首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geobarometric studies have documented that most of the metasedimentary wall rocks and plutons presently exposed in the southernmost Sierra Nevada batholith south of the Lake Isabella area were metamorphosed and emplaced at crustal levels significantly deeper (~15 to 30 km) than the batholithic rocks exposed to the north (depths of ~3 to 15 km). Field and geophysical studies have suggested that much of the southernmost part of the batholith is underlain along low-angle faults by the Rand Schist. The schist is composed mostly of metagraywacke that has been metamorphosed at relatively high pressures and moderate temperatures. NNW-trending compositional, age, and isotopic boundaries in the plutonic rocks of the central Sierra Nevada appear to be deflected westward in the southernmost part of the batholith. Based on these observations, in conjunction with the implicit assumption that the Sierra Nevada batholith formerly continued unbroken south of the Garlock fault, previous studies have inferred that the batholith was tectonically disrupted following its emplacement during the Cretaceous. Hypotheses to account for this disruption include intraplate oroctinal bending, W-vergent overthrusting, and gravitational collapse of overthickened crust. In this paper, new geologic data from the eastern Tehachapi Mountains, located adjacent to and north of the Garlock fault in the southernmost Sierra Nevada, are integrated with data from previous geologic studies in the region into a new view of the Late Cretaceous-Paleocene tectonic evolution of the region. The thesis of this paper is that part of the southernmost Sierra Nevada batholith was unroofed by extensional faulting in Late Cretaceous-Paleocene time. Unroofing occurred along a regional system of low-angle detachment faults. Remnants of the upper-plate rocks today are scattered across the southern Sierra Nevada region, from the Rand Mountains west to the San Emigdio Mountains, and across the San Andreas fault to the northern Salinian block.

Batholithic rocks in the upper plates of the Blackburn Canyon fault of the eastern Tehachapi Mountains, low-angle faults in the Rand Mountains and southeastern Sierra Nevada, and the Pastoria fault of the western Tehachapi Mountains are inferred to have been removed from a position structurally above rocks exposed in the southeastern Sierra Nevada and transported to their present locations along low-angle detachment faults. Some of the granitic and metamorphic rocks in the northern part of the Salinian block are suggested to have originated from a position structurally above deep-level rocks of the southwestern Sierra Nevada. The Paleocene-lower Eocene Goler Formation of the El Paso Mountains and the post-Late Cretaceous to pre-lower Miocene Witnet Formation in the southernmost Sierra Nevada are hypothesized to have been deposited in supradetachment basins that formed adjacent to some of the detachment faults.

Regional age constraints for this inferred tectonic unroofing and disaggregation of the southern Sierra Nevada batholith suggest that it occurred between ~90 to 85 Ma and ~55 to 50 Ma. Upper-plate rocks of the detachment system appear to have been rotated clockwise by as much as 90° based on differences in the orientation of foliation and contacts between inferred correlative hanging-wall and footwall rocks. Transport of the upper-plate rocks is proposed to have occurred in two stages. First, the upper crust in the southern Sierra Nevada extended in a south to southeast direction, and second, the allochthonous rocks were carried westward at the latitude of the Mojave Desert by a mechanism that may include W-vergent faulting and/or oroclinal bending. The Late Cretaceous NNW extension of the upper crust in the southernmost Sierra Nevada postulated in this study is similar to Late Cretaceous, generally NW-directed, crustal extension that has been recognized to the northeast in the Funeral, Panamint, and Inyo mountains by others. Extensional collapse of the upper crust in the southern Sierra Nevada batholith may be closely linked to the emplacement of Rand Schist beneath the batholith during Late Cretaceous time, as has been suggested in previous studies.  相似文献   

