首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The formation mechanism of Al30O8(OH)56(H2O)2618+ (Al30) has been investigated by the density functional theory based on the supermolecule model and kinetic analysis on the 27Al nuclear magnetic resonance (NMR) experimental results in monitoring Al30 synthesis process. The theoretical chemistry calculations on the four possible schemes show that δ-Na-Al13 is the reasonable intermediate followed by the substitution of Na with Al to form δ-Al14, and Na+ plays an important role in stabilizing the intermediate (δ-Na-Al13) in the transformation. The kinetic analysis on the 27Al NMR experimental data indicates that ε-Al13 decomposes and isomerizes in the formation of Al30, while Al monomers facilitate the decomposition of ε-Al13 and so the isomerization of ε-isomers to δ-isomers effectively. The favorable formation mechanism of Al30 includes three steps: (1) ε-Al13 decomposes and rearranges into the isomer δ-Al13; (2) Na+ reacts with δ-Al13 to stabilize the intermediate δ-Na-Al13, followed by Al monomers replacing Na to form δ-Al14; (3) δ-Al14 reacts with the Al monomers in the solution to finally form Al30. Both Al monomers and Na+ are important in the transformation. Al monomers are the basic building units and helpful to the isomerization while Na+ can well stabilize the isomer δ-Al13 to yield intermediate δ-Na-Al13. The results also show that other isomers of ε-Al13 (β-Al13 and α-Al13) form in the formation of Al30, and their calculated 27Al NMR tetrahedral resonance shifts are consistent with the experimental 27Al NMR tetrahedral signals in the preparation process of Al30.  相似文献   

2.
In this paper, the structure of the Al30O8(OH)56(H2O)2618+(Al30) polyoxocation in aqueous solution is investigated, including an exploration of its water-exchange reaction using a supramolecular model. Thirty-one solvent water molecules were explicitly included in the supramolecular model to approximate the influence of the solvent. The calculated results indicated that both the gas-phase and the supramolecular models could correctly reproduce the structure of the Al30 polyoxocation, but the supramolecular model described the structure more accurately. Using the supramolecular model, we calculated the 27Al NMR chemical shifts of various aluminum atoms using HF and GIAO methods, and they compared well to the chemical shifts determined experimentally. The water-exchange reaction of the Al30 polyoxocation could not be simulated with the gas phase model because of a proton-transfer reaction that is induced by the highly positive charge of the Al30 polyoxocation. However, the inclusion of an explicit second solvation sphere lowered the acidity of the coordinated water molecules and allowed simulation of the water exchange reaction.  相似文献   

3.
We report rates of oxygen exchange with bulk solution for an aqueous complex, IVGeO4Al12(OH)24(OH2)128+(aq) (GeAl12), that is similar in structure to both the IVAlO4Al12(OH)24(OH2)127+(aq) (Al13) and IVGaO4Al12(OH)24(OH2)127+(aq) (GaAl12) molecules studied previously. All of these molecules have ε-Keggin-like structures, but in the GeAl12 molecule, occupancy of the central tetrahedral metal site by Ge(IV) results in a molecular charge of +8, rather than +7, as in the Al13 and GaAl12. Rates of exchange between oxygen sites in this molecule and bulk solution were measured over a temperature range of 274.5 to 289.5 K and 2.95 < pH < 4.58 using 17O-NMR.Apparent rate parameters for exchange of the bound water molecules (η-OH2) are kex298 = 200 (±100) s−1, ΔH = 46 (±8) kJ · mol−1, and ΔS = −46 (±24) J · mol−1 K−1 and are similar to those we measured previously for the GaAl12 and Al13 complexes. In contrast to the Al13 and GaAl12 molecules, we observe a small but significant pH dependence on rates of solvolysis that is not yet fully constrained and that indicates a contribution from the partly deprotonated GeAl12 species.The two topologically distinct μ2-OH sites in the GeAl12 molecule exchange at greatly differing rates. The more labile set of μ2-OH sites in the GeAl12 molecule exchange at a rate that is faster than can be measured by the 17O-NMR isotopic-equilibration technique. The second set of μ2-OH sites have rate parameters of kex298 = 6.6 (±0.2) · 10−4 s−1, ΔH = 82 (±2) kJ · mol−1, and ΔS = −29 (±7) J · mol−1 · K−1, corresponding to exchanges ≈40 and ≈1550 times, respectively, more rapid than the less labile μ2-OH sites in the Al13 and GaAl12 molecules. We find evidence of nearly first-order pH dependence on the rate of exchange of this μ2-OH site with bulk solution for the GeAl12 molecule, which contrasts with Al13 and GaAl12 molecules.  相似文献   

