首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coronal dimmings are often present on both sides of erupting magnetic configurations. It has been suggested that dimmings mark the location of the footpoints of ejected flux ropes and, thus, their magnetic flux can be used as a proxy for the flux involved in the ejection. If so, this quantity can be compared to the flux in the associated interplanetary magnetic cloud to find clues about the origin of the ejected flux rope. In the context of this physical interpretation, we analyze the event, flare, and coronal mass ejection (CME) that occurred in active region 10486 on 28 October 2003. The CME on this day is associated with large-scale dimmings, located on either side of the main flaring region. We combine SOHO/Extreme Ultraviolet Imaging Telescope data and Michelson Doppler Imager magnetic maps to identify and measure the flux in the dimming regions. We model the associated cloud and compute its magnetic flux using in situ observations from the Magnetometer Instrument and the Solar Wind Electron Proton Alpha Monitor aboard the Advance Composition Explorer. We find that the magnetic fluxes of the dimmings and magnetic cloud are incompatible, in contrast to what has been found in previous studies. We conclude that, in certain cases, especially in large-scale events and eruptions that occur in regions that are not isolated from other flux concentrations, the interpretation of dimmings requires a deeper analysis of the global magnetic configuration, since at least a fraction of the dimmed regions is formed by reconnection between the erupting field and the surrounding magnetic structures.  相似文献   

2.
We analyze the well-observed flare and coronal mass ejection (CME) from 1 October 2011 (SOL2011-10-01T09:18) covering the complete chain of effects – from Sun to Earth – to better understand the dynamic evolution of the CME and its embedded magnetic field. We study in detail the solar surface and atmosphere associated with the flare and CME using the Solar Dynamics Observatory (SDO) and ground-based instruments. We also track the CME signature off-limb with combined extreme ultraviolet (EUV) and white-light data from the Solar Terrestrial Relations Observatory (STEREO). By applying the graduated cylindrical shell (GCS) reconstruction method and total mass to stereoscopic STEREO-SOHO (Solar and Heliospheric Observatory) coronagraph data, we track the temporal and spatial evolution of the CME in the interplanetary space and derive its geometry and 3D mass. We combine the GCS and Lundquist model results to derive the axial flux and helicity of the magnetic cloud (MC) from in situ measurements from Wind. This is compared to nonlinear force-free (NLFF) model results, as well as to the reconnected magnetic flux derived from the flare ribbons (flare reconnection flux) and the magnetic flux encompassed by the associated dimming (dimming flux). We find that magnetic reconnection processes were already ongoing before the start of the impulsive flare phase, adding magnetic flux to the flux rope before its final eruption. The dimming flux increases by more than 25% after the end of the flare, indicating that magnetic flux is still added to the flux rope after eruption. Hence, the derived flare reconnection flux is most probably a lower limit for estimating the magnetic flux within the flux rope. We find that the magnetic helicity and axial magnetic flux are lower in the interplanetary space by ~?50% and 75%, respectively, possibly indicating an erosion process. A CME mass increase of 10% is observed over a range of \({\sim}\,4\,\mbox{--}\,20~\mathrm{R}_{\odot }\). The temporal evolution of the CME-associated core-dimming regions supports the scenario that fast outflows might supply additional mass to the rear part of the CME.  相似文献   

3.
We report on the occurrence of Hα dimming associated with a sigmoid eruption in a quiet-sun region on 14 August 2001. The coronal sigmoid in soft X-ray images from the Yohkoh Soft X-ray Telescope was located over an Hα filament channel. Its eruption was accompanied by a flare of GOES X-ray class C2.3 and possibly associated with a halo coronal mass ejection (CME) observed with the Large Angle and Spectroscopic Coronagraphs (LASCO) on board the Solar and Heliospheric Observatory (SOHO). During the eruption, coronal bipolar double dimming took place at the regions with opposite magnetic polarities around the two sigmoid ends, but the underlying chromospheric channel did not show observable changes corresponding to the coronal eruption. Different from the erupting coronal sigmoid itself, however, the coronal dimming had a detectable chromosphere counterpart, i.e., Hα dimming. By regarding the sigmoid as a coronal sign for a flux rope, these observations are explained in the framework of the flux rope model of CMEs. The flux rope is possibly deeply rooted in the chromosphere, and the coronal and Hα dimming regions mark its evacuated feet, through which the material is possibly fed to the halo CME.  相似文献   

