首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
An in situ weathering profile overlying chlorite schists in the Mbalmayo-Bengbis formations (South Cameroon) was chosen for the study of the behaviour of REE and the evaluation of geochemical mass balance. After physical and mineralogical studies, the chlorite schists and the undisturbed weathered materials were chemically analyzed for major elements (X-ray fluorescence and titrimetry) and REE (ICP-MS). The behaviour of the REE in the Mbalmayo weathering system was established in comparison with the REE of the reference parent rock. Mass balance calculations were applied to both major elements and REE. The mineralogy of the materials was determined with the aid of a Philips 1720, diffractometer. The chlorite schists of the Mbalmayo sector show low REE contents (Σ=153.44 ppm). These rocks are relatively rich in LREE (about 125 times the chondritic value) and relatively poor in HREE (about 20 times the chondritic value). The REE diagram normalized to chondrites shows a slightly split graph ((La/Yb)N=6.18) with marked enrichment in LREE (LREE/HREE=9.50) in relation to HREE. Moreover, these spectra do not present any Ce anomaly, but a slightly positive Eu anomaly. The imperfectly evolved profile, whose materials are genetically linked, shows an atypical behaviour of REE. In effect, the LREE are more mobile than the HREE during weathering ((La/Yb)NASC<1) with weak Ce anomalies. This has been rarely reported in lateritic profiles characterized by higher HREE mobility than LREE during weathering processes with high Ce anomalies. This is either due to the difference in the stability of REE-bearing minerals, or to the weak acidic to basic pH conditions (6.70<pH<7.80), or even due to the average evolution of the weathering materials. The pathway of the REE along the profile is as follows: (1) leaching in the saprolites and summit of the profile, except for Ce, which precipitates very weakly in the nodular materials and the coarse saprolite materials, (2) at the base of the profile, solutions come in contact with chlorite schist formations, at this level, the pH increases (pH=7.79), HREE and a part of LREE partially void of Ce precipitate and (3) the other part of LREE precipitates further up in the profile. The geochemical mass balance calculations reveal that these elements are leached in the same phases as the relatively high Si, Al, K and Fe2+ contents.  相似文献   

2.
“寨背式”离子吸附型稀土矿床多类型稀土矿化及其成因   总被引:1,自引:0,他引:1  
赵芝  王登红  邹新勇 《岩石学报》2022,38(2):356-370
赣南寨背离子吸附型稀土矿床产于寨背复式花岗岩体的风化壳中,自20世纪80年代发现以来一直以轻稀土型开采,近年在轻稀土型花岗岩风化壳中发现了重稀土矿。为了探讨轻稀土型花岗岩风化过程中重稀土元素的迁移、分馏和富集机制,本文选择了区内三个具有代表性的风化壳钻孔(ZK1、ZK2和ZK4)对其进行了全相和离子交换相稀土元素地球化学研究。结果显示:钻孔ZK4中离子交换相稀土含量介于14.90×10-6~835.8×10-6之间,并富集轻稀土(LREE/HREE=2.28~10.78);钻孔ZK1中离子交换相稀土含量达1470×10-6(9件样品均值),具有从轻稀土型向重稀土型过渡的配分特征(LREE/HREE=1.30~1.65),并且剖面自上而下显示轻、重稀土逐渐富集的趋势;钻孔ZK2中离子交换相稀土含量为492.4×10-6(8件样品均值),自上而下稀土配分类型从轻稀土型过渡至重稀土型(LREE/HREE=0.43~2.25),且轻稀土富集在全风化层上部而重稀土则富集在下部。三个钻孔的Nb/Ta和Zr/Hf...  相似文献   

3.
Geochemical and geochronological studies were conducted on basalts and laterites from the Bolaven Plateau in southern Laos in order to evaluate the mobility and mineralization of REE, Y and Sc during laterization. The basalts are classified into three categories: (i) small volumetric alkali basalt (eruption age: 15.7 Ma), large volumetric olivine tholeiite (1.2 Ma) and quartz tholeiite with olivine tholeiite (younger than 0.5 ± 0.2 Ma). Formation of REE minerals during laterization result in mobilization and fractionation of REE and Y in laterite profiles. Occurrence of florencite‐(Ce) in a laterite profile derived from alkali basalt immobilizes REE (particularly LREE) and this leads the laterites to be enriched in LREE relative to the parent basalt. Few positive Ce anomalies in this profile suggest that florencite‐(Ce) [(Ce)Al3(PO4)2(OH)2] formation was followed by CeO2 precipitation due to the change of redox condition. In tholeiite‐derived laterite profiles, florencite is not recognized and REE and Y tend to be depleted relative to the parent basalts with positive Ce anomalies. This is interpreted as scavenging REE3+ except for Ce4+ from the laterite profile in oxidizing conditions. Sc behaves similarly to Fe during laterization and it is more abundant in the tholeiitic laterite than that in the alkali basaltic laterite. Results of sequential extraction indicate that REE of the alkali basaltic laterite are contained in residual phase, which is dominantly florencite‐(Ce), but they are rarely present in ion‐adsorption phase. It is concluded that basaltic laterites have a low potential of REE resource in terms of low REE contents and a difficulty in REE extraction.  相似文献   

