首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A pit located near Ballyhorsey, 28 km south of Dublin (eastern Ireland), displays subglacially deposited glaciofluvial sediments passing upwards into proglacial subaqueous ice‐contact fan deposits. The coexistence of these two different depositional environments at the same location will help with differentiation between two very similar and easily confused glacial lithofacies. The lowermost sediments show aggrading subglacial deposits indicating a constrained accommodation space, mainly controlled by the position of an overlying ice roof during ice‐bed decoupling. These sediments are characterized by vertically stacked tills with large lenses of tabular to channelized sorted sediments. The sorted sediments consist of fine‐grained laminated facies, cross‐laminated sand and channelized gravels, and are interpreted as subglaciofluvial sediments deposited within a subglacial de‐coupled space. The subglaciofluvial sequence is characterized by glaciotectonic deformation structures within discrete beds, triggered by fluid overpressure and shear stress during episodes of ice/bed recoupling (clastic dykes and folds). The upper deposits correspond to the deposition of successive hyperpycnal flows in a proximal proglacial lake, forming a thick sedimentary wedge erosively overlying the subglacial deposits. Gravel facies and large‐scale trough bedding sand are observed within this proximal wedge, while normally graded sand beds with developed bedforms are observed further downflow. The building of the prograding ice‐contact subaqueous fan implies an unrestricted accommodation space and is associated with deformation structures related to gravity destabilization during fan spreading (normal faults). This study facilitates the recognition of subglacial/submarginal depositional environments formed, in part, during localized ice/bed coupling episodes in the sedimentary record. The sedimentary sequence exposed in Ballyhorsey permits characterization of the temporal framework of meltwater production during deglaciation, the impact on the subglacial drainage system and the consequences on the Irish Sea Ice Stream flow mechanisms.  相似文献   

2.
Ice sheets that advance upvalley, against the regional gradient, commonly block drainage and result in ice‐dammed proglacial lakes along their margins during advance and retreat phases. Ice‐dammed glacial lakes described in regional depositional models, in which ice blocks a major lake outlet, are often confined to basins in which the glacial lake palaeogeographical position generally remains semi‐stable (e.g. Great Lakes basins). However, in places where ice retreats downvalley, blocking regional drainage, the palaeogeographical position and lake level of glacial lakes evolve temporally in response to the position of the ice margin (referred to here as ‘multi‐stage’ lakes). In order to understand the sedimentary record of multi‐stage lakes, sediments were examined in 14 cored boreholes in the Peace and Wabasca valleys in north‐central Alberta, Canada. Three facies associations (FAI–III) were identified from core, and record Middle Wisconsinan ice‐distal to ice‐proximal glaciolacustrine (FAI) sediments deposited during ice advance, Late Wisconsinan subglacial and ice‐marginal sediments (FAII) deposited during ice‐occupation, and glaciolacustrine sediments (FAIII) that record ice retreat from the study area. Modelling of the lateral extent of FAs using water wells and gamma‐ray logs, combined with interpreted outlets and mapped moraines based on LiDAR imagery, facilitated palaeogeographical reconstruction of lakes and the identification of four major retreat‐phase lake stages. These lake reconstructions, together with the vertical succession of FAs, are used to develop a depositional model for ice‐dammed lakes during a cycle of glacial advance and retreat. This depositional model may be applied in other areas where meltwater was impounded by glacial ice advancing up the regional gradient, in order to understand the complex interaction between depositional processes, ice‐marginal position, and supply of meltwater and sediment in the lake basin. In particular, this model could be applied to decipher the genetic origin of diamicts previously interpreted to record strictly subglacial deposition or multiple re‐advances.  相似文献   

