首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
南极春季臭氧的TOVS反演及其与BREWER观测的比较   总被引:1,自引:1,他引:1       下载免费PDF全文
通过改进臭氧的统计反演算法,从NOAA卫星的TOVS资料中提取了1993年南极臭氧洞期间中山站上空大气臭氧含量的资料。本文的结果与NOAA的TOVS臭氧产品以及中山站的Brewer观测进行了比较。尽管3种资料对在臭氧洞期间臭氧含量的显著减少这一特征上相当一致,但此项结果相对于Brewer观测,其均方根误差29 DU,优于NOAA的业务反演产品。此外,还初步讨论了这两种反演的误差特征。  相似文献   

2.
In this paper the impacts of vertical resolution on the simulations of Typhoon Talim (2005) are examined using the Weather Research and Forecasting (WRF) model, with cumulus parameterization scheme representing the cumulus convection implicitly. It is shown that the tropical cyclone (TC) track has little sensitivity to vertical resolution, whereas the TC intensity and structure are highly sensitive to vertical resolution. It is partly determined by the sensitivity of the planetary boundary layer (and the surface layer) and the cumulus convection processes to vertical resolution. Increasing vertical resolution in the lower layer could strengthen the TC effectively. Increasing vertical resolution in the upper layer is also beneficial for the storm intensification, but to a lesser degree. In contrast, improving the midlevel resolution may cause the convergence of environmental air, which inhibits the TC intensification. The results also show that the impacts of vertical resolution on features of the TC structure, such as the tangential winds, secondary circulations and the evolution of the warm-core structure, are consistent with the impacts on the TC intensity. It is suggested that in the simulations of TCs, the vertical levels should be distributed properly rather than the more the better, with higher vertical resolution being expected both in the lower and upper layer, while the middle layer should not hold too many levels.  相似文献   

3.
A rigorous model is developed to calculate the shortwave radiation incident on building surfaces, based on radiation enclosure theory. When compared with field measurements, the model predictions are found to be associated with errors of approximately 10 W m–2, with underestimations of 5–10 W m–2 being caused on some walls by neglect of specular reflections. The effects of various simplifying assumptions are tested. The assumption of isotropic sky radiation and the neglect of multiple reflections are found to lead to errors of 15 W m–2 or less; the neglect of horizon obstructions and the use of albedos taken from the literature instead of measured values can result in errors of 50 W m–2 or more. Although these magnitudes of errors are site-specific, it is concluded that the use of simplifications in the modelling of shortwave radiation incident on urban surfaces must be approached with care.  相似文献   

4.
A set of experiments forced with observed SST has been performed with the Echam4 atmospheric GCM at three different horizontal resolutions (T30, T42 and T106). These experiments have been used to study the sensitivity of the simulated Asian summer monsoon (ASM) to the horizontal resolution. The ASM is reasonably well simulated by the Echam4 model at all resolutions. In particular, the low-level westerly flow, that is the dominant manifestation of the Asian summer monsoon, is well captured by the model, and the precipitation is reasonably simulated in intensity and space appearance. The main improvements due to an higher resolution model are associated to regional aspects of the precipitation, for example the Western Ghats precipitation is better reproduced. The interannual variability of precipitation and wind fields in the Asian monsoon region appears to be less affected by an increase in the horizontal resolution than the mean climatology is. A possible reason is that the former is mainly SST-forced. Besides, the availability of experiments at different horizontal resolution realized with the Echam4 model coupled to a global oceanic model allows the possibility to compare these simulations with the experiments previously described. This analysis showed that the coupled model is able to reproduce a realistic monsoon, as the basic dynamics of the phenomenon is captured. The increase of the horizontal resolution of the atmospheric component influences the simulated monsoon with the same characteristics of the forced experiments. Some basic features of the Asian summer monsoon, as the interannual variability and the connection with ENSO, are further investigated.  相似文献   