4.
5.
We studied the M7.9 flare on April 9, 2001 that occurred within a δ-sunspot of active region NOAA 9415. We used a multi-wavelength data set, which includes Yohkoh, TRACE, SOHO, and ACE spacecraft observations, Potsdam and Ondřejov radio data and Big Bear Solar Observatory (BBSO) images in order to study the large-scale structure of this two-ribbon flare that was accompanied by a very fast coronal mass ejection (CME). We analyzed light curves of the flare emission as well as the structure of the radio emission and report the following: the timing of the event, i.e., the fact that the initial brightenings, associated with the core magnetic field, occurred earlier than the remote brightening (RB), argue against the break-out model in the early phase of this event. We thus conclude that the M7.9 flare and the CME were triggered by a tether-cutting reconnection deep in the core field connecting the δ-spot and this reconnection formed an unstable flux rope. Further evolution of the erupted flux rope could be described either by the “standard“ flare model or a break-out type of the reconnection. The complex structure of flare emission in visible, X-ray, and radio spectral ranges point toward a scenario which involves multiple reconnection processes between extended closed magnetic structures.  相似文献   

6.
By using the multi-wavelength observations from the Solar Terrestrial Relations Observatory (STEREO), the Solar and Heliospheric Observatory (SOHO), the Transition Region and Coronal Explorer (TRACE) and the HINODE, we study a coronal mass ejection (CME) and associated coronal dimming occurred on 2009 December 13, as a consequence of the expansion and eruption of EUV loops. The activities were probably triggered by the new flux emergence and the convergence motions, which were evident in the magnetograms from Michelson Doppler Imager (MDI) on the SOHO. The emergence led to the destabilization and eruption of the preexistent flux rope, which was highly-sheared over the polarity inversion line. Driven by the ejection of the flux rope, the overlying loops initially slowly rose and then erupted. As a result, two coronal dimming regions formed at the footprints of the loops and a B1.9 flare, about half an hour later, occurred in the eruptive region near one foot of the eruptive loops. The CME had a very close temporal and spatial relationship to the expanding loops, and it is very likely that the CME directly developed from the eruptive loops. The CME mass calculated from the EUV dimming was of the same order of the typical CME mass, suggesting that the dimming region supplied major of the mass for the CME. The kinematic evolution of the CME was basically consistent with the three-phases scenario: the initiation phase, impulsive acceleration phase, and propagation phase. The onset of the CME could be well explained by the emerging flux trigger mechanism.  相似文献   

7.
Very Large Array (VLA) observations at 91-cm wavelength are combined with data from the SOHO EIT, MDI and LASCO and used to study the evolving coronal magnetic environment in which Type I noise storms and large-scale coronal loops occur. On one day, we have shown the early evolution of a coronal mass ejection (CME) in projection in the disk by tracing its decimetric continuum emission. The passage of the CME and an associated EUV ejection event coincided with an increase in the 91-cm brightness temperature of an extended coronal loop located a significant distance away and with the displacement of the 91-cm source during the early stage of the CME. We suggest that the energy deposited into the corona by the CME may have caused a local increase in the thermal or nonthermal electron density or in the electron temperature in the middle corona resulting in a transient increase in the brightness of the 91-cm loop. On a second observing day, we have consolidated the known association between magnetic changes in the photosphere and low corona with noise storm enhancements in an overlying radio source well in advance of a flare event in the same region. We find anti-correlated changes in the brightness of a bipolar 91-cm Type I noise storm that appear to be associated with the cancellation and emergence of magnetic flux in the underlying photosphere. In this case, the evolving fields may have led to magnetic instabilities and reconnection in the corona and the acceleration of nonthermal particles that initiated and sustained the Type I noise storm.  相似文献   

