首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prey availability and feeding success affect survival of larval striped bass (Morone saxatilis) in Chesapeake Bay and contribute to the >30-fold interannual recruitment variability. Gut contents and stable isotope analyses (δ15N and δ13C) were conducted on striped bass larvae to evaluate sources of nutrition in 2007 and 2008, years of high and poor recruitment, respectively. Ichthyoplankton and zooplankton were surveyed in the upper Chesapeake Bay, in proximity to the estuarine turbidity maximum and associated salt front. Feeding incidence and numbers of prey per gut were similar in both years and varied in relation to the salt front. The primary prey in each year was the estuarine copepod Eurytemora affinis. Substantial consumption of the freshwater cladoceran Bosmina spp. also occurred, especially up-estuary of the salt front in 2007, demonstrating that secondary prey are important to larval diets in some years. Stable isotope analysis of yolk sac and feeding-stage larvae of striped bass revealed an ontogenetic shift from maternal stable isotope signatures to those indicative of prey source. Feeding-stage larvae from up-estuary locations had the most negative δ13C values, indicating a relatively high terrestrial carbon source in prey. Spatio-temporal variability in δ15N signatures of larvae followed similar trends of δ15N variability in zooplankton prey with the highest δ15N values up-estuary of the salt front and estuarine turbidity maximum. A stable isotope analysis on archived striped bass larvae collected in 1998 and 2003, years of moderate and high recruitment, respectively, expanded the documented range of isotope signatures but did not clearly distinguish effects of nutritional sources on recruitment.  相似文献   

2.
This paper deals with the spatial and seasonal recycling of organic matter in sediments of two temperate small estuaries (Elorn and Aulne, France). The spatio-temporal distribution of oxygen, nutrient and metal concentrations as well as the organic carbon and nitrogen contents in surficial sediments were determined and diffusive oxygen fluxes were calculated. In order to assess the source of organic carbon (OC) in the two estuaries, the isotopic composition of carbon (δ 13C) was also measured. The temporal variation of organic matter recycling was studied during four seasons in order to understand the driving forces of sediment mineralization and storage in these temperate estuaries. Low spatial variability of vertical profiles of oxygen, nutrient, and metal concentrations and diffusive oxygen fluxes were monitored at the station scale (within meters of the exact location) and cross-section scale. We observed diffusive oxygen fluxes around 15 mmol m?2 day?1 in the Elorn estuary and 10 mmol m?2 day?1 in the Aulne estuary. The outer (marine) stations of the two estuaries displayed similar diffusive O2 fluxes. Suboxic and anoxic mineralization was large in the sediments from the two estuaries as shown by the rapid removal of very high bottom water concentrations of NO x ? (>200 μM) and the large NH4 + increase at depth at all stations. OC contents and C/N ratios were high in upstream sediments (11–15 % d.w. and 4–6, respectively) and decreased downstream to values around 2 % d.w. and C/N ≤ 10. δ 13C values show that the organic matter has different origins in the two watersheds as exemplified by lower δ 13C values in the Aulne watershed. A high increase of δ 13C and C/N values was visible in the two estuaries from upstream to downstream indicating a progressive mixing of terrestrial with marine organic matter. The Elorn estuary is influenced by human activities in its watershed (urban area, animal farming) which suggest the input of labile organic matter, whereas the Aulne estuary displays larger river primary production which can be either mineralized in the water column or transferred to the lower estuary, thus leaving a lower mineralization in Aulne than Elorn estuary. This study highlights that (1) meter scale heterogeneity of benthic biogeochemical properties can be low in small and linear macrotidal estuaries, (2) two estuaries that are geographically close can show different pattern of organic matter origin and recycling related to human activities on watersheds, (3) small estuaries can have an important role in recycling and retention of organic matter.  相似文献   