3.
《Quaternary Science Reviews》2007,26(19-21):2354-2374
The glacial sediments of north Norfolk are a type site for subglacial deforming bed sediments. This investigation focussed on subglacial shear zone process at the field and thin section scale, in order to understand subglacial processes, as well as considering the implications for regional stratigraphies. The sandy and chalky tills from three sites (within 1 km) at Weybourne, Norfolk, showed evidence for subglacial deformation associated with simple shear, producing extension, compression and rotation. It was demonstrated how these processes interacted to cause chalk fragmentation and predictable fabric strengths (dependant on sorting and grain size). It is suggested that the ‘Marly Drift’ is a diachronous unit, and the resultant stratigraphy at Weybourne reflects one deformation till, resulting from a series of ice advances, but with a lithology derived from the local chalk bed rock (with some far travelled erratics), which have undergone different degrees of chalk fragmentation reflecting the nature and duration of the subglacial deformation.  相似文献   

4.
At the Dänischer Wohld Peninsula coastal sections (North West Germany), subglacial deformation was found at three scales. At the smallest scale, features typical of deforming bed tills were found, i.e. small boudins, tectonic laminations and low fabric strength till. At an intermediate scale, large lenses of glaciolacustrine sediments were found within subglacially deformed till. At the largest scale, there were large (over 5 m high) subglacial folds. We suggest that these styles of sedimentation/deformation were associated with a series of readvances during overall glacial retreat: subglacial deformation occurred during each advance and glaciolacus trine sedimentation occurred during each retreat. This led to glaciolacustrine sediments and deforming bed tills being folded together during subsequent readvances. Where the rheology was relatively weak, the lacustrine sediments were totally incorporated into the diamicton and lost their previous identity. However, where the glaciolacustrine sediments were relatively strong, they survived. We suggest that this style of deformation is typical of the conditions just upglacier from the ice margin and is associated with a relatively thick deforming layer and a high input of subglacial sediment. We conclude that the evidence found at this site provides further indications that the southern margins of the Fenno-Scandinavian ice sheet were coupled with the glacier bed and underwent deforming bed conditions.  相似文献   

5.
Southwestern Barents Sea sediments contain important information on Lateglacial and Holocene environmental development of the area, i.e. sediment provenance characteristics related to ice‐flow patterns and ice drifting from different regional sectors. In this study, we present investigations of clay, heavy minerals, and ice‐rafted debris from three sediment cores obtained from the SW Barents Sea. The sediments studied are subglacial/glaciomarine to marine in origin. The core sequences were divided into three lithostratigraphical units. The lowest, Unit 3, consists of laminated glaciomarine sediments related to regional deglaciation. The overlying Unit 2 is a diamicton, dominated by mud and oversized clasts. Unit 2 reflects a more ice‐proximal glaciomarine sedimentary environment or even a subglacial depositional environment; its deposition may indicate a glacial re‐advance or stillstand during an overall retreat. The uppermost Unit 1 consists of Holocene marine sediments and current‐reworked sedimentary material with a relatively high carbonate content. A significant proportion of the sedimentary material could be derived from Svalbard and transported by sea ice or icebergs to the Barents Sea during the late deglacial phase. The Fennoscandian sources and local Mesozoic strata from the bottom of the Barents Sea are the likely provenances of sediments deposited during the deglacial and ice re‐advance phases. Bottom currents and sea‐ice transport were the main mechanisms influencing sedimentation during the Holocene. Our results indicate that the provenance areas can be reliably related to certain ice‐flow sectors and transport mechanisms in the deglaciated Barents Sea.  相似文献   