2.
本文对藏南冈底斯带中段的花岗岩类和角闪辉长岩进行了锆石U-Pb年代学和全岩地球化学分析,据此阐明了岩体的形成机制与演化过程,并探讨了成岩时的大地构造背景。分析结果显示,研究区内花岗岩类和角闪辉长岩体的LA-ICPMS锆石U-Pb定年结果为41~55Ma,为始新世早-中期岩浆活动的产物,代表了区内岩体的成岩年龄。在地球化学组成上,花岗岩类属于钙碱性到高钾钙碱性系列,均富集轻稀土(LREE)和大离子亲石元素(LILE)(Rb、Ba和K),强烈亏损Nb、Ta、P等高场强元素(HFSE),具有弧型岩浆岩的地球化学组成。此外,花岗岩类的铝饱和指数(A/CNK)小于1.1,属于准铝质到弱过铝质的I型花岗岩。角闪辉长岩为石榴橄榄岩部分熔融的产物,并在后期侵位的过程中遭受到了壳源物质的混染。综合分析表明,研究区内的岩体形成于初始碰撞向主碰撞的转化阶段。始新世早期(~50Ma)新特提斯洋板片的断离引起软流圈物质上涌,导致岩石圈地幔发生部分熔融形成基性岩浆,随后基性岩浆底侵至下地壳并诱发下地壳发生部分熔融形成花岗岩质岩浆,最后经过岩浆混合作用形成始新世早-中期冈底斯地区的花岗岩类。  相似文献   

3.
The Albany and Torbay Adamellites are composite plutons emplaced in Pre‐cambrian gneisses of the Albany‐Esperance Block in the vicinity of Albany, Western Australia. The gneissic country rocks have been metamorphosed to the lower granu‐lite facies at Albany and the upper amphibolite facies at Torbay. Granitized aureoles about 1 km wide, metasomatically enriched in SiO2, K2O, and various trace elements commonly including Rb, Ba, La, Pb, and Th, are developed in the gneisses around both plutons. Field relations suggest late‐kinematic magmatic emplacement of the Adamellites in the catazone. Both show chemical variation trends comparable with the trends normally associated with fractional crystallization of calc‐alkali magmas, and their normative compositions correspond with the thermal trough in the system An‐Ab‐Or‐Q‐H2O at 4–7 kb PH2o, suggesting an origin involving crystal‐liquid equilibria at a water vapour pressure of about this value. The initial 87Sr/86Sr ratio of 0.7118 for the Albany Adamellite is consistent with derivation of the magma from crustal rocks. The late‐kinematic field characteristics of the plutons and the limited isotopic data available are compatible with emplacement and crystallization during the closing stages of orogeny and regional metamorphism. The magmas are believed to have been generated not at their present sites of emplacement, but in a deeper, higher‐temperature zone of the crust, with magma generated during an earlier phase of the orogeny.  相似文献   

4.
北京西山房山岩体西北部强变形带的成因新解   总被引:2,自引:1,他引:1  
北京西山房山岩体西北缘不对称发育一条弧形塑性强变形带,前人根据岩体东南部组构缓倾和岩体内部强应变分布特征提出岩浆斜向底辟侵位模式(王人镜等,1990;张吉顺和李志中,1990)。本文在前人研究的基础上,对房山岩体的组构进行系统观测,研究了西北缘固态塑性强变形带地质特征,着重探讨了岩体侵位时围岩热结构状态。文章认为岩浆同侵位固态塑性强变形带的形成需要早期岩浆进入准固态-固态和后期岩浆膨胀动力这两个必要条件。房山岩体西北部的强变形带是由于岩体侵位时西部围岩的温度较低,岩浆较早进入准固态-固态,后期岩浆侵位时膨胀动力双重因素造成的,提出了围岩热结构状态是房山岩体不对称的固态塑性强变形带的控制因素,而不是岩浆斜向底辟侵位的结果。这一研究成果不仅较合理地解释了房山岩体强变形带不对称发育特征,而且对研究同类花岗质岩体的定位机制有一定启示意义。  相似文献   