3.
Organic materials in lacustrine sediments are from multiple terrestrial and aquatic sources. In this study, carbon (δ13C) and hydrogen isotopic compositions (δD) of phytol, various sterols, and major n-fatty acids in sediments at Lake Haruna, Japan, were determined in their solvent-extractable (free) and saponification-released forms (bound). The δ13C-δD distributions of these lipid molecules in sediments are compared with those of terrestrial C3 and C4 plants, aquatic C3 plants, and plankton to evaluate their relative contributions. δ13C-δD of free phytol in sediments is very close to that of phytol in plankton samples, whereas δ13C-δD of bound phytol in sediments is on a mixing line between terrestrial C3 plant and plankton material. Unlike phytol, no significant δ13C-δD difference between free and bound forms was found in sterols and n-fatty acids. δ13C-δD values of algal sterols such as 24-methylcholesta-5,22-dien-3β-ol in sediments are close to those of plankton, whereas δ13C-δD of multiple-source sterols such as 24-ethylcholest-5-en-3β-ol and of major n-fatty acids such as n-hexadecanoic acid in sediments are between those of terrestrial C3 plants and plankton samples. Thus, δ13C-δD distributions clearly indicate the specific source contributions of biomarkers preserved in a lacustrine environment. Free phytol and algal sterols can be attributed to phytoplankton, and bound phytol, multiple source sterols, and major n-fatty acids are contributed by both terrestrial C3 plants and phytoplankton.  相似文献   

4.
The use of multiple stable isotopes in the study of trophic relationships in temperate estuaries has usually been limited to euhaline systems, in which phytoplankton, benthic microalgae, andSpartina alterniflora are major sources of organic matter for consumers. Within large estuaries such as Chesapeake Bay, however, many species of consumers are found in the upper mesohaline to oligohaline portions. These lower salinity wetlands have a greater abundance of macrophytes that use C3 photosynthesis to fix carbon, in addition toS. alterniflora, which fixes carbon via the C4 photosynthetic pathway. In a broad survey of the biota and sediments of a brackish tidal creek tributary to Chesapeake Bay, combined δ13C and δ34S measurements disclosed a balanced contribution to secondary production from phytoplankton, C3 macrophytes,Spartina sp., and benthic microalgae. Surface sediment δ13C suggested that the organic matter from C3 plants was derived both from allochthonous sources (terrestrial runoff) and from autochthonous production (marsh macrophytes). Unlike most estuarine systems studied to date, which are dominated by algae (phytoplankton and benthic microalgae) and C4 macrophytes, C3 plants are of greater importance in the diets of consumers in this low-salinity creek system.  相似文献   

5.
The natural aging process of Chesapeake Bay and its tributary estuaries has been accelerated by human activities around the shoreline and within the watershed, increasing sediment and nutrient loads delivered to the bay. Riverine nutrients cause algal growth in the bay leading to reductions in light penetration with consequent declines in sea grass growth, smothering of bottom-dwelling organisms, and decreases in bottom-water dissolved oxygen as algal blooms decay. Historically, bay waters were filtered by oysters, but declines in oyster populations from overfishing and disease have led to higher concentrations of fine-sediment particles and phytoplankton in the water column. Assessments of water and biological resource quality in Chesapeake Bay and tributaries, such as the Potomac River, show a continual degraded state. In this paper, we pay tribute to Owen Bricker’s comprehensive, holistic scientific perspective using an approach that examines the connection between watershed and estuary. We evaluated nitrogen inputs from Potomac River headwaters, nutrient-related conditions within the estuary, and considered the use of shellfish aquaculture as an in-the-water nutrient management measure. Data from headwaters, nontidal, and estuarine portions of the Potomac River watershed and estuary were analyzed to examine the contribution from different parts of the watershed to total nitrogen loads to the estuary. An eutrophication model was applied to these data to evaluate eutrophication status and changes since the early 1990s and for comparison to regional and national conditions. A farm-scale aquaculture model was applied and results scaled to the estuary to determine the potential for shellfish (oyster) aquaculture to mediate eutrophication impacts. Results showed that (1) the contribution to nitrogen loads from headwater streams is small (about 2 %) of total inputs to the Potomac River Estuary; (2) eutrophic conditions in the Potomac River Estuary have improved in the upper estuary since the early 1990s, but have worsened in the lower estuary. The overall system-wide eutrophication impact is high, despite a decrease in nitrogen loads from the upper basin and declining surface water nitrate nitrogen concentrations over that period; (3) eutrophic conditions in the Potomac River Estuary are representative of Chesapeake Bay region and other US estuaries; moderate to high levels of nutrient-related degradation occur in about 65 % of US estuaries, particularly river-dominated low-flow systems such as the Potomac River Estuary; and (4) shellfish (oyster) aquaculture could remove eutrophication impacts directly from the estuary through harvest but should be considered a complement—not a substitute—for land-based measures. The total nitrogen load could be removed if 40 % of the Potomac River Estuary bottom was in shellfish cultivation; a combination of aquaculture and restoration of oyster reefs may provide larger benefits.  相似文献   