6.
Passchier, S., Laban, C., Mesdag, C.S. & Rijsdijk, K.F. 2010: Subglacial bed conditions during Late Pleistocene glaciations and their impact on ice dynamics in the southern North Sea. Boreas, Vol. 39, pp. 633–647. 10.1111/j.1502‐3885.2009.00138.x. ISSN 0300‐9483. Changes in subglacial bed conditions through multiple glaciations and their effect on ice dynamics are addressed through an analysis of glacigenic sequences in the Upper Pleistocene stratigraphy of the southern North Sea basin. During Elsterian (MIS 12) ice growth, till deposition was subdued when ice became stagnant over a permeable substrate of fluvial sediments, and meltwater infiltrated into the bed. Headward erosion during glacial retreat produced a dense network of glacial valleys up to several hundreds of metres deep. A Saalian (MIS 6) glacial advance phase resulted in the deposition of a sheet of stiff sandy tills and terminal moraines. Meltwater was at least partially evacuated through the till layer, resulting in the development of a rigid bed. During the later part of the Saalian glaciation, ice‐stream inception can be related to the development of a glacial lake to the north and west of the study area. The presence of meltwater channels incised into the floors of glacial troughs is indicative of high subglacial water pressures, which may have played a role in the onset of ice streaming. We speculate that streaming ice flow in the later part of the Saalian glaciation caused the relatively early deglaciation, as recorded in the Amsterdam Terminal borehole. These results suggest that changing subglacial bed conditions through glacial cycles could have a strong impact on ice dynamics and require consideration in ice‐sheet reconstructions.  相似文献   

7.
The depositional processes associated with late Devensian ice in areas bordering the Irish Sea basin have been the subject of considerable debate. Among the key areas around the Irish Sea, southwest Wales occupies a particularly crucial position because it is here that ice flowing from the north impinged upon the coast orthogonally and encroached inland. Two main hypotheses have emerged concerning deglaciation of the Irish Sea basin. The traditional hypothesis holds that sedimentation was ice‐marginal or subglacial, whereas an alternative hypothesis that emerged in the 1980s argued that sedimentation was glaciomarine. Southwest Wales is well‐placed to contribute to this debate. However, few detailed sedimentological studies, linked to topography, have been made previously in order to reconstruct glacial environments in this area. In this paper, evidence is presented from four boreholes drilled recently in the Cardigan area, combined with data from coastal and inland exposures in the lower Teifi valley and adjacent areas. A complex history of glaciation has emerged: (i) subglacial drainage channel formation in pre‐Devensian time, (ii) deposition of iron‐cemented breccias and conglomerates possibly during the last interglacial (or in the early/mid‐Devensian interstadial), (iii) late Devensian ice advance across the region, during which a glaciolacustrine sequence over 75 m thick accumulated, within a glacial lake known as Llyn Teifi, (iv) a second high‐level glaciolacustrine succession formed near Llandudoch, (v) outside the Teifi valley, ice‐marginal, subglacial and glaciofluvial sediments were also laid down, providing a near‐continuous cover of drift throughout the area. Glacial advance was characterized by reworking, deformation and sometimes erosion of the underlying sediments. The glaciomarine hypothesis is thus rejected for southwest Wales. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Flutes are a distinctive type of glacial landform and comprise closely-spaced, streamlined ridges and furrows usually developed on till surfaces and aligned parallel to ice movement direction. Several models proposed to explain their formation involve, at least in part, post-depositional deformation or transfer of subglacial sediments; others involve primary deposition or erosion. The flutes on several glacier forelands in the mountains of the southern Lyngen peninsula in North Norway are associated with glaciers with cold-based margins. To explain the formation of the flutes three main sets of variables are investigated: 1, the landforms and their shapes, dimensions and field relationships; 2, the physical properties of the materials comprising the flutes; and 3, the glacier properties, and in particular, the basal thermal regime and ice-debris relationships at the glacier margin. Existing models of flute formation which involve post-depositional deformation or transfer of subglacial sediments do not explain satisfactorily several aspects of the flutes found in Lyngen. Instead, a model is proposed in which the flutes are primary features formed by deformation of the basal ice layer around subglacial boulders or other obstacles.  相似文献   

9.
An assemblage of subglacial, ice-terminal and proglacial landforms and sediments provides evidence for the relationship between ice-marginal glacitectonics, sedimentary processes and subglacial and proglacial hydraulic processes at a retreating late Devensian ice margin in north-central Ireland. Deltas were deposited in glacial lakes impounded between the retreating ice margin and the southern Sperrin Mountains, followed by outwash and end moraine formation as the ice margin retreated south. Sediments within the moraines show evidence for ice margin oscillation from two opposing ice margins, including subglacial bedrock rafts and breccias which are separated by glacitectonic shears with silty partings. In adjacent outwash, vertically-disturbed proglacial sands, gravels and silts located in front of moraine positions attest to high hydraulic pressure and subsurface water flow during ice oscillation. The relationship between sedimentary and hydraulic processes in the ice margin region is described by a depositional model which links glacitectonic thrusting and subsurface water flow during ice oscillation to formation of subglacial, ice-terminal and proglacial sediments. The evidence presented in this paper shows that subglacial and proglacial morphosedimentary processes and patterns of sediment deposition are mediated by the presence of proglacial permafrost, which helps direct processes and patterns of groundwater flow.  相似文献   

