology is affected by the stellar mass in galaxies. We extend our previous studies, based on ray tracing through the Millennium Simulation, by including the stellar components predicted by galaxy formation models. We find that the inclusion of these components greatly enhances the probability for strong lensing compared to a 'dark matter only' universe. The identification of the 'lenses' associated with strong-lensing events reveals that the stellar mass of galaxies (i) significantly enhances the strong-lensing cross-sections of group and cluster haloes and (ii) gives rise to strong lensing in smaller haloes, which would not produce noticeable effects in the absence of the stars. Even if we consider only image splittings ≳10 arcsec, the luminous matter can enhance the strong-lensing optical depths by up to a factor of 2.  相似文献   

13.
引力透镜效应是探测星系团物质分布的有效方法之一.目前,利用引力透镜数据重构星系团质量分布的主流方法可以分为两大类,即参数法和非参数法.在实际研究工作中,受限于质量模型假设和计算分辨率等方面的影响,现有的重构算法仍有诸多亟需解决的问题.基于Shapelets基函数的引力透镜质量重构方法通过基函数来实现引力透镜质量重构,使用Shapelets基函数分解引力透镜势,以引力透镜中多重像的位置和背景星系椭率畸变为限制条件来迭代求解基函数系数从而得到透镜体的质量分布.通过拟合一个模拟的NFW (Navarro,Frenk and White)透镜系统测试了新方法的可行性,结果表明新方法可以在整体上重构出透镜体的质量分布,并拟合出接近真实的源位置,能够为星系团质量测量提供一套灵活且高效的重构算法.  相似文献   

14.
Cluster lenses     
Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es)—understanding cluster mass distributions and issues pertaining to cluster formation and evolution, as well as constraining the nature of dark matter; (ii) the study of the lensed objects—probing the properties of the background lensed galaxy population—which is statistically at higher redshifts and of lower intrinsic luminosity thus enabling the probing of galaxy formation at the earliest times right up to the Dark Ages; and (iii) the study of the geometry of the Universe—as the strength of lensing depends on the ratios of angular diameter distances between the lens, source and observer, lens deflections are sensitive to the value of cosmological parameters and offer a powerful geometric tool to probe Dark Energy. In this review, we present the basics of cluster lensing and provide a current status report of the field.  相似文献   

15.
We present discovery images, together with follow-up imaging and spectroscopy, of two large-separation gravitational lenses found by our survey for wide arcs [the CAmbridge Sloan Survey Of Wide ARcs in the skY (CASSOWARY)]. The survey exploits the multicolour photometry of the Sloan Digital Sky Survey to find multiple blue components around red galaxies. CASSOWARY 2 (or 'the Cheshire Cat') is composed of two massive early-type galaxies at   z = 0.426  and 0.432, respectively, lensing two background sources, the first a star-forming galaxy at   z = 0.97  and the second a high -redshift galaxy  ( z > 1.4)  . There are at least three images of the former source and probably four or more of the latter, arranged in two giant arcs. The mass enclosed within the larger arc of radius ∼11 arcsec is  ∼33 × 1012 M  . CASSOWARY 3 comprises an arc of three bright images of a   z = 0.725  source, lensed by a foreground elliptical at   z = 0.274  . The radius of the arc is ∼4 arcsec and the enclosed mass is  ∼2.5 × 1012 M  . Together with earlier discoveries like the Cosmic Horseshoe and the 8 o'clock Arc, these new systems, with separations intermediate between the arcsecond-separation lenses of typical strong galaxy lensing and arcminute-separation cluster lenses, probe the very high end of the galaxy mass function.  相似文献   

16.
We calculate the structure of a wake generated by, and the dynamical friction force on, a gravitational perturber travelling through a gaseous medium of uniform density and constant background acceleration   g ext  , in the context of Modified Newtonian Dynamics (MOND). The wake is described as a linear superposition of two terms. The dominant part displays the same structure as the wake generated in the Newtonian gravity scaled up by a factor  μ−1( g ext/ a 0)  , where a 0 is the constant MOND acceleration and μ the interpolating function. The structure of the second term depends greatly on the angle between   g ext  and the velocity of the perturber. We evaluate the dynamical drag force numerically and compare our MOND results with the Newtonian case. We mention the relevance of our calculations to orbit evolution of globular clusters and satellites in a gaseous protogalaxy. Potential differences in the X-ray emission of gravitational galactic wakes in MOND and in Newtonian gravity with a dark halo are highlighted.  相似文献   

17.
18.
We present a halo model prediction of the image separation distribution of strong lenses. Our model takes into account the subhalo population, which has been ignored in previous studies, as well as the conventional halo population. Haloes and subhaloes are linked to central and satellite galaxies by adopting a universal scaling relation between masses of (sub)haloes and luminosities of galaxies. Our model predicts that 10–20 per cent of lenses should be caused by the subhalo population. The fraction of lensing by satellite galaxies (subhaloes) peaks at ∼1 arcsec and decreases rapidly with increasing image separations. We compute fractions of lenses which lie in groups and clusters and find them to be ∼14 and ∼4 per cent, respectively; nearly half of such lenses are expected to be produced by satellite galaxies, rather than central parts of haloes. We also study mass distributions of lensing haloes and find that, even at image separations of ∼3 arcsec, the deviation of lens mass distributions from isothermal profiles is large; at or beyond ∼3 arcsec, image separations are enhanced significantly by surrounding haloes. Our model prediction agrees reasonably well with observed image separation distributions from galaxy to cluster scales.  相似文献   

19.
In the gravitational lens system Q2237+0305 the cruciform quasar image geometry is twisted by 10c by the lens effect of a bar in the lensing galaxy. This effect can be used to measure the mass of the bar. We construct a new lensing model for this system with a power-law elliptical bulge and a Ferrers bar. The observed ellipticity of the optical isophotes of the galaxy leads to a nearly isothermal elliptical profile for the bulge, with a total quasar magnification of 16+5−4. We measure a bar mass of (7.5 ∼ 1.5) −108 h −175 M⊙ in the region inside the quasar images.  相似文献   

20.
We simulated both the matter and light (galaxy) distributions in a wedge of the Universe and calculated the gravitational lensing magnification caused by the mass along the line-of-sight of galaxies and galaxy groups identified in sky surveys. A large volume redshift cone containing cold dark matter particles mimics the expected cosmological matter distribution in a flat universe with low matter density and a cosmological constant. We generate a mock galaxy catalogue from the matter distribution and identify thousands of galaxy groups in the luminous sky projection. We calculate the expected magnification around galaxies and galaxy groups and then the induced quasi-stellar object (QSO)–lens angular correlation due to magnification bias. This correlation is observable and can be used both to estimate the average mass of the lens population and to make cosmological inferences. We also use analytical calculations and various analyses to compare the observational results with theoretical expectations for the cross-correlation between faint QSOs from the 2dF Survey and nearby galaxies and groups from the Automated Plate Measurement and Sloan Digital Sky Survey Early Data Release. The observed QSO–lens anticorrelations are stronger than the predictions for the cosmological model used. This suggests that there could be unknown systematic errors in the observations and data reduction, or that the model used is not adequate. If the observed signal is assumed to be solely due to gravitational lensing, then the lensing is stronger than expected, due to more massive galactic structures or more efficient lensing than simulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号