首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Evaluating Global Warming Potentials with historical temperature   总被引:1,自引:2,他引:1  
Global Warming Potentials (GWPs) are evaluated with historical temperature by applying them to convert historical CH4 and N2O emissions to equivalent CO2 emissions. Our GWP analysis is based on an inverse estimation using the Aggregated Carbon Cycle, Atmospheric Chemistry, and Climate Model (ACC2). We find that, for both CH4 and N2O, indices higher than the Kyoto GWPs (100-year time horizon) would reproduce better the historical temperature. The CH4 GWP provides a best fit to the historical temperature when it is calculated with a time horizon of 44 years. However, the N2O GWP does not approximate well the historical temperature with any time horizon. We introduce a new exchange metric, TEMperature Proxy index (TEMP), that is defined so that it provides a best fit to the temperature projection of a given period. By comparing GWPs and TEMPs, we find that the inability of the N2O GWP to reproduce the historical temperature is caused by the GWP calculation methodology in IPCC using simplifying assumptions for the background system dynamics and uncertain parameter estimations. Furthermore, our TEMP calculations demonstrate that indices have to be progressively updated upon the acquisition of new measurements and/or the advancement of our understanding of Earth system processes.  相似文献   

2.
The Global Warming Potential (GWP) is used within the Kyoto Protocol to the United Nations Framework Convention on Climate Change as a metric for weighting the climatic impact of emissions of different greenhouse gases. The GWP has been subjected to many criticisms because of its formulation, but nevertheless it has retained some favour because of the simplicity of its design and application, and its transparency compared to proposed alternatives. Here, two new metrics are proposed, which are based on a simple analytical climate model. The first metric is called the Global Temperature Change Potential and represents the temperature change at a given time due to a pulse emission of a gas (GTPP); the second is similar but represents the effect of a sustainedemission change (hence GTPS). Both GTPP and GTPS are presented as relative to the temperature change due to a similar emission change of a reference gas, here taken to be carbon dioxide. Both metrics are compared against an upwelling-diffusion energy balance model that resolves land and ocean and the hemispheres. The GTPP does not perform well, compared to the energy balance model, except for long-lived gases. By contrast, the GTPS is shown to perform well relative to the energy balance model, for gases with a wide variety of lifetimes. It is also shown that for time horizons in excess of about 100 years, the GTPS and GWP produce very similar results, indicating an alternative interpretation for the GWP. The GTPS retains the advantage of the GWP in terms of transparency, and the relatively small number of input parameters required for calculation. However, it has an enhanced relevance, as it is further down the cause–effect chain of the impacts of greenhouse gases emissions and has an unambiguous interpretation. It appears to be robust to key uncertainties and simplifications in its derivation and may be an attractive alternative to the GWP.  相似文献   

3.
The comprehensive approach adopted in the Kyoto Protocol relies on the use of 100-year Global Warming Potentials (GWPs) to convert emissions of various gases to `carbon dioxide (CO2) equivalents'. This particular set of weights, or metric, has a limited capacity to handle the large variations in atmospheric adjustment times, and emissions of various gases that are equal in terms of `CO2 equivalents' will not result in equal climatic effects. In this study, the 100-year GWP metric is assessed in the context of implementing the Kyoto Protocol. Using data from Norway, we explore how abatement policy formulated on the basis of 100-year GWPs compares to policies based on other metrics in terms of compliance costs and abatement profile, that is, the composition of the basket of gases reduced. We found that the costs for Norway change significantly when other metrics are used, but changes in the composition of the basket of gases are moderate. However, since compliance costs can be controlled through other mechanisms for post-Kyoto Protocols, the use of 100-year GWPs versus other metrics has little impact on the general formulation of Norwegian climate policy.  相似文献   