5.
贺敬博  陈斌 《地学前缘》2011,18(2):191-211
西准噶尔地区克拉玛依岩体主要由闪长岩和花岗岩组成,锆石SHRIMP法给出的岩体结晶年龄为(315.5±2.8)Ma,为晚石炭世侵入岩.克拉玛依岩体具岛弧岩石的元素地球化学特征:总体上岩石富钠.A/CNK=0.57~0.84,富集LREE,(La/Yb)N=4.7~6.1,Eu显示弱负异常(δEu=0.76~0.91),...  相似文献   

6.
内蒙古阿拉善西部的北大山北部出露一些古生代侵入岩,这些侵入岩的时空分布和源区物质组成特征对于确定北大山北部的构造属性以及探讨阿拉善西部的构造划分和构造演化具有重要意义。本文对北大山北部乌布日布特地区腰泉和沙枣泉两个花岗质岩体开展了详细的年代学、地球化学和锆石Hf同位素研究。锆石LA?ICP?MS U?Pb测年结果显示,腰泉黑云母正长花岗岩年龄为261.8±1.2 Ma,沙枣泉黑云母花岗岩年龄为303.1±1.6 Ma,均形成于晚古生代。腰泉黑云母正长花岗岩与沙枣泉黑云母花岗岩的稀土元素组成相似,均表现出轻稀土元素相对富集,重稀土元素相对亏损的特征,并显示有微弱—中等的Eu负异常。腰泉黑云母正长花岗岩与沙枣泉黑云母花岗岩均具有正的εHf(t)值,腰泉黑云母正长花岗岩的εHf(t)值为+1.93~+7.40,沙枣泉黑云母花岗岩的εHf(t)值为+0.52~+10.00,这与北大山北部其它古生代酸性侵入岩的锆石Hf同位素相似,表明北大山北部酸性岩浆的深部源区以新生地壳物质为主。北大山北部深部地壳物质组成特征与阿拉善中东部宗乃山—沙拉扎山地区相似,而与北大山南部和阿拉善中东部雅布赖—诺尔公—红古尔玉林地区具有明显差别。结合区域研究资料,推测北大山北部可能不属于阿拉善地块,而与阿拉善中东部的宗乃山—沙拉扎山地区具有相同的构造属性,是中亚造山带的组成部分。  相似文献   

7.
The Central Extremadura batholith constitutes an important alignment of plutonic rocks occupying part of the internal zones of the Iberian Hercynian belt. It comprises 13 plutons and numerous minor intrusions, and covers a wide compositional range from quartz-diorites to alkali-feldspar granites. Structural study of the individual plutons reveals that their internal structural patterns may be correlated. Correlation between the different structural patterns in the plutons and interpretation of the superimposed deformation in the metasedimentary host rocks indicate that the plutons were emplaced and deformed in an E-W, dextral, intracontinental shear zone developed during the second deformation phase (302–320 Ma). A qualitative ascent model has been established as follows: (1) development of extensional fractures at 45° to the E-W, dextral, shear zone; (2) intrusion of granitic magmas along these fractures and (3) rotation of the earlier intrusions, in a dextral sense, inducing antithetic shear zones (N-S sinistral) and a transverse shortening, perpendicular to the major axis of the earlier, deformed plutons as well as the forced emplacement of the later plutons.  相似文献   

8.
Lead-lead mineral isochrons consisting of K-feldspar + plagioclase + total rock have been determined for eight intrusive bodies in the Kalgoorlie-Norseman area of Western Australia. The ages found range from 2630 to 2760 m.y. Variation of initial lead isotopic composition within plutons has been identified in two cases. For the remaining plutons, whole rock lead-lead isochrons give the same age as the mineral isochrons. Attempts to determine uranium-lead ages reveal large-scale loss of uranium from surface rocks in recent times.The initial lead isotopic composition of the intrusions, as estimated from age corrected K-feldspar data, shows that the source regions for the plutonic magmas must have experienced multistage histories prior to magma generation. The time integrated μ value for the source region in all cases exceeds the mean μ value for the Earth. Multistage model calculations show that continental type rocks must have been present in the Norseman area as early as 3300 m.y. ago. Original formation of continental crust near Kalgoorlie either occurred much later than at Norseman, or consisted of more basic rock types.  相似文献   