8.
Coronal holes are regions of dominantly monopolar magnetic field on the Sun where the field is considered to be ‘open’ towards interplanetary space. Magnetic bipoles emerging in proximity to a coronal hole boundary naturally interact with this surrounding open magnetic field. In the case of oppositely aligned polarities between the active region and the coronal hole, we expect interchange reconnection to take place, driven by the coronal expansion of the emerging bipole as well as occasional eruptive events. Using SOHO/EIT and SOHO/MDI data, we present observational evidence of such interchange reconnection by studying AR 10869 which emerged close to a coronal hole. We find closed loops forming between the active region and the coronal hole leading to the retreat of the hole. At the same time, on the far side of the active region, we see dimming of the corona which we interpret as a signature of field line ‘opening’ there, as a consequence of a topological displacement of the ‘open’ field lines of the coronal hole. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Song  Limin  Zhang  Jun  Yang  Zhiliang  Wang  Jingxiu 《Solar physics》2002,211(1-2):315-331
By using multi-wavelength observations, we explored the atmospheric dynamics and the surface magnetic activity in NOAA 9026, which were associated with the initiation of a halo coronal mass ejection (CME) on 6 June, 2000. In an interval of less than two hours, two X-class X-ray flares took place successively, each along with one eruption of a filament. However, only the second X-class flare which is characterized by a rather large-scale (larger than a general active region in area) EUV dimming was associated with the CME initiation. It seems that a flare with an extensive dimming is more likely to be CME-associated. We focused our study on the daily evolution of the vector magnetic field in this region from 4 to 9 June and have found the following results. (1) The gradual squeeze and cancellation of the opposite polarity magnetic fields are the main patterns of magnetic evolution. Moreover, there is a spatial coincidence between the sites of magnetic flux cancellation and the locations of the early filament activation and the flare brightenings. (2) The current system increased in the first two days and began to decrease at least ten hours before the CME initiation. It underwent dramatic disruption from 6 to 7 June. (3) The transverse component of the the vector magnetic field appeared helical in configuration. It changed from compact to loose and dissipated from a small to a large area. Here we suggest that although the first filament eruption and first flare were not in step with the CME initiation, they seem to be a part of the entire process. The observed evolution of the magnetic field implies a continuous transport of magnetic energy and complexity from the lower atmosphere to the corona. Moreover, the slow magnetic reconnection in the lower atmosphere, manifested as magnetic flux cancellation, and the helicity re-distribution, appear to play a key role in the energy build-up process of the flares and the initiation of the halo CME.  相似文献   

10.
Sympathetic coronal mass ejections (CMEs) usually occur in different active regions connected by interconnecting magnetic loops, while homologous CMEs occur within the same active region with an almost the same background magnetic field, and so are similar in shapes. Two sympathetic CMEs erupted within 3 hours on 2002 May 22, originating from the same active region, AR 9948. Their multi-wavelength data were collected and analyzed. It is suggested that emerging flux triggered the occurrence of the first CME and the corresponding flare, the reconnection inflow of which in turn triggered the eruption of the second CME. Based on the fact that the two sympathetic CMEs have many similarities, in their shapes, their low-lying dimming areas, etc., we tentatively propose, for the first time, the phenomenon of sympathetic homologous CMEs.  相似文献   

11.
We investigate the early phase of the 13 February 2009 coronal mass ejection (CME). Observations with the twin STEREO spacecraft in quadrature allow us to compare for the first time in one and the same event the temporal evolution of coronal EUV dimmings, observed simultaneously on-disk and above-the-limb. We find that these dimmings are synchronized and appear during the impulsive acceleration phase of the CME, with the highest EUV intensity drop occurring a few minutes after the maximum CME acceleration. During the propagation phase two confined, bipolar dimming regions, appearing near the footpoints of a pre-flare sigmoid structure, show an apparent migration away from the site of the CME-associated flare. Additionally, they rotate around the ‘center’ of the flare site, i.e., the configuration of the dimmings exhibits the same ‘sheared-to-potential’ evolution as the postflare loops. We conclude that the motion pattern of the twin dimmings reflects not only the eruption of the flux rope, but also the ensuing stretching of the overlying arcade. Finally, we find that: i) the global-scale dimmings, expanding from the source region of the eruption, propagate with a speed similar to that of the leaving CME front; ii) the mass loss occurs mainly during the period of strongest CME acceleration. Two hours after the eruption Hinode/EIS observations show no substantial plasma outflow, originating from the ‘open’ field twin dimming regions.  相似文献   