4.
Global Warming Potentials: 1. Climatic Implications of Emissions Reductions   总被引:1,自引:1,他引:0  
The use of Global Warming Potentials (GWPs) to calculate equivalent carbon dioxide emissions reductions in the climate change context is examined. We find that GWPs are accurate only for short time horizons. Over long time horizons their use implicitly leads to tradeoffs between near-term and long-term climate change. For one of the most policy-relevant cases, comparing reductions in methane and carbon dioxide, the long-term effect on climate of reducing methane emissions is relatively small, at variance with the common perception based on published GWP values.  相似文献   

5.
A global two-dimensional (altitude-latitude) chemistry transport model is used to follow the changes in the tropospheric distribution of the two major radiatively active trace gases, methane and ozone, following step changes to the sustained emissions of the short-lived trace gases methane, carbon monoxide and non-methane hydrocarbons. The radiative impacts were dependent on the latitude chosen for the applied change in emissions. Step change global warming potentials (GWPs) were derived for a range of short-lived trace gases to describe their time-integrated radiative forcing impacts for unit emissions relative to that of carbon dioxide. The GWPs show that the tropospheric chemistry of the hydrocarbons can produce significant indirect radiative impacts through changing the tropospheric distributions of hydroxyl radicals, methane and ozone. For aircraft, the indirect radiative forcing impact of the NO x emissions appears to be greater than that from their carbon dioxide emissions. Quantitative results from this two-dimensional model study must, however, be viewed against the known inadequacies of zonally-averaged models and their poor representation of many important tropospheric processes.  相似文献   

6.
Several carbon cycle models listed in the IPCC materials are used for assessing the atmospheric CO2 response to various scenarios for the CO2 anthropogenic emission into the atmosphere. The same materials present the Green function expressions of these models in terms of this exponential approximation, i.e., in the form of a sum of exponents. The uncertainties that occur when the Green function is substituted by its exponential approximation are investigated. The reason of such an analysis is a classic conclusion that a general problem of the exponential approximation refers to the class of inconsistent problems.  相似文献   

7.
The greenhouse gas emissions scenarios published by the IPCC in the Special Report on Emission Scenarios (SRES) continue to serve as a primary basis for assessing future climate change and possible response strategies. These scenarios were developed between 1996 and 1999 and sufficient time has now passed to make it worth examining their consistency with more recent data and projections. The comparison performed in this paper includes population, GDP, energy use, and emissions of CO2, non-CO2 gases and sulfur. We find the SRES scenarios to be largely consistent with historical data for the 1990–2000 period and with recent projections. Exceptions to this general observation include (1) in the long-term, relatively high population growth assumptions; in some regions, particularly in the A2 scenario; (2) in the medium-term, relatively high economic growth assumptions in the LAM (Latin America, Africa and Middle East) region in the A1 scenario; (3) in the short-term, CO2 emissions projections in A1 that are somewhat higher than the range of current scenarios; and (4) substantially higher sulfur emissions in some scenarios than in historical data and recent projections. In conclusion, given the relatively small inconsistencies for use as global scenarios there seems to be no immediate need for a large-scale IPCC-led update of the SRES scenarios that is solely based on the SRES scenario performance vis-a-vis data for the 1990–2000 period and/or more recent projections. Based on reported findings, individual research teams could make, and in some cases already have made, useful updates of the scenarios.  相似文献   

8.
On the basis of the IPCC B2, A1b and B1 baseline scenarios, mitigation scenarios were developed that stabilize greenhouse gas concentrations at 650, 550 and 450 and – subject to specific assumptions – 400 ppm CO2-eq. The analysis takes into account a large number of reduction options, such as reductions of non-CO2 gases, carbon plantations and measures in the energy system. The study shows stabilization as low as 450 ppm CO2-eq. to be technically feasible, even given relatively high baseline scenarios. To achieve these lower concentration levels, global emissions need to peak within the first two decades. The net present value of abatement costs for the B2 baseline scenario (a medium scenario) increases from 0.2% of cumulative GDP to 1.1% as the shift is made from 650 to 450 ppm. On the other hand, the probability of meeting a two-degree target increases from 0%–10% to 20%–70%. The mitigation scenarios lead to lower emissions of regional air pollutants but also to increased land use. The uncertainty in the cost estimates is at least in the order of 50%, with the most important uncertainties including land-use emissions, the potential for bio-energy and the contribution of energy efficiency. Furthermore, creating the right socio-economic and political conditions for mitigation is more important than any of the technical constraints.  相似文献   