5.
The current state-of-the-art general circulation models, including several of those used by the IPCC, show considerable biases in the simulated present day high-latitude climate compared to observations and reanalysis data. These biases are most pronounced during the winter season. We here employ ideal vertical profiles of temperature and wind from turbulence-resolving simulations to perform a priori studies of the first-order eddy-viscosity closure scheme employed in the ARPEGE/IFS model. This reveals that the coarse vertical resolution (31 layers) of the model cannot be expected to realistically resolve the Arctic stable boundary layer. The curvature of the Arctic inversion and thus also the vertical turbulent-exchange processes cannot be reproduced by the coarse vertical mesh employed. To investigate how turbulent vertical exchange processes in the Arctic boundary layer are represented by the model parameterization, a simulation with high vertical resolution (90 layers in total) in the lower troposphere is performed. Results from the model simulations are validated against data from the ERA-40 reanalysis. The dependence of the surface air temperature on surface winds, surface energy fluxes, free atmosphere stability and boundary layer height is investigated. The coarse-resolution run reveals considerable biases in these parameters, and in their physical relations to surface air temperature. In the simulation with fine vertical resolution, these biases are clearly reduced. The physical relation between governing parameters for the vertical turbulent-exchange processes improves in comparison with ERA-40 data.  相似文献   

6.
7.
William Thomas 《Climatic change》2014,122(1-2):299-311
Concern over anthropogenic climatic change has been the major driver behind the rapid expansion in climate studies in recent decades. However, research agendas revolving around other intellectual or practical problems motivate much of the work that contributes to scientific understanding of present changes in climate. Understanding these agendas and their historical development can help in planning research programs and in communicating results, and it can often elucidate the sources of disagreements between scientists pursuing differing agendas. This paper focuses on research agendas relating to the possible glaciological instability of the West Antarctic Ice Sheet (WAIS). For much of the history of this research, which dates back to International Geophysical Year traverses, WAIS instability was thought of as innate rather than climatically triggered, even as a growing program of intensive field research was heavily motivated by tentative links drawn between WAIS instability and concerns over anthropogenic climatic change. Meanwhile, climate models for many years did not countenance instability mechanisms. It is only over the past fifteen years that field glaciological research has been integrated with other forms of empirical research, and that empirical studies ofWAIS have been more closely integrated with the broader body of climate studies.  相似文献   

8.
Abstract

As part of the Global Energy and Water Cycle Experiment, Canadian global spectral forecast model predictions of surface water and energy fluxes over the Mackenzie River basin are examined. Two nine‐member ensemble forecasts of one month duration are produced with the operational model, for a spring and a summer case, at a horizontal resolution of about 100 km (T95). The sensitivity to initial conditions is measured by the degree to which the individual forecasts in the ensembles vary one from another. The evolution in time of this estimated error (ensemble standard deviation) is determined for the surface energy and water accumulations, averaged over the basin. For comparison the calculations are repeated for the Mississippi basin and over North America. The greatest sensitivity is found for the net accumulation of precipitation minus evaporation. The spring ensemble is redone at a coarser horizontal resolution (T47), and the results are similar. The forecast uncertainty (ensemble standard deviation) of the area‐averages over the basin appear to be unaffected by this change, although the ensemble mean values are sensitive to the change in resolution. The ensemble standard deviation makes a significant, abrupt increase toward the end of the second week into the forecasts. This investigation suggests a need for an improved model, if the forecasts’ useful range is to extend to one month. Available upgrades to the land‐surface, precipitation and evaporation schemes will be used in subsequent work, and the forecasts reported here will serve as a baseline for comparison.  相似文献   

9.
官莉  韩静  薛秋蒙 《气象科学》2023,43(4):561-568
针对2020年第9号台风"美莎克"期间FY-4A 高光谱红外干涉式大气垂直探测仪GIIRS每15 min一次的目标区跟踪加密观测资料,用三维卷积神经网络算法反演的全天空大气温度、湿度廓线分析了台风处于生命史不同阶段时暖心结构和湿度场结构的演变特征。结果表明:卷积神经网络的深度机器学习算法可以用来反演全天空的三维大气温度和湿度垂直廓线,不光适用范围广(晴空和有云视场)、反演精度高,而且反演速度快。利用静止卫星平台高时间分辨率的特性,反演得到的温度、湿度廓线可以细致追踪台风处于发展、成熟和登陆等阶段时暖心结构和湿度场的时空演变特征。台风从发展阶段(热带风暴和强热带风暴)到成熟阶段至登陆消亡时,暖心首先出现在对流层中高层较薄的区域,随着台风强度的加强,深厚的暖心结构明显、强度增加,水平面积增大且垂直往下延伸。由于对流云中强上升气流的输送水汽正距平区逐渐上传至300 hPa,台风最强时密闭云区与四周下沉气流区比湿差高到8 K·kg-1。暖心结构和高湿度中心随着台风登陆而逐渐消失。  相似文献   