12.
A comprehensive case and statistical study of CME onsets has been conducted on the solar limb using the CDS, LASCO and EIT instruments aboard the SOHO spacecraft. This is the first dedicated campaign to establish firmly the EUV signatures of CME onsets and is based on a series of low-corona observing campaigns made in 2002. The event database consisted of 36 multiple emission line sequences observed with CDS and the study builds, in particular, on studies of EUV coronal dimming which have been associated with CME onsets. We witness a range of dimming events in EUV coronal emission line data. Shorter events, commonly of duration < 4 hours, we find are indirectly associated with CME onsets whereas longer-duration dimmings (> 4 hours) appear to be either due to coronal evolution or rotational effects. However, for some CME onsets, where the CDS pointing was appropriate, no dimming was observed. Dimming observed in EIT typically occurred immediately after the launch of a loop or prominence, and in 5 out of 9 events there is evidence of a matter buildup within the loop before launch. A total of 10 events occurred where CDS was used to directly observe the CME footprint, but no relationship between these events was found. The results suggest that the response of the corona to a CME launch differs between the low (1.0 R R≤1.2 R ) and middle (1.2 R <R≤2.0 R ) corona regions, hence implying a difference between dimming observations conducted with different instruments.  相似文献   

13.
We study the kinematical characteristics and 3D geometry of a large-scale coronal wave that occurred in association with the 26 April 2008 flare-CME event. The wave was observed with the EUVI instruments aboard both STEREO spacecraft (STEREO-A and STEREO-B) with a mean speed of ∼ 240 km s−1. The wave is more pronounced in the eastern propagation direction, and is thus, better observable in STEREO-B images. From STEREO-B observations we derive two separate initiation centers for the wave, and their locations fit with the coronal dimming regions. Assuming a simple geometry of the wave we reconstruct its 3D nature from combined STEREO-A and STEREO-B observations. We find that the wave structure is asymmetric with an inclination toward East. The associated CME has a deprojected speed of ∼ 750±50 km s−1, and it shows a non-radial outward motion toward the East with respect to the underlying source region location. Applying the forward fitting model developed by Thernisien, Howard, and Vourlidas (Astrophys. J. 652, 763, 2006), we derive the CME flux rope position on the solar surface to be close to the dimming regions. We conclude that the expanding flanks of the CME most likely drive and shape the coronal wave.  相似文献   

14.
Yurchyshyn  Vasyl B.  Wang  Haimin 《Solar physics》2001,202(2):309-318
In this paper we study the evolution of magnetic fields of a 1F/2.4C solar flare and following magnetic flux cancellation. The data are Big Bear Solar Observatory and SOHO/MDI observations of active region NOAA 8375. The active region produced a multitude of subflares, many of them being clustered along the moat boundary in the area with mixed polarity magnetic fields. The study indicates a possible connection between the flare and the flux cancellation. The cancellation rate, defined from the data, was found to be 3×1019 Mx h–1. We observed strong upward directed plasma flows at the cancellation site. Suggesting that the cancellation is a result of reconnection process, we also found a reconnection rate of 0.5 km s–1, which is a significant fraction of Alfvén speed. The reconnection rate indicates a regime of fast photospheric reconnection happening during the cancellation.  相似文献   