6.
Records of stable carbon isotopes (δ13C) are presented from cores collected from four San Francisco Bay marshes and used as a proxy for changes in estuary salinity. The δ13C value of organic marsh sediments are a reflection of the relative proportion of C3 vs. C4 plants occupying the surface, and can thus be used as a proxy for vegetation change on the marsh surface. The four marshes included in this study are located along a natural salinity gradient that exists in the San Francisco Bay, and records of vegetation change at all four sites can be used to infer changes in overall estuary paleosalinity. The δ13C values complement pollen data from the same marsh sites producing a paleoclimate record for the late Holocene period in the San Francisco Bay estuary. The data indicate that there have been periods of higher-than-average salinity in the Bay estuary (reduced fresh water inflow), including 1600-1300 cal yr B.P., 1000-800 cal yr B.P., 300-200 cal yr B.P., and ca. A.D. 1950 to the present. Periods of lower-than-average salinity (increased fresh water inflow) occurred before 2000 cal yr B.P., from 1300 to 1200 cal yr B.P. and ca. 150 cal yr B.P. to A.D. 1950. A comparison of the timing of these events with records from the California coast, watershed, and beyond the larger drainage of the Bay reveals that the paleosalinity variations reflected regional precipitation.  相似文献   

7.
Organic geochemical proxies have been studied in a 45-cm-long core retrieved from Lake Naukuchiyatal in Kumaun Himalayas, India. Increase in TOC, N, hydrocarbons and pigments concentration from bottom to surface sediments of the core indicates increase in the lake productivity. Stable isotopes (δ13C and δ 15 N), biomarkers (TAR, CPI and n-ΣC15,17,19) and C/N atomic (between 9 and 12) suggest dominance of algal derived organic matter in these sediments. Decrease in organic δ13C values (between ?27 and ?31‰) in surface sediments indicate influence of sewage and land runoff in shifting organic δ13C values, whereas low (between ?0.23 and 2.2‰) δ15N values together with high pigment concentrations (zeaxanthin and echinenone) represent dominance of cyanobacteria in the lake.  相似文献   

8.
Tropical estuaries are increasingly altered by inputs from watersheds subject to widespread deforestation, as well as by globally driven hydrodynamic changes in adjoining seas. To assess contributions of C4 and C3 plants (from pasture and forest vegetation cover, respectively) to particulates exported from Pacific Panama watersheds, we measured δ13C and δ15N in suspended particulate matter (SPM) within eight mangrove estuaries whose watersheds differed in degree of conversion from forest to pasture land cover. These measurements also allowed evaluation of down-estuary transformations and the relative marine influence on transport and exchanges of particles between land, estuary, and sea. Imprint of watershed mosaic was detectable in δ13C of SPM within upper reaches of estuaries but disappeared down-estuary. Detectably heavier δ13C suggested that C4 plants contributed to SPM in upper reaches of estuaries. δ13C signatures were sufficiently sensitive to reveal presence of a small, but still detectable, contribution by C4 grasses to SPM. Influence of heavier marine-derived sources increased down-estuary, erasing terrestrial imprints. δ13C and δ15N in SPM, and in mangrove species present, became enriched down-estuary, likely from increased inputs of particulates bearing heavier signatures from upwelled waters. In this tropical Pacific region, estuarine particulates are subject to increasing shifts in land cover as deforestation increases, and to global-scale changes in hydrodynamic forcing of upwelled waters.  相似文献   