4.
In this study, the mobilization, redistribution, and fractionation of trace and rare earth elements (REE) during chemical weathering in mid-ridge (A), near mountaintop (B), and valley (C) profiles (weak, weak to moderate, and moderate to intense chemical weathering stage, respectively), are characterized. Among the trace elements, U and V were depleted in the regolith in all three profiles, Sr, Nb, Ta, Zr, and Hf displayed slight gains or losses, and Th, Rb, Cs, and Sc remained immobile. Mn, Ba, Zn, Cu, and Cr were enriched at the regolith in profiles A and B, but depleted in profile C. Mn, Pb, and Co were also depleted in the saprock and fractured shale zones in profiles A and B and enriched in profile C. REEs were enriched in the regolith and depleted at the saprock zone in profiles A and B and depleted along profile C. Mobility of trace and REEs increased with increasing weathering intensity. Normalized REE patterns based on the parent shale revealed light REE (LREE) enrichment, middle REE (MREE), and heavy REE (HREE) depletion patterns. LREEs were less mobile compared with MREEs and HREEs, and this differentiation increased with increasing weathering degree. Positive Ce anomalies were higher in profile C than in profiles A and B. The Ce fractionated from other REE showed that Ce changed from trivalent to tetravalent (as CeO2) under oxidizing conditions. Minimal REE fractionation was observed in the saprock zone in profiles A and B. In contrast, more intense weathering in profile C resulted in preferential retention of LREE (especially Ce), leading to considerable LREE/MREE and LREE/HREE fractionation. (La/Yb)N and (La/Sm)N ratios displayed maximum values in the saprock zone within low pH values. Findings demonstrate that acidic solutions can mobilize REEs and result in leaching of REEs out of the highly acidic portions of the saprock material and transport downward into fractured shale. The overall behavior of elements in the three profiles suggests that solution pH, as well as the presence of primary and secondary minerals, play important roles in the mobilization and redistribution of trace elements and REEs during black shale chemical weathering.  相似文献   

5.
珠江三角洲地区上更新统与全新统之间广泛发育1层杂色黏土,其成因多认为主要是由上更新统沉积物在末次冰盛期暴露于地表风化而成。对取自珠江三角洲3条钻孔(PRD09、PRD16和PRD17)的岩心样品分析表明,受风化作用的影响,其稀土元素含量和分异特征发生了较明显的变化。杂色黏土层的稀土总量大大低于下伏沉积物,而在邻近风化层的下伏沉积物中稀土元素却表现为明显富集,尤其是重稀土元素的富集。风化作用强度较大的PRD09孔和PRD17孔下伏沉积物中的稀土富集程度高于风化作用强度相对较小的PRD16孔。珠江三角洲在末次冰盛期时普遍发育的酸性介质条件,促进了风化层的稀土元素发生溶解和迁移。在风化过程中,由于轻、重稀土元素具有不同的溶解迁移能力和吸附能力,导致杂色黏土层的REE指标值(LREE/HREE、(La/Gd)N和(La/Yb)N)高于下伏沉积物。风化过程对Ce、Eu异常有一定的影响,但不十分明显,杂色黏土层的Ce、Eu异常值仅略低于下伏沉积物。  相似文献   

6.
足洞和关西岩体分别为花岗岩风化壳离子吸附型重、轻稀土矿床的原岩。足洞岩体的∑REE1)为264ppm,LREE/HREE2)值为0.81-024,平均的钇对∑REE占有率为35.8-54.5%。这主要是由于岩浆结晶演化及晚期有交代钠长石化、白云母化和萤石-氟碳钙钇矿化的结果。这些蚀变产生了钇族稀土氟碳酸盐、硅酸盐和砷酸盐等内生矿化作用。  相似文献   