15.
We carried out a multi-wavelength study of a Coronal Mass Ejection (CME) and an associated flare, occurring on 12 May 1997. We present a detailed investigation of magnetic-field variations in NOAA Active Region 8038 which was observed on the Sun during 7??C?16 May 1997. This region was quiet and decaying and produced only a very small flare activity during its disk passage. However, on 12 May 1997 it produced a CME and associated medium-size 1B/C1.3 flare. Detailed analyses of H?? filtergrams and SOHO/MDI magnetograms revealed continual but discrete surge activity, and emergence and cancellation of flux in this active region. The movie of these magnetograms revealed the two important results that the major opposite polarities of pre-existing region as well as in the emerging-flux region were approaching towards each other and moving magnetic features (MMF) were ejected from the major north polarity at a quasi-periodicity of about ten hours during 10??C?13 May 1997. These activities were probably caused by magnetic reconnection in the lower atmosphere driven by photospheric convergence motions, which were evident in magnetograms. The quantitative measurements of magnetic-field variations such as magnetic flux, gradient, and sunspot rotation revealed that in this active region, free energy was slowly being stored in the corona. Slow low-layer magnetic reconnection may be responsible for the storage of magnetic free energy in the corona and the formation of a sigmoidal core field or a flux rope leading to the eventual eruption. The occurrence of EUV brightenings in the sigmoidal core field prior to the rise of a flux rope suggests that the eruption was triggered by the inner tether-cutting reconnection, but not the external breakout reconnection. An impulsive acceleration, revealed from fast separation of the H?? ribbons of the first 150 seconds, suggests that the CME accelerated in the inner corona, which is also consistent with the temporal profile of the reconnection electric field. Based on observations and analysis we propose a qualitative model, and we conclude that the mass ejections, filament eruption, CME, and subsequent flare were connected with one another and should be regarded within the framework of a solar eruption.  相似文献   

16.
C. Zhu  D. Alexander  X. Sun  A. Daou 《Solar physics》2014,289(12):4533-4543
We study the interaction between an erupting solar filament and a nearby coronal hole, based on multi-viewpoint observations from the Solar Dynamics Observatory and STEREO. During the early evolution of the filament eruption, it exhibits a clockwise rotation that brings its easternmost leg in contact with the oppositely aligned field at the coronal hole boundary. The interaction between the two magnetic-field systems is manifested as the development of a narrow contact layer in which we see enhanced EUV brightening and bi-directional flows, suggesting that the contact layer is a region of strong and ongoing magnetic reconnection. The coronal mass ejection (CME) resulting from this eruption is highly asymmetric, with its southern portion opening up to the upper corona, while the northern portion remains closed and connected to the Sun. We suggest that the erupting flux rope that made up the filament reconnected with both the open and closed fields at the coronal hole boundary via interchange reconnection and closed-field disconnection, respectively, which led to the observed CME configuration.  相似文献   

17.
It has been commonly accepted that coronal mass ejections (CMEs) result from the restructuring or reconfiguring of large-scale coronal magnetic fields. In this paper, we analyzed four CME events using Nançay Radioheliograph (NRH) images and the experiments onboard the Solar and Heliospheric Observatory (SOHO) spacecraft to understand the coronal restructuring leading to CME initiation. We investigated the onset, duration, and position of the radio emissions in relation to EUV dimming and the inferred CME onset. It has been identified that the early CME development on the solar disk is characterized by a series of distinct radio bursts. These nonthermal radio sources appeared in phase with coronal dimming shown by SOHO-EIT images and are located within the EUV dimming or ongoing dimming regions. Three time scales are identified: the duration, the separation of individual radio bursts, and the overall time scale of all of the nonthermal sources. They fall in the ranges of approximately tens of seconds to three minutes, one to three minutes, and 15 – 20 minutes, respectively. The individual radio emission seems to shift and expand at the speed of the fast magnetoacoustic waves in the corona; while the nonthermal radio emissions as a whole appear episodically to correspond to the successive coronal restructuring. If we define the triggering speed by dividing the overall spatial scale by the temporal scale of all the radio bursts, then the triggering speed falls in the range of 300 – 400 km s?1. This implies that the general process of coronal restructuring and reconfiguring takes place at a speed slower than either the Alvfenic or acoustic speed in the corona. This is a type of speed of “topology waves,” i.e., the speed of successive topology changes from closed to open field configuration.  相似文献   