9.
We developed a synthesis using diverse monitoring and modeling data for Mattawoman Creek, Maryland, USA to examine responses of this tidal freshwater tributary of the Potomac River estuary to a sharp reduction in point-source nutrient loading rate. Oligotrophication of these systems is not well understood; questions concerning recovery pathways, threshold responses, and lag times remain to be clarified and eventually generalized for application to other systems. Prior to load reductions Mattawoman Creek was eutrophic with poor water clarity (Secchi depth <0.5 m), no submerged aquatic vegetation (SAV), and large algal stocks (50–100 μg L?1 chlorophyll-a). A substantial modification to a wastewater treatment plant reduced annual average nitrogen (N) loads from 30 to 12 g N m?2 year?1 and phosphorus (P) loads from 3.7 to 1.6 g P m?2 year?1. Load reductions for both N and P were initiated in 1991 and completed by 1995. There was no trend in diffuse N and P loads between 1985 and 2010. Following nutrient load reduction, NO2?+?NO3 and chlorophyll-a decreased and Secchi depth and SAV coverage and density increased with initial response lag times of one, four, three, one, and one year, respectively. A preliminary N budget was developed and indicated the following: diffuse sources currently dominate N inputs, estimates of long-term burial and denitrification were not large enough to balance the budget, sediment recycling of NH4 was the single largest term in the budget, SAV uptake of N from sediments and water provided a modest seasonal-scale N sink, and the creek system acted as an N sink for imported Potomac River nitrogen. Finally, using a comparative approach utilizing data from other shallow, low-salinity Chesapeake Bay ecosystems, strong relationships were found between N loading and algal biomass and between algal biomass and water clarity, two key water quality variables used as indices of restoration in Chesapeake Bay.  相似文献   

10.
Analysis of 3-m sediment cores revealed that profiles of carbon (C), sulfur (S), and iron (Fe) varied with relative distance from marine and terrestrial sediment sources in Tomales Bay California. Despite relatively high sedimentation rates throughout the bay (historically 3–30 mm yr−1), sulfate reduction of deposited organic matter led to free-sulfide accumulation in sediments only at the location farthest from terrestrial runoff, the source of reactive iron. Acid-volatile sulfide concentrations in all sediments (<10 μmol g−1) were low relative to concentrations of chromiumreducible sulfide (up to 400 μmol g−1 farthest from the reactive iron source). A calculated index of iron availability, used to describe sediment resistance to build-up of free sulfide, was lowest at this location. Recent, upward shifts in reactive Fe concentration and in the relative contribution of terrestrial orgnic carbon (measured as a shift in δ13C of bulk sediment organic matter) in all cores indicated that erosion and transport of sediments from the watershed surrounding Tomales Bay increased after European settlement in the 1850s.  相似文献   

11.
Multi-year nitrogen (N) and phosphorus (P) budgets were developed for the Patuxent River estuary, a seasonally stratified and moderately eutrophic tributary of Chesapeake Bay. Major inputs (point, diffuse, septic, and direct atmospheric) were measured for 13 years during which, large reductions in P and then lesser reductions in N-loading occurred due to wastewater treatment plant improvements. Internal nutrient losses (denitrification and long-term burial of particulate N and P) were measured in tidal marshes and sub-tidal sediments throughout the estuary as were nutrient storage in the water column, sediments, and biota. Nutrient transport between the oligohaline and mesohaline zones and between the Patuxent and Chesapeake Bay was estimated using a salt and water balance model. Several major nutrient recycling terms were directly and indirectly evaluated and compared to new N and P inputs on seasonal and annual time-scales. Major findings included: (1) average terrestrial and atmospheric inputs of N and P were very close to the sum of internal losses plus export, suggesting that dominant processes are captured in these budgets; (2) both N and P export were a small fraction (13% and 28%, respectively) of inputs, about half of that expected for N based on water residence times, and almost all exported N and P were in organic forms; (3) the tidal marsh-oligohaline estuary, which by area comprised ~27% of the full estuarine system, removed about 46% and 74% of total annual upland N and P inputs, respectively; (4) recycled N and P were much larger sources of inorganic nutrients than new inputs during warm seasons and were similar in magnitude even during cold seasons; (5) there was clear evidence that major estuarine processes responded rapidly to inter-annual nutrient input variations; (6) historical nutrient input data and nutrient budget data from drought periods indicated that diffuse nutrient sources were dominant and that N loads need to be reduced by about 50% to restore water quality conditions to pre-eutrophic levels.  相似文献   