4.
Reaction pathways, solvent effects and energy barriers have been investigated for the water exchange of the polyoxocation GaO4Al12(OH)24(H2O)127+ (K-GaAl12) in aqueous solution by means of supermolecule density functional theory calculations. In the proposed reaction pathway, the supermolecular reactant K-GaAl1215H2O first loses a water ligand to form an intermediate with a five-coordinated aluminum atom, and then the incoming water molecule in the second coordination sphere attacks the intermediate with a five-coordinated aluminum atom to produce the reaction product. Our calculated results indicate that the water exchange of K-GaAl12 proceeds via a dissociative mechanism, and that the reverse reaction of Step II is the most favorable dissociative pathway, with a barrier height of 31.3 kJ mol−1. The calculated transition-state rate for the favorable dissociative pathway is much larger than the experimental rate constant, but is close to the data calculated for Al30 by molecular dynamics. The transmission coefficient was also predicted on the basis of both the calculated transition-state rate and the experimental rate. Our calculated results also indicate that both the explicit solvent effect and the bulk solvent effect have obvious effects on the barrier heights of the water exchange reaction of K-GaAl12. By comparison, the water exchange mechanism for K-GaAl12 was found to be more similar to that for mineral surfaces than that for monomeric aluminum species.  相似文献   

5.
Silicic acid and the hexa-aqua of Al3+ are fundamental model aqueous species of chemical importance in nature. In order to investigate their hydroxyl dissociation mechanisms, Car-Parrinello molecular dynamics (CPMD) simulations were carried out, which allow treating the solutes and solvents on the same footing. The method of constraint was employed to trigger the reactions by taking coordination number as the reaction coordinate and the thermodynamic integration was used to obtain the free-energy profiles. The approximate transition states were located and the reactant and product states were also characterized. The free-energy changes of dissociation are found about 15.0 kcal/mol and 7.7 kcal/mol for silicic acid and Al-aqua, respectively. From the simulation results, the first pKas were calculated by using two approaches, which are based on the pristine thermodynamic relation and the RDF (radial distribution function)-free energy relation, respectively. Because of more uncertainties involved in the RDF way, it is suggested that the pristine way should be favored, which shows an error margin of 1 pKa unit. This study provides an encouraging basis for applying the present methodology to predict acidity constants of those groups that are difficult to measure experimentally.  相似文献   

6.
Activation volumes for exchange of oxygen between bulk aqueous solution and sites in the GaO4Al12(OH)24(H2O)127+(aq) (GaAl12) complex were measured by variable-pressure 17O NMR techniques. Near 322 K, rates of exchange for the less labile set of bridging hydroxyls in the GaAl12 decrease by a factor of about two with increasing pressure from 0.1 to 350 MPa. These data indicate a substantially positive activation volume of ΔV = +7 ± 1 cm3/mol, which is the first activation volume measured for a bridging hydroxyl in a polynuclear complex. This result suggests significant bond-lengthening in the activation step. Electrostriction effects should be small because exchange occurs via a pH-independent path under the experimental conditions. The second, more labile set of bridging hydroxyls exchange too rapidly for the variable-pressure techniques employed here. The exchange of bound-water molecules on the GaAl12 was observed at P = 350 MPa using the 17O-NMR line-broadening technique. Comparison with previous measurements at 0.1 MPa indicates decreasing line width from 0.1 to 350 MPa for temperatures at which exchange dominates, yielding an activation volume of ΔV = +3(± 1) cm3/mol. This activation volume is smaller than the value for the Al(H2O)63+ complex, suggesting that water exchange on the larger GaAl12 complex has less dissociative character although the average charge density is lower.  相似文献   