9.
Summary A coupled 1-D time-dependent radiative-convective-photochemical diffusion model which extends from the surface to 60 km is used to investigate the potential impact of greenhouse trace gas emissions on long-term changes in global climate, atmospheric ozone and surface UV-B radiation, taking into accoont the influence of aerosol loading into the atmosphere from major volcanic eruptions, of thermal inertia of the upper mixed layer of the ocean and of other radiativephotochemical feedback mechanisms. Experiments are carried out under global and annual average insolation and cloudiness conditions. The transient calculations are made for three different growth scenarios for increase in trace gas concentrations. Scenario 1, which begins in 1850, uses the best estimate values for future trace gas concentrations of CO2, CH4, N2O, CFC-11, CFC-12 and tropospheric O3, based on current observational trends. Scenarios 2 and 3, which begin in 1990, assume lower and upper ranges, respectively, of observed growth rates to estimate future concentrations.The transient response of the model for Scenario 1 suggests that surface warming of the ocean mixed layer of about 1 K should have taken place between 1850 and 1990 due to a combined increase of atmospheric CO2 and other trace gases. For the three scenarios considered in this study, the cumulative surface warming induced by all major trace gases for the period 1850 to 2080 ranges from 2.7 K to 8.2 K with the best estimate value of 5 K. The results indicate that the direct and the indirect chemistry-climate interactions of non-CO2 trace gases contribute significantly to the cumulative surface warming (up to 65% by the year 2080). The thermal inertia of a mixed layer of the ocean is shown to have the effect of delaying equilibrium surface warming by almost three decades with an e-folding time of about 5 years. The volcanic aerosols which would result from major volcanic eruptions play a significant role by interrupting the long-term greenhouse surface warming trend and replacing it by a temporary cooling on a time scale of a decade or less. Furthermore, depending on the scenario used, a reduction in the net ozone column could result in an increase in the solar UV-B radiation at the surface by as much as 300% towards the end of 21st century.With 14 Figures  相似文献   

10.
This paper describes a simulation policy model of the combined greenhouse effects of trace gases. With this model, the Integrated Model for the Assessment of the Greenhouse Effect (IMAGE) scenarios for the future impact of the greenhouse effect can be made, based on different assumptions for technological and socio-economic developments. The contribution of each trace gas can be estimated separately.Basically the model, consisting of a number of coupled modules, gives policy makers a concise overview of the problem and enables them to evaluate the impact of different strategies. Because the model covers the complete cause-effect relationship it can be utilized to derive allowable emission rates for the different trace gases from set effect related targets. Regular demonstration sessions with the simulation model have proven the importance of such science based integrated models for policy development.Four different scenarios are worked out for the most important trace gases (CO2, CH4, N2O, CFC-11 and CFC-12). One of these scenarios can be regarded as a growth scenario unrestricted by environmental concerns. The others are based on different strategic policies. After the simulation of future trace gas concentrations global equilibrium temperature increases are computed. Finally the sea level rise, the most threatening effect of the greenhouse problem for the Netherlands, is estimated.Simulation results so far emphasize the importance of trace gases other than CO2. The Montreal Protocol on reduction of CFC is found to stabilize the relative contribution of these substances to the greenhouse effect.  相似文献   