10.
Along the south coast of Ireland, a shelly diamict facies, the Irish Sea Till, has been variously ascribed to subglacial deposition by a grounded Irish Sea glacier or to glacimarine sedimentation by suspension settling and iceberg rafting. Observations are presented here from five sites along the south coast to directly address this question. At these sites, sedimentary evidence is preserved for the onshore advance of a grounded Irish Sea glacier, which glacitectonically disturbed and eroded pre‐existing sediments and redeposited them as deformation till. Recession of this Irish Sea glacier resulted in the damming of ice‐marginal lakes in embayments along the south coast, into which glacilacustrine sedimentation then took place. These lake sediments were subsequently glacitectonised and reworked by overriding glacier ice of inland origin, which deposited deformation till on top of the succession. There is no evidence for deposition of the Irish Sea diamicts by glacimarine sedimentation at these sites. The widespread development of subglacial deforming bed conditions reflected the abundance of fine‐grained marine and lacustrine sediments available for subglacial erosion and reworking. Stratigraphical and chronological data suggest that the advance of a grounded Irish Sea glacier along the south coast occurred during the last glaciation, and this is regionally consistent with marine geological data from the Celtic Sea. These observations demonstrate extension of glacier ice far beyond its traditional limits in the Celtic Sea and on‐land in southern Ireland during the last glaciation, and remove the stratigraphical basis for chronological differentiation of surficial glacial drifts, and thus the Munsterian Glaciation, in southern Ireland. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
Sediment from the Attawapiskat area near James Bay, Northern Ontario was sampled for micromorphological analyses. The sediment is a glacial diamicton (till) of subglacial origin. The till contains entrained and scavenged sediments of proglacial and/or subglacial glaciofluvial/glaciolacustrine origin from a subglacial deforming layer that was emplaced due to both stress reduction and/or porewater dissipation. Evidence of porewater escape, clay translocation and other microstructures all point to emplacement under active subglacial bed deformation. The limited number of edge to edge (ee) grain crushing events, however, point to lower stress levels than might anticipated under a thin fast ice lobe of the James Bay during the Middle Pliocene. Microstructures of Pleistocene tills were quantitatively compared with the Attawapiskat till and the limited number of ee events at Attawapiskat further highlighted that grain to grain contact was curtailed possibly due to high till porosity, high porewater pressures and low strain rates or alternatively due to a high clay matrix component reducing grain crushing contact events. It is suggested that this Middle Pliocene till may be indicative of sediments emplaced under ice lobe surging conditions or fast ice stream subglacial environments. This proposal has significant implications for the glaciodynamics of this part of the Middle Pliocene James Bay lobe. This research highlights a crucial link between subglacial conditions, till microstructural analyses and glaciodynamics.  相似文献   