7.
Although, the kinetic reactivity of a mineral surface is determined, in part, by the rates of exchange of surface-bound oxygens and protons with bulk solution, there are no elementary rate data for minerals. However, such kinetic measurements can be made on dissolved polynuclear clusters, and here we report lifetimes for protons bound to three oxygen sites on the AlO4Al12(OH)24(H2O)127+ (Al13) molecule, which is a model for aluminum-hydroxide solids in water. Proton lifetimes were measured using 1H NMR at pH ∼ 5 in both aqueous and mixed solvents. The 1H NMR peak for protons on bound waters (η-H2O) lies near 8 ppm in a 2.5:1 mixture of H2O/acetone-d6 and broadens over the temperature range −20 to −5 °C. Extrapolated to 298 K, the lifetime of a proton on a η-H2O is τ298 ∼ 0.0002 s, which is surprisingly close to the lifetime of an oxygen in the η-H2O (∼0.0009 s), but in the same general range as lifetimes for protons on fully protonated monomer ions of trivalent metals (e.g., Al(H2O)63+). The lifetime is reduced somewhat by acid addition, indicating that there is a contribution from the partly deprotonated Al13 molecule in addition to the fully protonated Al13 at self-buffered pH conditions. Proton lifetimes on the two distinct sets of hydroxyls bridging two Al(III) (μ2-OH) differ substantially and are much shorter than the lifetime of an oxygen at these sites. The average lifetimes for hydroxyl protons were measured in a 2:1 mixture of H2O/dmso-d6 over the temperature range 3.7-95.2 °C. The lifetime of a hydrogen on one of the μ2-OH was also measured in D2O. The τ298 values are ∼0.013 and ∼0.2 s in the H2O/dmso-d6 solution and the τ298 value for the μ2-OH detectable in D2O is τ298 ∼ 0.013 s. The 1H NMR peak for the more reactive μ2-OH broadens slightly with acid addition, indicating a contribution from an exchange pathway that involves a proton or hydronium ion. These data indicate that surface protons on minerals will equilibrate with near-surface waters on the diffusional time scale.  相似文献   

8.
The solubility of Fe-ettringite (Ca6[Fe(OH)6]2(SO4)3 · 26H2O) was measured in a series of precipitation and dissolution experiments at 20 °C and at pH-values between 11.0 and 14.0 using synthesised material. A time-series study showed that equilibrium was reached within 180 days of ageing. After equilibrating, the solid phases were analysed by XRD and TGA while the aqueous solutions were analysed by ICP-OES (calcium, sulphur) and ICP-MS (iron). Fe-ettringite was found to be stable up to pH 13.0. At higher pH-values Fe-monosulphate (Ca4[Fe(OH)6]2(SO4) · 6H2O) and Fe-monocarbonate (Ca4[Fe(OH)6]2(CO3) · 6H2O) are formed. The solubilities of these hydrates at 25 °C are:   相似文献   

9.
10.
Zdenek Johan 《Lithos》1976,9(2):165-171
Senegalite is orthorhombic, mm2, a:b:c:=1.296:1:1.007; a0=9.673, b0=7.596, c0=7.668 A?, Z=4, Gcalc=2551; space group Pna2. The strongest lines in the powder pattern are: 5.41(7); 4.089(9); 3.834(10); 3.610(8); 2.990(9); 2.348(8); 2.070(7) 1.929(7); 1.505(7) Å. The chemical analysis: Al2O3 ? 46.23; Fe2O3 ? 0.28; P2O5 ? 31.85 H2O ? 21.00; sum 99.34, gives a formula Al2(PO4)(OH)3 · H2O. Colourless optically biaxial positive, nS: α=1.562, β=1.566, γ=1.587, plane of optical axies (001), Z=a, Y=c; 2V=53°, weak dispersion r > v. Measured density 2.552. The DTA curve shows endothermic reactions at 250, 370 and 440°C corresponding to the dehydration of mineral. Infrared spectrum indicates the presence of OH and H2O groups. Found in oxidation zone of Kouroudiako iron deposit, Senegal, associated with turquoise, augelite, wavellite and crandallite.  相似文献   

11.
The solubility of crystalline Mg(OH)2(cr) was determined by measuring the equilibrium H+ concentration in water, 0.01-2.7 m MgCl2, 0.1-5.6 m NaCl, and in mixtures of 0.5 and 5.0 m NaCl containing 0.01-0.05 m MgCl2. In MgCl2 solutions above 2 molal, magnesium hydroxide converted into hydrated magnesium oxychloride. The solid-liquid equilibrium of Mg2(OH)3Cl·4H2O(cr) was studied in 2.1-5.2 m MgCl2. Using known ion interaction Pitzer coefficients for the system Mg-Na-H-OH-Cl-H2O (25°C), the following equilibrium constants at I = 0 are calculated:
  相似文献   