10.
The relaxed eddy accumulation (REA), method based on the conditional sampling concept, has received increasing attention over the past few years as it can be used to measure surface fluxes of a wide variety of trace gases for which fast response analysers are not available. In the REA method, a turbulent flux is simply expressed as the product of the standard deviation of vertical wind velocity, the difference between mean scalar concentration in the updrafts and downdrafts and an empirical coefficient, (about 0.63 as based on simulations with a Gaussian distribution, and 0.58 as derived from experimental data). A simulation technique is developed here to evaluate the performance of a ground-based REA system. This analysis uses generated series whose internal structure can be controlled to a large extent. They are stationary and their characteristics are similar to those of physical turbulence. In a first step the influence of some statistical characteristics of vertical velocity and scalar concentration series is investigated. The effect of the third- and fourth-order moments can explain to some degree the difference between calculated and measured values. The impact of a threshold on the vertical velocity is then considered, and its effect on is quantified. The influence of the time lag between and the effective scalar sampling, and the consequences of lowpass filtering of the signal are also investigated. The simulation technique presented in this study can be used to develop elaborate algorithms for near real-time conditional sampling, based on the statistical characteristics of the previous sample.  相似文献   

11.
Summary We present a preliminary evaluation of the performance of three different cumulus parameterization schemes in the ICTP Regional Climate Model RegCM3 for two overlapping domains (termed “big” and “small”) and horizontal resolutions (50 and 25 km) in the Caribbean area during the summer (July–August–September). The cumulus parameterizations were the Grell scheme with two closure assumptions (Arakawa–Schubert and Fritsch–Chappell) and the Anthes-Kuo scheme. An additional sensitivity test was performed by comparing two different flux parameterization schemes over the ocean (Zeng and BATS). There is a systematic underestimation of air temperature and precipitation when compared with analyzed data over the big domain area. Greater (∼2 °C) and smaller (∼0.9 °C) negative temperature biases are obtained in Grell–FC and Kuo convective scheme, respectively, and intermediate values are obtained in Grell–AS. The small domain simulation produces results substantially different, both for air temperature and precipitation. Temperature estimations are better for the small domain, while the precipitation estimations are better for the big domain. An additional experiment showed that by using BATS to calculate the ocean fluxes in the big domain instead of the Zeng scheme, precipitation increases by 25% and the share of convective precipitation rose from 18% to 45% of the total, which implies a better simulation of precipitation. These changes were attributed to an increase of near surface latent heating when using BATS over the ocean. The use of BATS also reduces the cold bias by about 0.3–0.4 °C, associated with an increase of minimum temperature. The behavior of the precipitation diurnal cycle and its relation with sea breeze was investigated in the small domain experiments. Results showed that the Grell–Arakawa–Schubert closure describes better this circulation as compared with Grell–Fritsch–Chappell closure.  相似文献   

12.
A suite of high-resolution (10 km) simulations were performed with the International Centre for Theoretical Physics (ICTP) Regional Climate Model (RegCM3) to study the effect of various lateral boundary conditions (LBCs), domain size, and intermediate domains on simulated precipitation over the Great Alpine Region. The boundary conditions used were ECMWF ERA-Interim Reanalysis with grid spacing 0.75°, the ECMWF ERA-40 Reanalysis with grid spacing 1.125 and 2.5°, and finally the 2.5° NCEP/DOE AMIP-II Reanalysis. The model was run in one-way nesting mode with direct nesting of the high-resolution RCM (horizontal grid spacing Δx = 10 km) with driving reanalysis, with one intermediate resolution nest (Δx = 30 km) between high-resolution RCM and reanalysis forcings, and also with two intermediate resolution nests (Δx = 90 km and Δx = 30 km) for simulations forced with LBC of resolution 2.5°. Additionally, the impact of domain size was investigated. The results of multiple simulations were evaluated using different analysis techniques, e.g., Taylor diagram and a newly defined useful statistical parameter, called Skill-Score, for evaluation of daily precipitation simulated by the model. It has been found that domain size has the major impact on the results, while different resolution and versions of LBCs, e.g., 1.125° ERA40 and 0.7° ERA-Interim, do not produce significantly different results. It is also noticed that direct nesting with reasonable domain size, seems to be the most adequate method for reproducing precipitation over complex terrain, while introducing intermediate resolution nests seems to deteriorate the results.  相似文献   