9.
The Old Woman Mountains in south-eastern California are a Late Cretaceous low-pressure metamorphic terrane where multiple magmatic intrusions generated broad regions of elevated metamorphic temperatures. In the Scanlon Gulch area, two sheet-like, Late Cretaceous granitoid plutons are in contact with the Scanlon shear zone, a 1-km-thick sheet of isoclinally folded and transposed metamorphic rocks. The metaluminous Old Woman granodiorite underlies the shear zone and the peraluminous Sweetwater Wash granite overlies it. Both plutons record emplacement ages of ∼74 Ma. Thermobarometry and phase relations in the shear zone suggest that peak metamorphism was at 650 ± 50† C and 4.3 ± 0.5 kbar. Late Cretaceous metamorphic temperatures were less elsewhere in the Old Woman Mountains, away from the intrusions.
One-dimensional thermal models are used to investigate how differences in the time between the emplacement of plutons would affect the thermal evolution of the central Old Woman Mountains. The prediction of a thermal history inferred from petrological and thermochronological data requires the rapid emplacement of the two plutons around the shear zone; simulations with delays of more than 1 Myr in the emplacement of the second pluton failed to predict peak metamorphic temperatures. Calculations which consider only the emplacement of a single pluton yield metamorphic temperatures that are too low. The time separating the intrusions is by far the most sensitive parameter in the calculations; assumptions concerning the treatment of the initial geothermal gradient and the latent heat of crystallization have relatively small effects on the predicted thermal histories. Our results suggest that for certain geometries, relatively short-lived magmatic events involving rapid emplacement of multiple intrusions can produce low-pressure metamorphism.  相似文献   

10.
The Ngondo Complex is one of the Pan-African plutons intruded in the West Cameroon Pan-African Orogenic Belt. The complex consists of three major groups of rocks: basic to intermediate rocks (diorites, granodiorites and minor gabbros), fined-grained granites and coarsed-grained granites successively emplaced in a metamorphic country rock of amphibolite-facies. Synkinematic emplacement of the complex, in relation with a ductile mega shear zone, is documented by a study of microstructures and foliation patterns which indicate a continuous transition from magmatic to high temperature solid-state deformation. The geometry of the internal foliation trajectories and the joint orientation in the complex suggest that the emplacement of the three groups of rocks was totally controlled by a N30° sinistral shear zone. Emplacement mechanisms, which are related in time and space to a continuum of deformation, may indicate a relative rheological change of the crust from ductile to brittle behaviour.  相似文献   