12.
Calculations by others of the preindustrial deposition of inorganic nitrogen from the atmosphere in the area of Narragansett Bay compared with recent measurements suggest that this flux has increased almost 15 times over natural background. On the basis of modern studies of the export of nitrogen and phosphorus from temperate forests, the prehistoric watershed also probably contributed very little reactive N or P to the bay. New information from undisturbed old-growth forests suggests that most of the N that was exported from the watershed was probably associated with refractory dissolved organic matter and thus contributed little to the fertility of the bay. The largest source of reactive dissolved inorganic nitrogen (DIN) and phosphorus (DIP) for Narragansett Bay under prehistoric conditions was the coastal ocean water entrained in the bay in estuarine circulation. The total input of DIN to this estuary has increased about five-fold and the input of total DIP has approximately doubled as a result of human activities. Recent ecosystem-level experiments using large (13 m3, 5 m deep) mesocosms designed as living models of Narragansett Bay showed that the primary production of phytoplankton in the bay is limited by the supply of DIN and that annual phytoplankton production is strongly correlated with the rate of input of DIN. The relationship between DIN input and annual phytoplankton production in the mesocosms is consistent with observations published by others working in 10 different natural marine systems, and a functional regression of the field and experimental data provides a tool to calculate the rate of prehistoric phytoplankton production that would have been associated with the prehistoric DIN input estimates. The result of this calculation suggests that phytoplankton production in the bay has approximately doubled (from about 130 g C m?2 yr?1 to 290 g C m?2 yr?1 for a baywide average) since the time of European contact. It also seems likely that seagrasses and macroalgae once made a much larger contribution to total system production than they do today.  相似文献   

13.
Over the past decade, nitrogen (N) loads to Narragansett Bay have decreased by more than 50%. These reductions were, in large part, the direct result of multiple wastewater treatment facility upgrades to tertiary treatment, a process which employs N removal. Here, we document ecosystem response to the N reductions and assess how the distribution of sewage N in Narragansett Bay has changed from before, during, and shortly after the upgrades. While others have observed clear responses when data were considered annually, our seasonal and regional comparisons of pre- and post-tertiary treatment dissolved inorganic nitrogen (DIN) concentrations and Secchi depth data, from bay-wide surveys conducted periodically from the early 1970s through 2016, resulted in only a few subtle differences. Thus, we sought to use stable isotope data to assess how sewage N is incorporated into the ecology of the Bay and how its distribution may have changed after the upgrades. The nitrogen (δ15N) and carbon (δ13C) stable isotope measurements of particulate matter served as a proxy for phytoplankton, while macroalgae served as short-term integrators of water column bio-available N, and hard clams (Mercenaria mercenaria) as integrators of water column production. In contrast to other estuarine stable isotope studies that have observed an increased influence of isotopically lower marine N when sewage N is reduced, the opposite has occurred in Narragansett Bay. The tertiary treatment upgrades have increased the effluent δ15N values by at least 2‰. The plants and animals throughout Narragansett Bay have similarly increased by 1–2‰, on average. In contrast, the δ13C values measured in particulate matter and hard clams have declined by about the same amount. The δ15N results indicated that, even after the N reductions, sewage N still plays an important role in supporting primary and secondary production throughout the bay. However, the δ13C suggests that overall net production in Narragansett Bay has decreased. In the 5 years after the major wastewater treatment facilities came on-line for nutrient removal, oligotrophication has begun but sewage remains the dominant source of N to Narragansett Bay.  相似文献   