12.
13.
14.
The magnitude of equilibrium iron isotope fractionation between Fe(H2O)63+ and Fe(H2O)62+ is calculated using density functional theory (DFT) and compared to prior theoretical and experimental results. DFT is a quantum chemical approach that permits a priori estimation of all vibrational modes and frequencies of these complexes and the effects of isotopic substitution. This information is used to calculate reduced partition function ratios of the complexes (103 · ln(β)), and hence, the equilibrium isotope fractionation factor (103 · ln(α)). Solvent effects are considered using the polarization continuum model (PCM). DFT calculations predict fractionations of several per mil in 56Fe/54Fe favoring partitioning of heavy isotopes in the ferric complex. Quantitatively, 103 · ln(α) predicted at 22°C, ∼ 3 , agrees with experimental determinations but is roughly half the size predicted by prior theoretical results using the Modified Urey-Bradley Force Field (MUBFF) model. Similar comparisons are seen at other temperatures. MUBFF makes a number of simplifying assumptions about molecular geometry and requires as input IR spectroscopic data. The difference between DFT and MUBFF results is primarily due to the difference between the DFT-predicted frequency for the ν4 mode (O-Fe-O deformation) of Fe(H2O)63+ and spectroscopic determinations of this frequency used as input for MUBFF models (185-190 cm−1 vs. 304 cm−1, respectively). Hence, DFT-PCM estimates of 103 · ln(β) for this complex are ∼ 20% smaller than MUBFF estimates. The DFT derived values can be used to refine predictions of equilibrium fractionation between ferric minerals and dissolved ferric iron, important for the interpretation of Fe isotope variations in ancient sediments. Our findings increase confidence in experimental determinations of the Fe(H2O)63+ − Fe(H2O)62+ fractionation factor and demonstrate the utility of DFT for applications in “heavy” stable isotope geochemistry.  相似文献   

15.
Chemical equilibrium between sodium-aluminum silicate minerals and chloride bearing fluid has been experimentally determined in the range 500–700°C at 1 kbar, using rapid-quench hydrothermal methods and two modifications of the Ag + AgCl acid buffer technique. The temperature dependence of the thermodynamic equilibrium constant (K) for the reaction NaAlSi3O8 + HClo = NaClo + 12Al2SiO5, + 52SiO2 + 12H2O Albite Andalusite Qtz. K = (aNaClo)(aH2O)1/2(aHClo) can be described by the following equation: log k = ?4.437 + 5205.6/T(K) The data from this study are consistent with experimental results reported by Montoya and Hemley (1975) for lower temperature equilibria defined by the assemblages albite + paragonite + quartz + fluid and paragonite + andalusite + quartz + fluid. Values of the equilibrium constants for the above reactions were used to estimate the difference in Gibbs free energy of formation between NaClo and HClo in the range 400–700°C and 1–2 kbar. Similar calculations using data from phase equilibrium studies reported in the literature were made to determine the difference in Gibbs free energy of formation between KClo and HClo. These data permit modelling of the chemical interaction between muscovite + kspar + paragonite + albite + quartz assemblages and chloride-bearing hydrothermal fluids.  相似文献   

16.
Armenite, ideal formula BaCa2Al6Si9O30·2H2O, and its dehydrated analog BaCa2Al6Si9O30 and epididymite, ideal formula Na2Be2Si6O15·H2O, and its dehydrated analog Na2Be2Si6O15 were studied by low-temperature relaxation calorimetry between 5 and 300 K to determine the heat capacity, Cp, behavior of their confined H2O. Differential thermal analysis and thermogravimetry measurements, FTIR spectroscopy, electron microprobe analysis and powder Rietveld refinements were undertaken to characterize the phases and the local environment around the H2O molecule.The determined structural formula for armenite is Ba0.88(0.01)Ca1.99(0.02)Na0.04(0.01)Al5.89(0.03)Si9.12(0.02)O30·2H2O and for epididymite Na1.88(0.03)K0.05(0.004)Na0.01(0.004)Be2.02(0.008)Si6.00(0.01)O15·H2O. The infrared (IR) spectra give information on the nature of the H2O molecules in the natural phases via their H2O stretching and bending vibrations, which in the case of epididymite only could be assigned. The powder X-ray diffraction data show that armenite and its dehydrated analog have similar structures, whereas in the case of epididymite there are structural differences between the natural and dehydrated phases. This is also reflected in the lattice IR mode behavior, as observed for the natural phases and the H2O-free phases. The standard entropy at 298 K for armenite is S° = 795.7 ± 6.2 J/mol K and its dehydrated analog is S° = 737.0 ± 6.2 J/mol K. For epididymite S° = 425.7 ± 4.1 J/mol K was obtained and its dehydrated analog has S° = 372.5 ± 5.0 J/mol K. The heat capacity and entropy of dehydration at 298 K are Δ = 3.4 J/mol K and ΔSrxn = 319.1 J/mol K and Δ = −14.3 J/mol K and ΔSrxn = 135.7 J/mol K for armenite and epididymite, respectively. The H2O molecules in both phases appear to be ordered. They are held in place via an ion-dipole interaction between the H2O molecule and a Ca cation in the case of armenite and a Na cation in epididymite and through hydrogen-bonding between the H2O molecule and oxygen atoms of the respective silicate frameworks. Of the three different H2O phases ice, liquid water and steam, the Cp behavior of confined H2O in both armenite and epididymite is most similar to that of ice, but there are differences between the two silicates and from the Cp behavior of ice. Hydrogen-bonding behavior and its relation to the entropy of confined H2O at 298 K is analyzed for various microporous silicates.The entropy of confined H2O at 298 K in various silicates increases approximately linearly with increasing average wavenumber of the OH-stretching vibrations. The interpretation is that decreased hydrogen-bonding strength between a H2O molecule and the silicate framework, as well as weak ion-dipole interactions, results in increased entropy of H2O. This results in increased amplitudes of external H2O vibrations, especially translations of the molecule, and they contribute strongly to the entropy of confined H2O at T < 298 K.  相似文献   