11.
The Cretaceous Mount Daniel Complex (MDC) in northern Fiordland, New Zealand was emplaced as a 50 m-thick dyke and sheet complex into an active shear zone at the base of a Cordilleran magmatic arc. It was emplaced below the 20–25 km-thick, 125.3?±?1.3 Ma old Western Fiordland Orthogneiss (WFO) and is characterized by metre-scale sheets of sodic, low and high Sr/Y diorites and granites. 119.3?±?1.2 Ma old, pre-MDC lattice dykes and 117.4?±?3.1 Ma late-MDC lattice dykes constrain the age of the MDC itself. Most dykes were isoclinally folded as they intruded, but crystallised within this deep-crustal, magma-transfer zone as the terrain cooled and was buried from 25 to 50 km (9–14 kbar), based on published P-T estimated from the surrounding country rocks. Zircon grains formed under these magmatic/granulite facies metamorphic conditions were initially characterized by conservatively assigning zircons with oscillatory zoning as igneous and featureless rims as metamorphic, representing 54% of the analysed grains. Further petrological assignment involved additional parameters such as age, morphology, Th/U ratios, REE patterns and Ti-in-zircon temperature estimates. Using this integrative approach, assignment of analysed grains to metamorphic or igneous groupings improved to 98%. A striking feature of the MDC is that only?~?2% of all igneous zircon grains reflect emplacement, so that the zircon cargo was almost entirely inherited, even in dioritic magmas. Metamorphic zircons of MDC show a cooler temperature range of 740–640 °C, reflects the moderate ambient temperature of the lower crust during MDC emplacement. The MDC also provides a cautionary tale: in the absence of robust field and microstructural relations, the igneous-zoned zircon population at 122.1?±?1.3 Ma, derived mostly from inherited zircons of the WFO, would be meaningless in terms of actual magmatic emplacement age of MDC, where the latter is further obscured by younger (ca. 114 Ma) metamorphic overgrowths. Thus, our integrative approach provides the opportunity to discriminate between igneous and metamorphic zircon within deep-crustal complexes. Also, without the tight field relations at Mt Daniel, the scatter beyond a statistically coherent group might be ascribed to the presence of “antecrysts”, but it is clear that the WFO solidified before the MDC was emplaced, and these older “igneous” grains are inherited. The bimodal age range of inherited igneous grains, dominated by ~?125 Ma and 350–320 Ma age clusters, indicate that the adjacent WFO and a Carboniferous metaigneous basement were the main sources of the MDC magmas. Mafic lenses, stretched and highly attenuated into wisps within the MDC and dominated by ~?124 Ma inherited zircons, are considered to be entrained restitic material from the WFO. A comparison with lower- and upper-crustal, high Sr/Y metaluminous granites elsewhere in Fiordland shows that zircon inheritance is common in the deep crust, near the source region, but generally much less so in coeval, shallow magma chambers (plutons). This is consistent with previous modelling on rapid zircon dissolution rates and high Zr saturation concentrations in metaluminous magmas. Accordingly, unless unusual circumstances exist, such as MDC preservation in the deep crust, low temperatures of magma generation, or rapid emplacement and crystallization at higher structural levels, information on zircon inheritance in upper crustal, Cordilleran plutons is lost during zircon dissolution, along with information on the age, nature and variety of the source material. The observation that dioritic magmas can form at these low temperatures (<?750 °C) also suggests that the petrogenesis of mafic rocks in the arc root might need to be re-assessed.  相似文献   

12.
The EW-striking Variscan Mérens shear zone (MSZ), located on the southern border of the Aston dome (Pyrenees), corresponds to variously mylonitized gneisses and plutonic rocks that are studied using the Anisotropy of Magnetic Susceptibility (AMS) technique. The plutonic rocks form EW-striking bands with, from south to north, gabbro-diorites, quartz diorites and granodiorites. The MSZ underwent a mylonitic deformation with an intensity progressively increasing from the mafic to the more differentiated rocks. The foliations are EW to NW–SE striking and subvertical. A first set of lineations shows a moderate WNW plunge, with a dextral reverse kinematics. More recent subvertical lineations correspond to an uplift of the northern compartment. To the east, the MSZ was cut by a N120°E-striking late shear band, separating the MSZ from the Quérigut pluton. The different stages of mylonitization relate to Late Variscan dextral transpression. This regime allowed the ascent of magmas along tension gashes in the middle crust. We interpret the MSZ as a zone of magma transfer, which fed a pluton now eroded that was similar to the Quérigut and Millas plutons located to the east. We propose a model of emplacement of these plutons by successive pulses of magmas along en-échelon transfer zones similar to the MSZ.  相似文献   