7.
东坪金矿床成矿过程中稀土元素活动性   总被引:8,自引:2,他引:6  
尽管稀土元素常被认为是惰性元素,但在热液交代蚀变和化学风化作用过程中具有一定程度的活动性,河北省东坪与碱性岩有关的改进改造型热液金矿床成矿过程中,热液蚀变作用使近矿围岩LREE/HREE比值增大,并出现现铈正常异常;石英脉型金矿石的稀土元素分布模式呈出现明显的继承性,脉石矿物石英,钾长石的稀土元素组成相对富HREE,且在脉石石英出现明显的铕正异常,研究结果表明在中,高温,近中性,较高氧逸度成矿流体  相似文献   

8.
Fifty-seven shallow groundwater samples were collected from Guiyang karst basin, China, to analyze the aqueous rare-earth elements in low-water seasons and it is shown that the total amount of rare-earth elements (ΣREE) in karst groundwater is exceedingly low compared with that in carbonate rocks or weathering crusts of carbonate rocks, and ranges from 0.01 to 0.43, from 0.03 to 0.27, from 0.03 to 0.19 and from 0.05 to 1.38 μg·L-1 for dolomite, dolomitic & limestone, limestone and clastic rock aquifer, respectively. Both distributions and contents of rare-earth elements (REE) in karst groundwater reflect the lithology of host rocks or weathering crusts of carbonate rocks through which groundwater flows. The chondrite-normalized patterns show a non-flat profile with higher enrichment of slightly light rare-earth elements (LREE) than heavy rare-earth elements (HREE), prominent fractionation between LREE and HREE, negative Ce anomalies and negative or positive Eu anomalies. There is more obvious fractionation between LREE and HREE in groundwater than that in carbonate rocks and their weathering crusts due to high contents of HCO3? and PH in groundwater. In shallow karst groundwater, REE(CO3)n2n-3 (n=1 and 2) is the main inorganic species of REE. But for a clastic rock aquifer, both REESO4+ and REECO3+ are the main inorganic species of REE. Species of REE in groundwater is closely associated with the hydrochemical type of groundwater which is predominated by the lithology of host rocks, groundwater-rock interaction and weathering-pedogenesis of carbonate rocks.  相似文献   

9.
The behaviour of the rare-earth elements(REE)during the weathering of granites was studied in southern Guangxi,China.Based on the study of the weathering profiles,the soil,weathered and sub-weatereb zones are identified with different REE geochemical behaviours throug the weathering profiles of granite.The Ce anomalies of the weathering profiles cover a large range of values with most falling between 1.02 and 1.43in the soil zone and 0.16and 0.40in the weathered and sub-weathered zones.Light rare-earth elements(LREE) and heavy rare-earth elements(HREE)are enriched to varying degree in the weathering profiles as compared to host granites.In the soil zone,more HREEs are leached than LREEs,and HREEs are more enriched than LREE in the weathered and sub-weathered zones.It is considered that infiltration and adsorption on clays are two processes controlling the enrichment and formation of REE deposits in the weathering profiles of granite.  相似文献   

10.
河流稀土元素地球化学研究进展   总被引:30,自引:1,他引:30  
河流系统中,稀土元素(REE)受区域地质背景、风化作用、溶液化学以及水与颗粒物相互作用等因素的影响发生分异。河流悬浮物显示轻稀土(LREE)适度富集;河水显示重稀土(HREE)富集,或在HREE富集的基础上又有适度的中稀土(MREE)富集;与其它微量元素相比,REE在河水与颗粒物之间有较小的分配系数(K≈10-6);河流沉积物多显示平坦的REE配分模式。  相似文献   

11.
贵州瓮安陡山沱组磷块岩保存了可能是全球最早的后生动物化石 (瓮安动物群 ),对于瓮安动物群出现过程中的古海洋环境重建具有重要科学意义。但必须对成岩后生作用对磷块岩中的稀土元素改造进行评估。通过对贵州瓮安陡山沱组磷块岩的磷质碎屑、磷质和白云质胶结物、磷条带和泥条带等的稀土元素地球化学特征研究,确定沉积期后变化对稀土元素的改造影响不大。上矿层磷块岩沉积期形成的磷质碎屑、成岩期形成的白云质和磷质胶结物具相同的稀土元素配分模式,暗示了沉积期后的改造作用对瓮安陡山沱组磷块岩保存的原生沉积信息影响不大。瓮安陡山沱组磷块岩具有显著的重稀土亏损特征。磷块岩的磷质和白云质胶结物、伴生磷质碎屑、强风化磷块岩相近的ErN/LuN 比值,表明沉积期后的改造作用不是重稀土元素亏损的主要原因。磷块岩的ErN/LuN、LaN/NdN 与Ce/Ce 间的相关性,表明越氧化的沉积环境中,轻和重稀土元素亏损越强。  相似文献   