12.
13.
Subglacial erosional forms are commonly found on bedrock substrates inside the Late Weichselian ice margin in County Donegal, northwest Ireland, and can be used to provide detailed information on subglacial processes and environments. The erosional forms occur on spatial scales from whalebacks (tens of metres in scale), to asymmetric and channelized bedrock-cut scours (tens of cm in scale) and striations (mm scale). Processes responsible for development of subglacial erosional forms occur along a continuum, from free meltwater existing as a laterally extensive sheet at the ice-bed interface, to abrasion by basal ice. Channelized bedrock-cut scours are particularly common in County Donegal, and show asymmetric and meandering thalwegs, U-shaped cross-profiles and steep lateral margins. Innermost parts of the scours are highly polished and have striations that follow thalweg direction. In places, bedrock surfaces are overlain by a delicate polish and thin calcite cement, and are buried beneath glacial till. Based on their morphology, the bedrock scours are interpreted as s-forms caused by high-pressure subglacial meltwater erosion. Striations within the scoured channels reflect periods of ice-bed coupling and subglacial abrasion. The range of features observed here was used to consider relationships between subglacial topography, hydraulic processes and ice-bed coupling. Precipitation of calcite cement took place in depressions on the bedrock surface by CO2 degassing. Infilling of depressions by glacial till formed a new type of 'sticky spot' related to spatial variations in subglacial water pressure. The temporal evolution of sticky spots reflects interactions within the subglacial environment between subglacial relief, hydraulic regime and ice-bed coupling.  相似文献   

14.
Lithostratigraphical and lithofacies approaches used to interpret glacial sediments often ignore deformation structures that can provide the key to environment of formation. We propose a classification of deformation styles based on the geometry of structures rather than inferred environment of formation. Five styles are recognised: pure shear (P), simple shear (S), compressional (C), vertical (V) and undeformed (U). These dictate the first letter of the codes; the remaining letters conveying the evidence. This information can be used to reconstruct palaeostress fields and to infer physical properties of sediments when they deformed. Individual structures are not diagnostic of particular environments but the suite of structures, their relative scale, stratigraphical relationships, and orientation relative to palaeoslopes and to palaeoice‐flow directions can be used to infer the environment in which they formed. This scheme is applied at five sites in west Wales. The typical succession is interpreted as subglacial sediments overlain by meltout tills, flow tills and sediment flows. Paraglacial redistribution of glacial sediments is widespread. Large‐scale compressional deformation is restricted to sites where glaciers readvanced. Large‐scale vertical deformation occurs where water was locally ponded near the ice margin. There is no evidence for glaciomarine conditions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
Livingstone, S. J., Ó Cofaigh, C., Evans, D. J. A. & Palmer, A. 2010: Sedimentary evidence for a major glacial oscillation and proglacial lake formation in the Solway Lowlands (Cumbria, UK) during Late Devensian deglaciation. Boreas, Vol. 39, pp. 505–527. 10.1111/j.1502‐3885.2010.00149.x. ISSN 0300‐9483. This paper is a sedimentological investigation of Late Devensian glacial deposits from the Solway Lowlands, northwest England, in the central sector of the last British–Irish Ice Sheet. In this region, laminated glaciolacustrine sediments occur, sandwiched between diamictons interpreted as subglacial tills. At one location the laminated sediments are interpreted as varves, and indicate the former presence of a proglacial lake. Correlation of these varves with other laminated sediments indicates that the glacial lake was at least 140 km2 in area and probably much larger. Extensive beds of sand, silt and gravel throughout the Solway Basin associated with the lake demonstrate ice‐free conditions over a large area. Based on the number of varves, the lake was in existence for at least 261 years. The stratigraphic sequence of varves bracketed by tills implies a major glacial oscillation prior to the Scottish Re‐advance (16.8 cal. ka BP). This oscillation is tentatively correlated with the Gosforth oscillation at c.19.5 cal. ka BP. Subsequent overriding of these glaciolacustrine sediments during a westward‐moving re‐advance demonstrates rapid ice loss and then gain within the Solway Lowlands from ice‐dispersal centres in the Lake District, Pennines and Southern Uplands. It is speculated that the existence of this and other lakes along the northeastern edge of the Irish Sea Basin would have influenced ice‐sheet dynamics.  相似文献   