13.
花岗质岩浆的起源、迁移及就位是研究大陆岩石圈流变学特性的重要方面。然而,板内伸展背景下同构造花岗岩体的岩浆来源、就位机制和岩浆流动与区域应力场的关系等问题缺乏系统性的总结。晚中生代期间华北板块东部逐渐变为区域伸展体制,同时中浅部地壳形成一系列的韧性剪切带、变质核杂岩和拆离断层,这些伸展构造往往伴有同剪切变形的花岗岩体。因此,华北东部是系统研究板内伸展背景下同构造花岗岩体的最佳区域。本文选取多个典型的同构造花岗岩体,进行综合分析。通过归纳总结这些同构造岩体的岩石地球化学和年代学资料,发现多数同构造岩体具有多个岩浆源区,且较早就位的中性岩席(单元)往往来自壳幔混合岩浆或新生下地壳的部分熔融,而较晚的酸性岩席(单元)则主要来源于古老下地壳的部分熔融。这一特点反映了同伸展岩体岩浆源区由深至浅的演化规律,也揭示了区域伸展背景下源自地幔的流体和热量是触发地壳部分熔融的重要因素。通过分析岩浆就位过程中围岩和岩体中形成的定向及变形组构,发现华北东部同伸展岩体的就位模式可分为三大类:以扁平岩床或岩基形式就位于中部地壳的水平韧性剪切带内;岩浆以近直立运移的方式形成长轴平行拆离断层的岩基,就位于变质核杂岩核部或拆离断层下盘;岩浆就位于再活化的先存断裂,通过膨胀作用、挤压围岩获得就位空间并使围岩变形,形成类似底辟作用的就位方式。剪切应力和浮力是影响岩浆运移方向的重要力学参数。岩浆自源区上升的过程中浮力起着主要控制作用,就位于韧性剪切带时剪切应力起着控制作用,就位于浅部地壳的脆-韧性过渡带时浮力的作用再次凸显。  相似文献   

14.
本文对班戈雪如岩体似斑状二长花岗岩进行了LA-ICP-MS锆石U-Pb定年、微量元素和全岩地球化学研究,探讨了其形成年代、成岩条件和构造背景。结果表明雪如岩体侵位于晚白垩世晚期(76±1 Ma),锆石饱和温度计和锆石Ti温度计计算其成岩温度分别为760~810℃和738~814℃,较低的锆石相对氧逸度反映成岩环境为还原环境。全岩地球化学分析结果显示其具有高硅、富碱和准铝质--弱过铝质特征,大离子亲石元素和LREE富集,高场强元素和HREE相对亏损。雪如岩体是中地壳部分熔融的产物,源区残留相为斜长角闪岩相,岩浆结晶过程中发生角闪石和斜长石的分离作用。地球化学投图结合区域构造演化显示其形成于后碰撞伸展环境,表明班公湖-怒江缝合带中段地区在晚白垩世晚期已经进入后碰撞伸展阶段。  相似文献   

15.
安徽铜陵狮子山矿田岩浆岩锆石SHRIMP定年及其成因意义   总被引:36,自引:4,他引:32  
铜陵狮子山矿田发育大量岩浆岩,且与矿田中的铜金多金属成矿关系密切。锆石SHRIMP同位素精确定年表明,矿田中的岩浆侵位年龄在132.4~142.9Ma之间,即晚侏罗世—早白垩世,属燕山早期晚阶段。矿田岩浆岩体是在同期岩浆活动中多次侵位形成的,岩浆侵入活动可以划分为分别起始于140Ma前后和约136Ma的早晚两次。从岩浆上升侵位到冷却结晶的时间间隔均较短,但其中白芒山辉石二长闪长岩冷却史相对较长,且经历了早期深部岩浆房中的分离结晶作用和后期构造脉动、岩浆上升侵位、减压受热、早期晶体再熔蚀及冷却结晶的过程。结合主量元素和微量元素地球化学研究认为,狮子山矿田岩浆演化的后期,即起源于上地幔或下地壳的原生岩浆在同化了壳源物质并聚集到岩浆房中以后,在滞留的过程中发生了一定程度的分离结晶作用,但尚未固结,成分上显示了一定的带状分布,在区域构造应力松弛及构造事件诱发下,随机地沿发育的构造裂隙先后上升侵位,冷凝结晶。  相似文献   