11.
The metric governing the trade-off between different greenhouse gases in the Kyoto Protocol, the Global Warming Potentials (GWPs), has received ample critique from both scientific and economic points of view. Here we use an integrated climate-economic optimization model to estimate the cost-effective trade-off between CO2, CH4 and N2O when meeting a temperature stabilization target. We then estimate the increased cost from using GWPs when meeting the same temperature target. Although the efficient valuation of the gases differs significantly from their respective GWPs, the potential economic benefit of valuing them in a more correct way amounts to 3.8 percent of the overall costs of meeting the temperature stabilization target in the base case. In absolute value, this corresponds to an additional net present value cost of US$2000100 billion. To corroborate our findings we perform a Monte Carlo-analysis where several key parameters are randomly varied simultaneously. The result from this exercise shows that our main result is robust to a wide range of changes in the key parameter values, giving a median economic loss from using GWPs of 4.2 percent.  相似文献   

12.
Deforestation in Brazilian Amazonia is a significant source of greenhouse gases today and, with almost 90% of the originally forested area still uncleared, is a very large potential source of future emissions. The 1990 rate of loss of forest (13.8 × 103 km2/year) and cerrado savanna (approximately 5 × 103 km2/year) was responsible for releasing approximately 261 × 106 metric tons of carbon (106 t C) in the form of CO2, or 274–285 × 106 t of CO2-equivalent C considering IPCC 1994 global warming potentials for trace gases over a 100-year horizon. These calculations consider conversion to a landscape of agriculture, productive pasture, degraded pasture, secondary forest, and regenerated forest in the proportions corresponding to the equilibrium condition implied by current land-use patterns. Emissions are expressed as net committed emissions, or the gases released over a period of years as the carbon stock in each hectare deforested approaches a new equilibrium in the landscape that replaces the original forest. For low and high trace gas scenarios, respectively, 1990 clearing produced net committed emissions (in 106 t of gas) of 957–958 for CO2, 1.10–1.42 for CH4, 28–35 for CO, 0.06–0.16 for N2O, 0.74–0.74 for NOx and 0.58–1.16 for non-methane hydrocarbons.  相似文献   

13.
The economic benefits of a multi-gas approach to climate change mitigation are clear. However, there is still a debate on how to make the trade-off between different greenhouse gases (GHGs). The trade-off debate has mainly centered on the use of Global Warming Potentials (GWPs), governing the trade-off under the Kyoto Protocol, with results showing that the cost-effective valuation of short-lived GHGs, like methane (CH4), should be lower than its current GWP value if the ultimate aim is to stabilize the anthropogenic temperature change. However, contrary to this, there have also been proposals that early mitigation mainly should be targeted on short-lived GHGs. In this paper we analyze the cost-effective trade-off between a short-lived GHG, CH4, and a long-lived GHG, carbon dioxide (CO2), when a temperature target is to be met, taking into consideration the current uncertainty of the climate sensitivity as well as the likelihood that this will be reduced in the future. The analysis is carried out using an integrated climate and economic model (MiMiC) and the results from this model are explored and explained using a simplified analytical economic model. The main finding is that the introduction of uncertainty and learning about the climate sensitivity increases the near-term cost-effective valuation of CH4 relative to CO2. The larger the uncertainty span, the higher the valuation of the short-lived gas. For an uncertainty span of ±1°C around an expected climate sensitivity of 3°C, CH4 is cost-effectively valued 6.8 times as high as CO2 in year 2005. This is almost twice as high as the valuation in a deterministic case, but still significantly lower than its GWP100 value.  相似文献   

14.
Integrated assessment models (IAMs) have commonly been used to understand the relationship between the economy, the earth’s climate system and climate impacts. We compare the IPCC simulations of CO2 concentration, radiative forcing, and global mean temperature changes associated with five SRES ‘marker’ emissions scenarios with the responses of three IAMs—DICE, FUND and PAGE—to these same emission scenarios. We also compare differences in simulated temperature increase resulting from moving from a high to a low emissions scenario. These IAMs offer a range of climate outcomes, some of which are inconsistent with those of IPCC, due to differing treatments of the carbon cycle and of the temperature response to radiative forcing. In particular, in FUND temperatures up until 2100 are relatively similar for the four emissions scenarios, and temperature reductions upon switching to lower emissions scenarios are small. PAGE incorporates strong carbon cycle feedbacks, leading to higher CO2 concentrations in the twenty-second century than other models. Such IAMs are frequently applied to determine ‘optimal’ climate policy in a cost–benefit approach. Models such as FUND which show smaller temperature responses to reducing emissions than IPCC simulations on comparable timescales will underestimate the benefits of emission reductions and hence the calculated ‘optimal’ level of investment in mitigation.  相似文献   