13.
14.
Summary The back radiation has been measured with an Eppley pyrgeometer on board the R/V Vickers in the tropical Pacific Ocean during the field campaigns COARE (Coupled Ocean Atmosphere Response Experiment) and CEPEX (Central Equatorial Pacific Experiment) in February and March 1993, respectively. As part of these compaigns radiosondes have been launched from the Vickers several times per day and cloud cover was observed frequently. The radiosonde and cloud observations are used together with a radiative transfer model to calculate the back radiation for a subsequent intercomparison with the pyrgeometer measurements. Another means of comparison is derived from space-borne SSM/I (Special Sensor Microwave/Imager) measurements. The mean difference between pyrgeometer measurements and simulated downwelling irradiance at the sea surface is less than 2 W/m2, at a mean of 425 W/m2 in the warm pool, with a standard deviation of 8 W/m2. The comparison of satellite measurements with pyrgeometer readings shows a mean difference of-3 W/m2 and a standard deviation of 14 W/m2. The mean difference between satellite-derived back radiation and simulated one is 3 W/m2 with a standard deviation of 14 W/m2. Comparisons with results obtained from bulk formulae applied to surface meteorological observations show a good performance of the bulk parameterisations in the cloud-free case but a general overestimation of the back radiation in cloudy situations.With 5 Figures  相似文献   

15.
We have developed an improved version of a world ocean model with the intention of coupling to an atmospheric model. This article documents the simulation capability of this 1° global ocean model, shows improvements over our earlier 5° version, and compares it to features simulated with a 0.5° model. These experiments use a model spin-up methodology whereby the ocean model can subsequently be coupled to an atmospheric model and used for order 100-year coupled model integrations. With present-day computers, 1° is a reasonable compromise in resolution that allows for century-long coupled experiments. The 1° ocean model is derived from a 0.5°-resolution model developed by A. Semtner (Naval Postgraduate School) and R. Chervin (National Center for Atmospheric Research) for studies of the global eddy-resolving world ocean circulation. The 0.5° bottom topography and continental outlines have been altered to be compatible with the 1° resolution, and the Arctic Ocean has been added. We describe the ocean simulation characteristics of the 1° version and compare the result of weakly constraining (three-year time scale) the three-dimensional temperature and salinity fields to the observations below the thermocline (710 m) with the model forced only at the top of the ocean by observed annual mean wind stress, temperature, and salinity. The 1° simulations indicate that major ocean circulation patterns are greatly improved compared to the 5° version and are qualitatively reproduced in comparison to the 0.5° version. Using the annual mean top forcing alone in a 100-year simulation with the 1° version preserves the general features of the major observed temperature and salinity structure with most climate drift occurring mainly beneath the thermocline in the first 50–75 years. Because the thermohaline circulation in the 1° version is relatively weak with annual mean forcing, we demonstrate the importance of the seasonal cycle by performing two sensitivity experiments. Results show a dramatic intensification of the meridional overturning circulation (order of magnitude) with perpetual winter surface temperature forcing in the North Atlantic and strong intensification (factor of three) with perpetual early winter temperatures in that region. These effects are felt throughout the Atlantic (particularly an intensified and northward-shifted Gulf Stream outflow). In the Pacific, the temperature gradient strengthens in the thermocline, thus helping counter the systematic error of a thermocline that is too diffuse.Partial support is provided by the Office of Health and Environmental Research of the US Department of Energy The National Center for Atmospheric Research is sponsored by the National Science Foundation  相似文献   