14.
Sediment grain size and organic carbon (OC) data collected over the past 50 years, together with δ13C values of OC in recently collected samples, were analyzed to improve understanding of sediment OC distribution and abundance in Todos Santos Bay. Sediments in the submarine canyon at the mouth of the bay and in quiet-water locations along the shore are fine grained, high in OC, and have generally low δ13C values; sediments in high-energy environments are low in OC and have high δ13C values. A bivariate isotopic mixing model indicates that none of the sediments contain >50% terrigenous OC (average ~30%), and that the terrigenous OC content of the sediments is a small proportion of the OC content of local soils. Sediment OC composition is apparently controlled by energy-related sorting and deposition, oxidation of much of the original terrigenous OC, and replacement of some terrigenous OC by marine OC.  相似文献   

15.
Large shifts in the isotopic compositions of organic matter (OM) in lake sediments, over the last few hundred years, are commonly interpreted as representing changes in photosynthetic productivity corresponding to eutrophication or in the input of terrestrial OM due to human disturbances. Based on multiple-proxy data (C:N ratio, δ13C and δ15N of OM, δ13C of calcite, lithology and fossil pollen) from a 700-year sediment core at White Lake, New Jersey (USA), we propose a new explanation that relates these large shifts in OM δ13C and δ15N to human-induced changes in aquatic OM producers. Combined records of geochronology, fossil pollen and lithology from White Lake reveal that the upland forest was cleared by European settlers for farmland beginning around 1745 A.D. and has gradually reforested since 1930 after the abandonment of the farmlands. For the pre-agricultural period, OM had relatively constant but extremely low δ13CVPDB (−35.8 to −34.5‰) and δ15NAir (−3.5 to −2.5‰) and high atomic C:N ratios (13.7 to 16.7), indicating a stable anoxic lake environment with prominent microbial producers. Following the human disturbance (since 1745), high OM mass accumulation rates and abundances of the green alga Pediastrum indicate an increase in aquatic photosynthetic productivity due to enhanced nutrient input from disturbed uplands. However, carbonate δ13C remains constant or even decreases during this period, implying that increasing productivity did not elevate the δ13C of dissolved inorganic carbon and thus cannot explain the observed large increase in OM δ13C (7.4‰) and δ15N (5.8‰) over this period. Instead, δ13C, δ15N and C:N ratios of OM and differences in δ13C between calcite and OM suggest that the large increase in OM δ13C and δ15N can be attributed to a human-induced ecological shift in the predominant organic source from anaerobic bacteria to autotrophic phytoplankton. During the post-agricultural period, mass accumulation rates of OM, carbonate and silicate, and the δ13C of OM and calcite all decreased significantly, corresponding to stabilization of the uplands. However, over the last 70 years, an intensifying aquatic stress from the deposition of 15N-enriched industrial pollutants has resulted in a steady increase of 1.9‰ in δ15N. Proxy records for lake (δ13C and δ15N of OM) and upland conditions (pollen and silicates) at White Lake show complex trajectories of the aquatic and terrestrial ecosystems in response to past human disturbances.  相似文献   