16.
Early Paleozoic magmatism of the Tannuola terrane located in the northern Central Asian Orogenic Belt is important to understanding the transition from subduction to post-collision settings. In this study, we report in situ zircon U-Pb ages, whole rock geochemistry, and Sr-Nd isotopic data from the mafic and granitic rocks of the eastern Tannuola terrane to better characterize their petrogenesis and to investigate changing of the tectonic setting and geodynamic evolution. Zircon U-Pb ages reveal three magmatic episodes for about 60 Ma from ∼510 to ∼450 Ma, that can be divided into the late Cambrian (∼510–490 Ma), the Early Ordovician (∼480–470 Ma) and the Middle-Late Ordovician (∼460–450 Ma) stages. The late Cambrian episode emplaced the mafic, intermediate and granitic rocks with volcanic arc affinity. The late Cambrian mafic rocks of the Tannuola terrane may originate from melting of mantle source that contain asthenosphere and subarc enriched mantle metasomatized by melts derived from sinking oceanic slab. Geochemical and isotopic compositions indicate the late Cambrian intermediate-granitic rocks are most consistent with an origin from a mixed source including fractionation of mantle-derived magmas and crustal-derived components. The Early Ordovician episode reveal bimodal intrusions containing mafic rocks and adakite-like granitic rocks implying the transition from a thinner to a thicker lower crust. The Early Ordovician mafic rocks are formed as a result of high degree melting of mantle source including dominantly depleted mantle and subordinate mantle metasomatized by fluid components while coeval granitic rocks were derived from partial melting of the high Sr/Y mafic rocks. The latest Middle-Late Ordovician magmatic episode emplaced high-K calc-alkaline ferroan granitic rocks that were formed through the partial melting the juvenile Neoproterozoic sources.These three episodes of magmatism identified in the eastern Tannuola terrane are interpreted as reflecting the transition from subduction to post-collision settings during the early Paleozoic. The emplacement of voluminous magmatic rocks was induced by several stages of asthenospheric upwelling in various geodynamic settings. The late Cambrian episode of magmatism was triggered by the slab break-off while subsequent Early Ordovician episode followed the switch to a collisional setting with thickening of the lower crust and the intrusion of mantle-induced bimodal magmatism. During the post-collisional stage, the large-scale lithospheric delamination provides the magma generation for the Middle-Late Ordovician granitic rocks.  相似文献   

17.
The Strathbogie Igneous Complex is comprised of the ignimbritic rocks of the Violet Town Volcanics and the granitic rocks of the Strathbogie batholith. It is Late Devonian in age and postorogenic-extensional in tectonic setting. The batholith was constructed from peraluminous, metasediment-derived magmas emplaced as several internally heterogeneous plutons. Chemical variation in the magmas was largely inherited from the protolith rather than having been produced by differentiation (crystal–liquid separation) or magma mixing. The Strathbogie magmas formed during a granulite-facies metamorphic event that caused partial melting of the rocks of the Proterozoic Selwyn Block, which forms the basement in this region. The chemistry of the Strathbogie batholith, the Violet Town Volcanics and various other felsic complexes of similar age, implies that the Selwyn Block here originally consisted of andesite, dacite, greywacke and pelite, probably deposited in a back-arc extensional setting. The sedimentary components of this protolith may have been deposited in a basin that was extending and deepening with time, so that the sediments contained progressively higher ratios of clay to volcanic materials. Much later, in the Late Devonian, extensional tectonics allowed the emplacement of mantle magmas into the deep and middle crust, causing the low-pressure granulite-facies metamorphic event that was responsible for the production of the crustal components in the granitic magmas of Central Victoria.  相似文献   