16.
This paper presents the first integrated macroscale and microscale examination of subglacial till associated with the last‐glacial (Fraser Glaciation) Cordilleran Ice Sheet (CIS). A new statistical approach to quantifying till micromorphology (multivariate hierarchical cluster analysis for compositional data) is also described and implemented. Till macrostructures, macrofabrics and microstructures support previous assertions that primary till in this region formed through a combination of lodgement and deformation processes in a temperate subglacial environment. Macroscale observations suggest that subglacial environments below the CIS were probably influenced by topography, whereby poor drainage of the substrate in topographically constricted areas, or on slopes adverse to the ice‐flow direction at glacial maximum, facilitated ductile deformation of the glacier bed. Microscale observations suggest that subglacial till below the CIS experienced both ductile and brittle deformation, including grain rotation and squeeze flow of sediment between grains under moist conditions, and microshearing, grain stacking and grain fracturing under well‐drained conditions. Macroscale observations suggest that ductile deformation events were probably followed by brittle deformation events as the substrate subsequently drained. The prevalence of ductile‐type microstructures in most till exposures investigated in this study suggests that ductile deformation signatures can be preserved at the microscale after brittle deformation events that result in larger‐scale fractures and shear structures. It is likely that microscale ductile deformation can also occur within distributed shear zones during lodgement processes. Cluster analysis of microstructure data and qualitative observations made from thin sections suggest that the relative frequency of countable microstructures in this till is influenced by topography in relation to ice‐flow direction (bed drainage conditions) as well as by the frequency and distribution of voids in the till matrix and skeletal grain shapes.  相似文献   

17.
电子自旋共振(ESR)技术是一种确定物质成分和结构的顺磁性质的分析方法,也能够用于沉积物定年。该方法的测量技术和测年的物理机制等还处于发展阶段。冰川作用过程十分复杂,形成各种类型的冰川沉积物,其顺磁信号的归零机制有显著差异,ESR测年的实验方案也有所差异。因此,识别冰碛物类型,采集合适的样品对于ESR测年的准确性十分重要。冰下融出碛和滞碛经过了冰下磨蚀过程,结构致密,细颗粒基质含量高,石英砂中的一些杂质芯的ESR信号能够衰退。许多冰上融出碛,结构疏松,但细颗粒基质含量高,不但经过了搬运过程中的冰下磨蚀过程使ESR信号衰退,又经历了沉积时的冰上阳光直射过程使信号衰退,一些样品的ESR信号能够完全晒退。冰水湖泊和冰水河流沉积的细砂和粉砂来源于冰下研磨的产物,信号会衰退;在搬运沉积过程中又可能被阳光直射,信号进一步衰退。其它类型的冰碛物的ESR信号衰退机制不明,或粒径不适合用ESR方法测年。采集冰碛物ESR年代样品时,最好同时采集信号衰退机制相同的现代冰碛物样品,以便对照,并用于扣除可能的残留信号。  相似文献   

18.
Western Lake Geneva (le Petit-Lac) was filled during the Quaternary over a major erosion surface truncating the cemented, folded and thrusted Tertiary sediments of the foreland Alpine basin. The carving of the lake occurred during Quaternary glaciations with ice originating from the Rhone valley catchment basin flowing in two branches oriented SW and NE over the Swiss Plateau. Lake Geneva is situated on the South-Western branch of this paleo ice-cap.For the first time, a dense grid of high-resolution seismic profiles (airgun 5-inch3, airgun 1-inch3 and echosounder) has imaged the whole Quaternary sequence, providing a paleoenvironmental interpretation and a detailed reconstruction of the Rhone glacier retreat stages during glacial events that led to the formation of western Lake Geneva.The Quaternary sequence filling up the bedrock valley is exceptionally thick with up to 220 m of deposits and consists of glacial, glacio-lacustrine and lacustrine sediments. Fourteen seismic units have been defined (units U1–U14). Unit U1 represents the remnants of glacial deposits older than the last glacial cycle, preserved in the deepest part of the lake and in secondary bedrock valleys. Unit U2 represents gravel and sands deposited by meltwater circulation at the bottom of the glacial valley. Unit U3 is a thick, stratified unit marking the beginning of the deglaciation, when the Rhone glacier became thinner and buoyant and allowed the formation of a subglacial lake. Younger glacial units (units U4, U5, U7, U9, U11) are acoustically chaotic sediments deposited subglacially under the water table (undermelt tills), while the glacier was thinning. These glacial units are bounded by synform erosion surfaces corresponding to readvances of the glacier.The transition from a glacial to a glacio-lacustrine environment started with the appearance of a marginal esker-fan system (unit U6). Esker formation was followed by a small advance–retreat cycle leading to the deposition of unit U7. Then, the ice front receded and stratified sediments were deposited in a glacio-lacustrine environment (units U8, U10 and U12). This retreat was punctuated by two readvances – Coppet (unit U9) and Nyon (unit U11) – producing large push moraines and proglacial debris flows. Finally, a lacustrine environment with a characteristic lake current pattern and mass movement deposits took place (units U13 and U14).Except for unit U1, the sedimentary sequence records the Würmian deglaciation in a fjord-like environment occupied by a tidewater glacier with a steep, calving ice front. The presence of an esker-fan system reveals the importance of subglacial meltwater flow in continental deglaciation. Push-moraines and erosion surfaces below the glacier indicate at least 5 readvances during the deglaciation thus revealing that oscillations of ice front are the key process in deglaciation of perialpine fjord-lakes. The dating of these continental glacier fluctuations would allow correlation with oceanic and ice records and help to understand the climatic mechanisms between oceans and continents.  相似文献   