16.
This paper examines how the mixing of freshwater and seawater, and related mixing of freshwater and marine particulate organic matter (POM) in the permanently stratified estuary of the River Krka, Croatia, are reflected in the stable isotope fingerprints of soft tissues and tubes of the serpulid Ficopomatus enigmaticus. The carbon stable isotope composition (δ13C values) of the river-borne POM is retained over long distances, causing a depletion in 13C of POM in brackish waters. A trophic depletion in 13C was recorded in serpulid soft tissues. The serpulid carbonate tubes were depleted in 13C even at locations with salinity close to that of the sea and were subject to large isotope fractionation between dissolved inorganic C (DIC) and carbonate caused by vital effects, making carbonate depleted in 13C by several per mil compared with DIC. These effects, though large in the freshwater zone, fade towards the sea. The carbonate δ18O values of tubes reflect the δ18O values of the water. The temperature-related differences in δ18O values of tubes from different sites are masked by source-related differences in the δ18O values of water arising from mixing of freshwater and seawater in the estuary. Therefore, in serpulide tubes, the terrestrial component can easily be overestimated because of vital effects during biomineralisation and trophic depletion in 13C in freshwater and brackish environments.  相似文献   

17.
Organic carbon (OC) and total nitrogen (TN) concentrations and stable isotope ratios (δ13C, δ15N) of fine (<50 μm) size fractions of deep-sea sediments from the central North Atlantic were employed to identify changes in sources of organic matter over the past 50 ka BP. Ambient glacial sediments are characterised by values that reflect mixtures of marine and terrestrial inputs (averages ± 1σ: OC/TN = 7.6 ± 0.8; δ13C = −22.8 ± 1.0‰; δ15N = 5.5 ± 0.6‰). δ13C, OC, and TN concentrations shift to higher values during the Holocene, indicating a gradual decrease of fine terrigenous supply to the North Atlantic. The unchanged δ15N record between last glacial and Holocene stages indicates that the central North Atlantic region remained oligotrophic at least during the past 50 ka BP, but additional studies are required to support this result in terms of nitrogen oceanic budget. During the phases of enhanced ice-rafted detrital supply corresponding to prominent Heinrich events (HL1, HL2, HL4, and HL5), fine-sized sedimentary organic matter has lower OC and TN concentrations, contrasting sharply with those of ambient glacial sediments. Lower δ13C (down to −28‰) and δ15N (down to 1.6‰) values and high OC:TN ratios (up to 14.7 ± 1.1) are found for HL1, HL2, and with lesser extent for HL4. These values reflect enhanced detrital supply originating from poorly differentiated soil horizons that characterise periglacial climate conditions and from organic matter-bearing rock sources of the underlying geological basement. During HL5, only the δ13C offset records the input of fine size ice-rafted organic matter. Gradually changing soil development conditions during the time interval covering HL5 to HL1 (marine isotope stages 5 to 2), as well as varying erosion levels, have been hypothesized on the basis of constant δ13C, increasing OC/TN and decreasing δ15N values.  相似文献   

18.
The purpose of this study was to quantify the nitrogen (N) inputs to 34 estuaries on the Atlantic and Gulf Coasts of the United States. Total nitrogen (TN) inputs ranged from 1 kg N ha−1 yr−1 for Upper Laguna Madre, Texas, to 49 kg N ha−1 yr−1 for Massachusetts Bay, Massachusetts. TN inputs to 11 of the 34 estuaries were dominated by urban N sources (point sources and septic systems) and nonpoint source N runoff (5% of total); point sources accounted for 36–86% of the TN inputs to these 11 urban-dominated estuaries. TN inputs to 20 of the 34 estuaries were dominated by agricultural N sources; N fertilization was the dominant source (46% of the total), followed by manure (32% of the total) and N fixation by crops (16% of the total). Atmospheric deposition (runoff from watershed plus direct deposition to the surface of the estuary) was the dominant N source for three estuaries (Barnegat Bay, New Jersey: 64%; St. Catherines-Sapelo, Georgia: 72%; and Barataria Bay, Louisiana: 53%). Six estuaries had atmospheric contributions ≥30% of the TN inputs (Casco Bay, Maine: 43%; Buzzards Bay, Massachusetts: 30%; Great Bay, New Jersey: 40%; Chesapeake Bay: 30%; Terrebonne-Timbalier Bay, Louisiana: 59%; and Upper Laguna Madre: 41%). Results from our study suggest that reductions in N loadings to estuaries should be accomplished by implementing watershed specific programs that target the dominant N sources.  相似文献   