12.
The rhyolitic dome in the Rangan area has been subjected to hydrothermal alterations by two different systems, (1) A fossil magmatic–hydrothermal system with a powerful thermal engine of a deep monzodioritic magma, (2) An active hydrothermal system dominated by meteoric water. Based on mineralogical and geochemical studies, three different alteration facies have been identified (phyllic, advanced argillic and silicic) with notable differences in REE and other trace elements behaviour. In the phyllic alteration zone with assemblage minerals such as sericite, pyrite, quartz, kaolinite, LREE are relatively depleted whereas HREE are enriched. The advanced argillic zone is identified by the presence of alunite–jarosite and pyrophyllite as well as immobility of LREE and depletion in HREE. In the silicic zone, most of LREE are depleted but HREE patterns are unchanged compared to their fresh rock equivalents. All the REE fractionation ratios (La/Yb)cn, (La/Sm)cn, (Tb/Yb)cn, (Ce/Ce1)cn and (Eu/Eu1)cn are low in the phyllic altered facies. (Eu/Eu1)cn in both advanced and silicic facies is low too. In all alteration zones, high field strength elements (HFSE) (e.g. Ti, Zr, Nb) are depleted whereas transition elements (e.g. V, Cr, Co, Ni, Fe) are enriched. Geochemically speaking, trace and rare earth elements behave highly selective in different facies.  相似文献   

13.
Fe-nodules occur within saprolites formed from weathering of granodioritic gneisses in the rain-shadow region of the Mysore Plateau adjacent to the Sahyadri Mountains in Southern India. These nodules and their host saprolites were studied for their geochemistry, including chemical speciation, to understand nodule formation and chemical redistribution processes during rock weathering. From their mode of occurrence, and mineralogical and geochemical data, we infer that the nodules originated by a two-stage process in which the initial extensive weathering of gneisses likely facilitated subsequent ferrolysis weathering and nodule formation. Nodules originated by precipitation of goethite, hematite and gibbsite along with several amorphous phases within the matrix of weathered gneisses. This is possible only under hydromorphic conditions, suggesting that parts of the plateau must have gone through a humid phase prior to the present aridity. In the saprolites, Al, Fe, and Ti become enriched because of the removal of Si, Ca, Na, and K. However within the nodule, Fe, Ti, Cr, and Ni are deposited after their chemical transport from the saprolite. Titanium, known for its immobile nature, was also mobilized and concentrated under the conditions of nodule formation. The most important elements in the nodule constitution are Fe, Al, Ti, and Mn, each having both crystalline and amorphous phases. Fe-Ti and Mn oxyhydroxides grain coatings in the saprolites and discrete amorphous Mn and Ti phases in the nodules seem to have scavenged trace elements from the weathering profile. REE were mobilized during weathering and nodule genesis in which Ce and Ti show a strong geochemical coherence. The enrichment of only HREE in saprolite, and both HREE and LREE with significant Ce in the nodule, indicate the control of evolving secondary minerals in the REE redistribution during rock weathering. Strong enrichment of Ce in the weathering profile and in nodules has important implications to the REE chemistry of river waters.  相似文献   