16.
In this study, the International Center for Theoretical Physics Regional Climate Model version 3 (RegCM3) was used to investigate the sensitivity of the simulation of the West African monsoon using four different cumulus and closures parameterization schemes of Anthes Kuo (AK), Grell and Fristish Chappell (GFC), Grell and Arakawa Schubert (GAS), and MIT-Emmanuel (EM) while maintaining other physical packages unchanged. The contrasting monsoon years of 1993 and 1999, which were dry and wet years, respectively, were simulated. The model was integrated from a period of 5 months, starting from May 1 to September 30 of each year using the European Centre for Medium-Range-Weather Forecast (ECMWF) Reanalysis data (ERA40) as input boundary conditions. The 6-hourly reanalysis data were used to provide the lateral boundary conditions, and the observed weekly Reynolds Sea Surface Temperature interpolated to 6 h was used as the lower boundary forcing. The results show that in West Africa, monsoon precipitations are sensitive to the choice of cumulus parameterization and closure schemes. None of the schemes is able to simulate the monsoon rainfall accurately, and furthermore, there is little difference in behavior among schemes between dry and wet years. The spatial features of precipitation are not identical among schemes, although they all show a northward shift of the rain bands, giving a very wet Sahel and dry Guinean Coast. The GFC and EM schemes are able to capture the diurnal cycle of precipitation and the zonal averages of stratiform rain fractions as observed in the Tropical Rainfall Measuring Mission (TRMM), although they overestimated rainfall amounts. The most important deficiencies, however, cannot be attributed to the schemes. In particular, the northward shift of both the rain band and the AEJ in RegCM3 is the result of unrealistic soil moisture resulting from the way albedo is parameterized, leading to an excessive northward penetration of monsoon flow. A sensitivity study showed that an adjustment of initial albedo values over the Sahel improved the simulation, and in particular the position of rain bands and of the AEJ.  相似文献   

17.
18.
A Variational Echo Tracking (VET) technique has been applied to four months of archived data from the South Korean radar network in order to examine the influence of the various user-selectable parameters on the skill of the resulting 20-min to 4-h nowcasts. The latter are computed over a (512 × 512) array at 2-km resolution. After correcting the original algorithm to take into account the motion of precipitation across the boundaries of such a smaller radar network, we concluded that the set of default input parameters initially assumed is very close to the optimum combination. Decreasing to (5 sx 5) or increasing to (50 × 50) the default vector density of (25 × 25), using two or three maps for velocity determination, varying the relative weights for the constraints of conservation of reflectivity and of the smoothing of the velocity vectors, and finally the application of temporal smoothing all had only marginal effects on the skill of the forecasts. The relatively small sensitivity to significant variations of the VET default parameters is a direct consequence of the fact that the major source of the loss in forecast skill cannot be attributed to errors in the forecast motion, but to the unpredictable nature of the storm growth and decay. Changing the time interval between maps, from 20 to 10 minutes, and significantly increasing the reflectivity threshold from 15 to 30 dBZ had a more noticeable reduction on the forecast skill. Comparisons with the Eulerian “zero velocity“ forecast and with a “single“ vector forecast have also been performed in order to determine the accrued skill of the VET algorithm. Because of the extensive stratiform nature of the precipitation areas affecting the Korean peninsula, the increased skill is not as large as may have been anticipated. This can be explained by the greater extent of the precipitation systems relative to the size of the radar coverage domain.  相似文献   

19.
20.
The regional climate model (RegCM3) from the Abdus Salam International Centre for Theoretical Physics has been used to simulate the Indian summer monsoon for three different monsoon seasons such as deficit (1987), excess (1988) and normal (1989). Sensitivity to various cumulus parameterization and closure schemes of RegCM3 driven by the National Centre for Medium Range Weather Forecasting global spectral model products has been tested. The model integration of the nested RegCM3 is conducted using 90 and 30-km horizontal resolutions for outer and inner domains, respectively. The India Meteorological Department gridded rainfall (1° × 1°) and National Centre for Environment Prediction (NCEP)–Department of Energy (DOE) reanalysis-2 of 2.5° × 2.5° horizontal resolution data has been used for verification. The RegCM3 forced by NCEP–DOE reanalysis-2 data simulates monsoon seasons of 1987 and 1988 reasonably well, but the monsoon season of 1989 is not represented well in the model simulations. The RegCM3 runs driven by the global model are able to bring out seasonal mean rainfall and circulations well with the use of the Grell and Anthes–Kuo cumulus scheme at 90-km resolution. While the rainfall intensity and distribution is brought out well with the Anthes–Kuo scheme, upper air circulation features are brought out better by the Grell scheme. The simulated rainfall distribution is better with RegCM3 using the MIT-Emanuel cumulus scheme for 30-km resolution. Several statistical analyses, such as correlation coefficient, root mean square error, equitable threat score, confirm that the performance of MIT-Emanuel scheme at 30-km resolution is better in simulating all-India summer monsoon rainfall. The RegCM3 simulated rainfall amount is more and closer to observations than that from the global model. The RegCM3 has corrected its driven GCM in terms of rainfall distribution and magnitude over some parts of India during extreme years. This study brings out several weaknesses of the RegCM model which are documented in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号