18.
C. Jacobs  S. Poedts 《Solar physics》2012,280(2):389-405
Large-scale solar eruptions, known as coronal mass ejections (CMEs), are regarded as the main drivers of space weather. The exact trigger mechanism of these violent events is still not completely clear; however, the solar magnetic field indisputably plays a crucial role in the onset of CMEs. The strength and morphology of the solar magnetic field are expected to have a decisive effect on CME properties, such as size and speed. This study aims to investigate the evolution of a magnetic configuration when driven by the emergence of new magnetic flux in order to get a better insight into the onset of CMEs and their magnetic structure. The three-dimensional, time-dependent equations for ideal magnetohydrodynamics are numerically solved on a spherical mesh. New flux emergence in a bipolar active region causes destabilisation of the initial stationary structure, finally resulting in an eruption. The initial magnetic topology is suitable for the ??breakout?? CME scenario to work. Although no magnetic flux rope structure is present in the initial condition, highly twisted magnetic field lines are formed during the evolution of the system as a result of internal reconnection due to the interaction of the active region magnetic field with the ambient field. The magnetic energy built up in the system and the final speed of the CME depend on the strength of the overlying magnetic field, the flux emergence rate, and the total amount of emerged flux. The interaction with the global coronal field makes the eruption a large-scale event, involving distant parts of the solar surface.  相似文献   

19.
Using SOHO/MDI and SOHO/EIT data we study properties and dynamics of interconnected active regions, and the relations between the photospheric magnetic fields and coronal structures in active longitudes during the beginning of solar cycle 23. The emergence of new magnetic flux results in appearance of new interconnecting loops. The existence of stable coronal structures strongly depends on the photospheric magnetic fluxes and their variations. We present some initial results for a complex of solar activity observed in April 1997, and discuss the role of reconnection in the formation of the interconnected loops and coronal holes.  相似文献   

20.
We have analyzed dimmings, i.e., regions of temporarily reduced brightness, and manifestations of a coronal wave in the famous event of 14 July 2000 using images produced with the EUV telescope SOHO/EIT. Our analysis was inspired by a paper by Andrews (2001, Solar Phys. 204, 181 (Paper I)), in which this event was studied using running-difference EIT images at 195 Å formed by subtraction of a previous image from each current one. Such images emphasize changes of the brightness, location, and configuration of observed structures occurring during the 12-min interval between two subsequent heliograms. However, they distort the picture of large-scale disturbances caused by a CME, particularly, dimmings. A real picture of dimmings can be obtained from fixed-base difference ‘de-rotated’ images. The latter are formed in two stages: first, the solar rotation is compensated using three-dimensional rotation of all images (‘de-rotation’) to the time of a pre-event heliogram, here 10:00 UT, and then the base heliogram is subtracted from all others. We show real dimmings to be essentially different from those described by Andrews (Paper I). The restructuring of large-scale magnetic fields in the corona in connection with the CME was accompanied by the appearance and growth of two large dimmings. One of them was located along the central meridian, southward of the eruption center, at the place of the pre-eruption arcade. Another dimming occupied the space between the flare region and a remote western active region. Several smaller dimmings were observed virtually over the whole solar disk, especially, within the northwest quadrant. We have also revealed a propagating disturbance with properties of a coronal wave in the northern polar sector, where no dimmings were observed. This fact is discussed in the context of probable association between dimmings and coronal waves. Having suppressed the ‘snowstorm’ produced in the EIT images by energetic particles, we have considered dimming manifestations in all four EIT pass bands of 171, 195, 284, and 304 Å as well as the light curves of the main dimmings including several later images at 195 Å. Our analysis shows that the major cause of the dimmings was density depletion that reached up to 30% in this event. The picture of dimmings implies that the CME in the Bastille Day event was an octopus-like bundle of some magnetic ropes, with the ‘arms’ being connected to several active regions disposed over almost the whole visible solar surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号