19.
The net effect of ice‐flow shifts resulting in the dilution or reworking of clasts on a single preserved till sheet is often unknown yet has major implications for palaeoglaciology and mineral exploration. Herein, we analyse variations in till clast lithologies from a single till sheet, within palimpsest‐type Glacial Terrain Zones in NE Manitoba, Canada, to better understand sediment–landform relationships in this area of high landform inheritance. This near‐ice‐divide area is known to consist of a highly fragmented subglacial landscape, resulting from spatio‐temporal variations in intensity of reworking and inheritance throughout multiple glacial events (subglacial bed mosaic). We show that a seemingly homogenous ‘Keewatin’ till sheet is composed of local (>15 km) and continental‐scale (~100‐km‐long carbonate train and 350–600 km long Dubawnt red erratic train) fan, irregular (amoeboid) or lobate palimpsest dispersal patterns. Local dispersal is more complex than the preserved local landform flowset(s) record, but appears consistent with the overall glacial history reconstructed from regional flowset and striation analyses. The resultant surface till is a spatial mosaic interpreted to reflect variable intensities in modification (overprinting) and preservation (inheritance) of a predominately pre‐existing till sheet. A multi‐faceted approach integrating till composition, regional landforms, ice‐flow indicators, and stratigraphic knowledge is used to map relative spatio‐temporal erosion/reworking intensity.  相似文献   

20.
The Uummannaq region is a mosaic of glacial landsystems, consistent with hypothesized landscape distribution resulting from variations in subglacial thermal regime. The region is dominated by selective linear erosion that has spatially and altitudinally partitioned the landscape. Low altitude areas are dominated by glacial scour and higher elevations are dominated by plateaux or mountain valley and cirque glaciers. The appearance and nature of each landscape type varies locally with altitude and latitude, as a function of bedrock geology and average glacial conditions. Selective linear erosion has been a primary control on landscape distribution throughout Uummannaq, leading to plateau formation and the growth of a coalescent fjord system in the Uummannaq region. This has allowed the development of the Uummannaq ice stream's (UIS) onset zone during glacial periods. Fjord development has been enhanced by a downstream change in geology to less‐resistant lithologies, increasing erosional efficiency and allowing a single glacial channel to develop, encouraging glacier convergence and the initiation of ice streaming. The landscape has been affected by several periods of regional uplift from 33 Ma to present, and has been subject to subsequent fluvial and glacial erosion. Uplift has removed surfaces from the impact of widespread warm‐based glaciation, leaving them as relict landsurfaces. The result of this is a regional altitude‐dependent continuum of glacial modification, with extreme differences in erosion between high and low elevation surfaces. This study indicates that processes of long‐term uplift, glacial erosion/protection and spatial variability in erosion intensity have produced a highly partitioned landscape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号