17.
The effects of phosphate speciation on both rates of isotopic exchange and oxygen isotope equilibrium fractionation factors between aqueous phosphate and water were examined over the temperature range 70 to 180°C. Exchange between phosphate and water is much faster at low pH than at high pH, an observation that is similar to what has been observed in the analogous sulfate-water system. Oxygen isotope fractionations between protonated species like H3PO4 and H2PO4 that are dominant at relatively low pH and species like PO43− and ion pairs like KHPO4 that are dominant at relatively high pH, range between 5 and 8‰ at the temperatures of the experiments. In aqueous phosphate systems at equilibrium, 18O/16O ratios increase with increasing degree of protonation of phosphate. This effect can be explained in part by the relative magnitudes of the dissociation constants of the protonated species. Under equilibrium conditions, carbonate in solution or in solid phases concentrates 18O relative to orthophosphate in solution or in solid phases at all temperatures, supporting the traditional view that biogenic phosphate is precipitated in near oxygen isotope equilibrium with body/ambient aqueous fluids with no attendant vital effects.  相似文献   

18.
The rates of Sb(III) oxidation by O2 and H2O2 were determined in homogeneous aqueous solutions. Above pH 10, the oxidation reaction of Sb(III) with O2 was first order with respect to the Sb(III) concentration and inversely proportional to the H+ concentrations at a constant O2 content of 0.22 × 10−3 M. Pseudo-first-order rate coefficients, kobs, ranged from 3.5 × 10−8 s−1 to 2.5 × 10−6 s−1 at pH values between 10.9 and 12.9. The relationship between kobs and pH was:
  相似文献   

19.
The structural change and mineralogy of Al gel during aging time were investigated by using spectroscopy techniques. The results indicated that: 1) the aggregation extent of solution-gel system increases with aging time, and the structure of amorphous gel becomes more short-ordered; 2) after six months, the gel formats nordstrandite and little gibbsite; 3) a marked decrease in the number of (Al-OH)oh bands occurring at 610 cm−1 and increase in the number of (Al-OH2)oh bands occurring at 555 cm−1 indicate that the gel undergoes rearrangement-like process during aging; 4) the gel constantly contains Al-O tetrahedron of Keggin structure, but the signal peak occurring at ≈61×10−6 of 27Al MAS NMR have a slight shift to downfield with aging time. A mineralogical transformation mechanism for hydrolysis Al(III) solution was proposed.  相似文献   

20.
根据X射线衍射(XRD)分析发现: A Fe3(SO4)2(OH)6(A=K+、H3O+)系列铁钒的XRD数据十分相近,难以用XRD区别,需通过能谱(EDS)辅助分析,才能区分此类铁矾。另外,此类铁矾的003和107面网间距d随K+含量增大而增大,且呈一元三次方程的关系;而033和220面网间距d随K+含量增大而减小,呈一元二次方程的关系。对该现象从铁矾晶体结构方面进行解释:K+、H3O+离子位于较大空隙中,且沿着Z轴方向排列,当K+、H3O+离子之间相互替换时,会导致该铁矾晶体结构在Z轴方向有较明显的变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号