19.
This paper will discuss the use of chemical proxies in coral skeletons to reconstruct the history of salinity (from the δ18O of the skeleton) and nutrients in the water (from the δ13C) in Florida Bay between 1824 and 1994. Monthly salinity and water temperature data collected since 1989 were used to establish a correlation between salinity, temperature, and the δ18O of the skeleton of the coralSolenastrea bournoni from Lignumvitae Basin in Florida Bay. This relationship explains over 50% of the variance in the δ18O of the skeleton. Assuming that interannual variations in the temperature of the water are small, we have applied this relationship to the δ18O measured in the coral skeleton collected from Lignumvitae Basin which has a record between 1824 and 1993. These data provide a revised estimate of salinity variation in Lignumvitae Basin for the period when historical records for salinity were not available, and show that the highest salinity events occurred in the past 30 yr. Using the relationships between the salinity in Lignumvitate Basin and other basins, obtained using a modern dataset, we are able to estimate ranges in salinity for other portions of Florida Bay. Skeletons of specimens of the coral speciesSiderastrea radians collected from other areas of Florida Bay show similar patterns in the δ18O over the past 10 yr, indicating that corals in most portions of Florida Bay are recording salinity variations in their skeletons and therefore support the idea that salinity variations in different portions of Florida Bay can be related. Fluorescence analysis of the coral from Lignumvitae Basin shows a large change in the magnitude of the 10-yr signal coincident with the construction of the railway, confirming that this event had a significant impact upon Florida Bay. The δ13C of the coral skeletons reveals a long-term history of the oxidation of organic material, fixation of carbon by photosynthesis (algal blooms), and the intrusion of marine water into the bay. Since the construction of the railway from Miami to Key West there has been a long-term decrease in the δ13C of the coral skeleton from Lignumvitae Basin, suggesting the increased oxidation of organic material in this area. This decrease in δ13C appears to have reached a minimum value around 1984 and has increased since this time in the western portions of Florida Bay. The increase may be related to the algal blooms prevalent in the area or alternatively could result from intrusion of more marine water. In the eastern areas, a small increase in the δ18C between 1984 and 1988 was followed by further decline suggesting more oxidation of organic material. We have also attempted to use the concentration of barium in the coral skeleton as a proxy indicator of the nutrient status in Florida Bay.  相似文献   

20.
The temporal and spatial distributions of salinity, dissolved oxygen, suspended particulate material (SPM), and dissolved nutrients were determined during 1983 in the Choptank River, an estuarine tributary of Chesapeake Bay. During winter and spring freshets, the middle estuary was strongly stratified with changes in salinity of up to 5‰ occurring over 1 m depth intervals. Periodically, the lower estuary was stratified due to the intrusion of higher salinity water from the main channel of Chesapeake Bay. During summer this intrusion caused minimum oxygen and maximum NH4 + concentrations at the mouth of the Choptank River estuary. Highest concentrations of SPM, particulate carbon (PC), particulate nitrogen (PN), total nitrogen (TN), total phosphorous (TP) and dissolved inorganic nitrogen (DIN) occurred in the upper estuary during the early spring freshet. In contrast, minimum soluble reactive phosphate (SRP) concentrations were highest in the upper estuary in summer when freshwater discharge was low. In spring, PC:PN ratios were >13, indicating a strong influence by allochthonous plant detritus on PC and PN concentrations. However, high concentrations of PC and PN in fall coincided with maximum chlorophyll a concentrations and PC:PN ratios were <8, indicating in situ productivity controlled PC and PN levels. During late spring and summer, DIN concentrations decreased from >100 to <10 μg-at l?1, resulting mainly from the nonconservative behavior of NO3 ?, which dominated the DIN pool. Atomic ratios of both the inorganic and total forms of N and P exceeded 100 in spring, but by summer, ratios decreased to <5 and <15, respectively. The seasonal and spatial changes in both absolute concentrations and ratios of N and P reflect the strong influence of allochthonous inputs on nutrient distributions in spring, followed by the effects of internal processes in summer and fall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号