18.
哀牢山-红河剪切带左行走滑作用起始时间约束   总被引:18,自引:1,他引:17  
位于哀牢山-红河剪切带NW延伸方向上的点苍山变质杂岩体遭受强烈的左行走滑剪切变形、变质作用改造,岩石中保存了典型的高温矿物组合以及由它们构成的宏观和微观高温变形构造特征,其中糜棱岩中具有极其发育的长石矿物拉伸线理而形成典型的L与LS型构造岩是其一个明显的特征。本文对点苍山地区高温糜棱岩主要矿物开展了显微构造与矿物变形、变形机制及组构分析,并对于遭受高温糜棱岩化改造的一个花岗质岩体开展了SHRIMP锆石U-Pb定年分析。结果表明岩石中长石、角闪石、石英等主要矿物具有典型的达角闪岩相条件下的高温晶质塑性变形和动态生长特征,它们也为走滑剪切变形活动提供了充分的微观构造证据。对于点苍山高温糜棱岩化改造的眼球状或似斑状二长花岗岩的显微构造分析结果表明,这套花岗质岩石从走滑剪切前期岩浆的侵位之后经历了早期强烈的岩浆期后交代作用—亚岩浆流动—高温固态塑性剪切变形的递进演化过程。由此可见,岩浆的上升与就位受左行走滑剪切作用的制约,岩体又遭受了强烈剪切变形改造。同时对这套构造前期就位花岗质岩石中的锆石进行定年分析,获得33.88±0.32Ma的岩浆结晶年龄,为此,我们有充分的理由认为,在点苍山地区哀牢山-红河剪切带左行走滑剪切作用的起始时间至少应该为早渐新世30.88±0.32Ma。  相似文献   

19.
与岩浆-热液或热液矿床有关的岩浆,大都经历了不同程度的演化(如结晶分异、同化混染等),其岩石学和地球化学特征只是岩浆演化终态的反映,针对这些岩浆岩本身的研究有时很难刻画出其详细的演化过程及该过程中关键成矿元素的地球化学行为。已有研究显示,同时代同区域大面积分布的火成岩可能记录着含矿岩浆演化早期或演化不同阶段的岩石学和地球化学信息,为解决上述难题提供了可能。基于此,本文以发育于大陆碰撞初期(即主碰撞)的西藏冈底斯北缘铅锌矿带为例,通过对主碰撞阶段冈底斯带大量火成岩地球化学数据的统计学研究,初步展示了岩浆演化过程及其对成矿的控制作用。研究结果表明,除了自身体系的分离结晶,陆壳混染作用是大陆碰撞早期岩浆由基性向中酸性演化的另一关键控制因素,主碰撞岩浆中普遍不具有高的含水量和氧逸度,但演化到中后期,岩浆的氧逸度会逐渐升高;富S和H2O的幔源岩浆底侵,诱发具有较高Zn含量的陆壳物质熔融,产生的岩浆再经历高度的演化(以达到Pb的富集),最终浅成就位形成岩浆-热液成矿系统。这是形成冈底斯北缘铅锌矿带的成矿动力学机制。  相似文献   

20.
对侵位于柴北缘构造带西段达肯大坂岩群中的赛什腾钙碱性系列辉长岩进行了地球化学、年代学研究,结果显示,该辉长岩具有低SiO2、高Al2O3、富MgO及FeOT、贫ALK的特征,且富集LILE元素、亏损HFSE元素,稀土元素配分曲线整体表现为轻稀土元素相对富集、重稀土元素平坦且呈右倾型配分模式,并且低Zr和Zr/Y,指示赛什腾辉长岩形成于活动大陆边缘岛弧环境。锆石LA-ICP-MS U-Pb结晶年龄为271±3 Ma。赛什腾辉长岩原岩岩浆是地幔尖晶石二辉橄榄岩部分熔融的产物,在演化过程中经历了弱的斜长石以及较为明显的单斜辉石的分离结晶作用,并在上升侵位过程中遭受了弱的中上地壳的同化混染作用。结合区域构造演化史以及同时代岩浆岩的年代学和地球化学特征,认为赛什腾辉长岩是中二叠世早期宗务隆洋壳向欧龙布鲁克地块南向俯冲的产物,且宗务隆构造带西段俯冲-碰撞事件明显早于东段,而东西两段俯冲-碰撞时限的差异表明宗务隆洋盆存在西早东晚的"剪刀式闭合"的可能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号