15.
A terrestrial ecosystem model (Sim-CYCLE) was driven by multiple climate projections to investigate uncertainties in predicting the interactions between global environmental change and the terrestrial carbon cycle. Sim-CYCLE has a spatial resolution of 0.5°, and mechanistically evaluates photosynthetic and respiratory CO2 exchange. Six scenarios for atmospheric-CO2 concentrations in the twenty-first century, proposed by the Intergovernmental Panel on Climate Change, were considered. For each scenario, climate projections by a coupled atmosphere–ocean general circulation model (AOGCM) were used to assess the uncertainty due to socio-economic predictions. Under a single CO2 scenario, climate projections with seven AOGCMs were used to investigate the uncertainty stemming from uncertainty in the climate simulations. Increases in global photosynthesis and carbon storage differed considerably among scenarios, ranging from 23 to 37% and from 24 to 81 Pg C, respectively. Among the AOGCM projections, increases ranged from 26 to 33% and from 48 to 289 Pg C, respectively. There were regional heterogeneities in both climatic change and carbon budget response, and different carbon-cycle components often responded differently to a given environmental change. Photosynthetic CO2 fixation was more sensitive to atmospheric CO2, whereas soil carbon storage was more sensitive to temperature. Consequently, uncertainties in the CO2 scenarios and climatic projections may create additional uncertainties in projecting atmospheric-CO2 concentrations and climates through the interactive feedbacks between the atmosphere and the terrestrial ecosystem.  相似文献   

16.
M. Gusti  M. Jonas 《Climatic change》2010,103(1-2):159-174
Our research addresses the need to close the gap between bottom-up and top-down accounting of net atmospheric carbon dioxide (CO2) emissions. Russia is sufficiently large to be resolved in a bottom-up/top-down accounting exercise, as well as being a signatory state of the Kyoto Protocol. We resolve Russia’s atmospheric CO2 balance (1988–1992) in terms of four major land-use/cover units and eight bioclimatic zones. On the basis of our results we conclude that the Intergovernmental Panel on Climate Change (IPCC) must revise its carbon balance for northern Asia. We find a less optimistic, although more realistic, bottom-up versus top-down match for northern Asia than the IPCC authors. Nonetheless, in spite of the larger uncertainties involved, our research shows that (1) there is indeed an added value in linking bottom-up and top-down carbon accounting because our dual-constrained regional carbon balance is incomparably more rigorous; and that (2) the need persists for more atmospheric measurements, including atmospheric inversion experiments, over Russia.  相似文献   

17.
Emission scenarios and global climate protection   总被引:1,自引:0,他引:1  
This paper evaluates the effectiveness of a wide range of emission scenarios in protecting climate (where ‘protecting climate’ Is used here to mean minimizing ‘dangerous anthropogenic interference with the climate system’ which results in impacts to society and the natural environment). Under baseline (no action) conditions there is a significant Increase in emissions, temperature and climate impacts. Controlling only CO2 emissions (ie freezing emissions in year 2000 at 1990 levels, and decreasing them afterwards at 1%/yr) and only in Annex I countries, does not significantly reduce the impacts observed under the baseline scenario. However, impacts are substantially reduced when emissions are controlled in both Annex I and non-Annex I countries, and when both CO2 and non-CO2 emissions are controlled. It was also found that stabilizing CO2 in the atmosphere below 450 ppm substantially reduces climate impacts. But in order to follow the pathway to stabilization at 450 ppm specified by the IPCC, global emissions can only slightly increase in the coming decades, and then must be sharply reduced. On the other hand, stabilizing CO2 in the atmosphere above 450 ppm can have significant impacts, which indicates that stabilization of greenhouse gases in the atmosphere will not necessarily provide a high level of climate protection. Results from these and other scenarios are synthesized and related to climate protection goals through a new concept — ‘safe emission corridors’. These corridors indicate the allowable range of near-term global emissions (equivalent CO2) which complies with specified short- and long-term climate goals. For an illustrative set of climate goals, the allowable anthropogenic global emissions in 2010 are computed to range from 7.3 to 14.5 GtC/yr equivalent CO2 (1990 level = approximately 9.6 GtC/ yr); when these limits are set twice as strict (ie divided by two), the allowable range becomes 7.6 to 9.3 GtC/yr. To fall within this lower corridor, global emissions must be lower in 2010 than in 1990.  相似文献   

18.
A simple methane model is presented in which lifetime changes are expressed as a function of CH4 concentration and emissions of NOx CO and NMHCs. The model parameters define the relative sensitivities of lifetime to these determining factors. The parameterized model is fitted to results from five more complex atmospheric chemistry models and to 1990 IPCC concentration projections. The IPCC data and four of the five models are well fitted, implying that the models have similar relative sensitivities. However, overall sensitivities of lifetime to changes in atmospheric composition vary widely from model to model. The parameterized model is used to estimate the history of past methane emissions, lifetime changes and OH variations, with estimates of uncertainties. The pre-industrial lifetime is estimated to be 15–34% lower than today. This implies that 23–55% of past concentration changes are due to lifetime changes. Pre-industrial emissions are found to be much higher (220–330 TgCH4/y) than the best estimate of present natural emissions (155 TgCH4/y). The change in emissions since pre-industrial times is estimated to lie in the range 160–260 TgCH4/y, compared with the current best guess for anthropogenic emissions of 360 TgCH4/y. These results imply either that current estimates of anthropogenic emissions are too high and/or that there have been large changes in natural emissions. 1992 IPCC emissions scenarios are used to give projections of future concentration and lifetime changes, together with their uncertainties. For any given emissions scenario, these uncertainties are large. In terms of future radiative forcing and global-mean temperature changes over 1990–2100 they correspond to uncertainties of at least ±0.2 Wm–2 and ± 0.1° C, respectively.  相似文献   

19.
20.
The non-CO2 climate impact of aviation (NOx and contrails) is assessed and emissions weighting factors (EWFs) i.e., the factor by which aviation CO2 emissions should be multiplied to get the CO2-equivalent emissions for annual fleet average conditions are estimated. The EWFs are estimated using two economic metrics. One is based on the relative damage cost between non-CO2 forcers and CO2. The other is based on the cost-effective valuation between the non-CO2 forcers and CO2 given an upper ceiling on the global annual average surface temperature (set at 2?K above pre-industrial levels). We also estimate EWFs using three physical metrics, Global Warming Potential (GWP), Global Temperature change Potential (GTP) and Sustained GTP (SGTP) and compare our results with the economics based metrics. Given best estimates on the forcing contributions from CO2, contrails and NOx from aviation and by using a discount rate of 3%/year, the RDC based metric gives an EWF equal to 1.4 (slightly higher than EWFs based on GWP and SGTP using a 100?year time horizon). EWF using the cost-effective approach depends on the time that remains before stabilization occurs. It is roughly equal to unity until a few years before the temperature reaches its ceiling, and approximately 2 when stabilization has taken place. EWFs based on GTP resemble those based on CETO when the time left to when stabilization occurs is sufficiently large. Once stabilization has occurred CETO values resemble RDC based values. If aviation-induced cirrus clouds are included, uncertainties increase and the EWFs for GWP, SGTP and RDC based metrics end up in the range 1.3–2.9, while EWFs for GTP and CETO remain close to unity in the near term.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号