14.
白云鄂博含矿碱性火山岩建造及其地球化学   总被引:3,自引:1,他引:2  
白云鄂博矿床历经几十年的研究,主要集中在矿区H8岩性段矿化白云岩成因的认识,许多研究显示含矿白云岩是岩浆碳酸岩,本文主要从岩石学和地球化学方面进一步分析其属于火山喷发环境形成的火山碳酸熔岩。H8含矿白云岩段和H9板岩段作为一套含矿岩系主要由含矿白云岩、霓闪钠长岩、钾长板岩3类岩石组成,白云岩和霓闪钠长岩都具有的碎屑结构及角砾状构造、条带构造,显示为火山熔岩和火山碎屑岩特征,而钾长板岩则主要显示致密微晶火山熔岩特征。工业矿物主要是磁铁矿、赤铁矿、稀土矿物和铌铁矿物,其重要特征是出现大量原生赤铁矿,反映岩石氧化系数高,与火山喷发环境一致。霓闪钠长岩、钾长板岩岩石化学显示碱性特征,稀土元素与CaO、F相关系数在0.7以上,并与Fe2O3高氧化物相关,而与硅酸盐矿物组分反相关,表示碳酸岩与稀土成矿密切相关,并显示为表生氧化环境形成。稀土地球化学特征显示白云岩∑REE最高,钾长板岩∑REE最低,相应的岩脉∑REE低于喷发岩。各种岩石均表现为明显的轻重稀土分异,但是以白云岩LREE/HREE比值最大,霓闪钠长岩LREE/HREE比值最小,而纯钠长石岩脉和含稀土磁铁矿LREE/HREE明显高于其他岩石。白云岩和霓闪钠长岩均表现出不同的铕、铈负异常,但是碳酸岩脉和钾长板岩则显示弱正铈异常,霓闪钠长岩和钾长板岩铕异常不明显。矿化白云岩和碳酸岩脉的δ18O、δ13C值介于沉积灰岩与已知碳酸岩的δ18O、δ13C值之间,碳酸岩中白云石的δ18O低于方解石的δ18O,而δ13C高于方解石的δ13C,稀土矿物的δ13C、δ18O与碳酸岩脉δ13C、δ18O接近。归纳这些特征,含矿白云岩与霓闪钠长岩、钾长板岩是碱性火山岩组合,与一系列同期的碳酸岩、霓闪钠长岩碱性岩脉一起,构成一套完整碱性火山岩系。  相似文献   

15.
Mineralization with ion adsorption rare earth elements (REEs) in the weathering profile of granitoid rocks from Nanling region of Southeast China is an important REE resource, especially for heavy REE (HREE) and Y. However, the Jurassic granites in Zhaibei which host the ion adsorption light REE (LREE) ores are rare. It is of peraluminous and high K calc-alkaline composition, which has similar geochemical features of high K2O + Na2O and Zr + Nb + Ce + Y contents and Ga/Al ratio to A-type granite. Based on the chemical discrimination criteria of Eby [Geology 20 (1992) 641], the Zhaibei granite belongs to A1-type and has similar source to ocean island basalts. The rock is enriched in LREE and contains abundant REE minerals including LREE-phosphates and halides. Minor LREE was also determined in the feldspar and biotite, which shows negligible and negative Eu anomalies, respectively. This indicates that the Zhaibei granite was generated by extreme differentiation of basaltic parent magmas. In contrast, granites associated with ion adsorption HREE ores contain amounts of HREE minerals, and show similar geochemical characteristics with fractionated felsic granites. Note that most Jurassic granitoids in the Nanling region contain no REE minerals and cannot produce REE mineralization. They belong to unfractionated M-, I- and S-type granites. Therefore, accumulation of REE in the weathering profile is controlled by primary REE mineral compositions in the granitoids. Intense fractional crystallization plays a role on REE enrichment in the Nanling granitoid rocks.  相似文献   

16.
The ocean and atmosphere were largely anoxic in the early Precambrian, resulting in an Fe cycle that was dramatically different than today’s. Extremely Fe-rich sedimentary deposits—i.e., Fe formations—are the most conspicuous manifestation of this distinct Fe cycle. Rare Earth Element (REE) systematics have long been used as a tool to understand the origin of Fe formations and the corresponding chemistry of the ancient ocean. However, many earlier REE studies of Fe formations have drawn ambiguous conclusions, partially due to analytical limitations and sampling from severely altered units. Here, we present new chemical analyses of Fe formation samples from 18 units, ranging in age from ca. 3.0 to 1.8 billion years old (Ga), which allow a reevaluation of the depositional mechanisms and significance of Precambrian Fe formations. There are several temporal trends in our REE and Y dataset that reflect shifts in marine redox conditions. In general, Archean Fe formations do not display significant shale-normalized negative Ce anomalies, and only Fe formations younger than 1.9 Ga display prominent positive Ce anomalies. Low Y/Ho ratios and high shale-normalized light to heavy REE (LREE/HREE) ratios are also present in ca. 1.9 Ga and younger Fe formations but are essentially absent in their Archean counterparts. These marked differences in Paleoproterozoic versus Archean REE + Y patterns can be explained in terms of varying REE cycling in the water column.Similar to modern redox-stratified basins, the REE + Y patterns in late Paleoproterozoic Fe formations record evidence of a shuttle of metal and Ce oxides across the redoxcline from oxic shallow seawater to deeper anoxic waters. Oxide dissolution—mainly of Mn oxides—in an anoxic water column lowers the dissolved Y/Ho ratio, raises the light to heavy REE ratio, and increases the concentration of Ce relative to the neighboring REE (La and Pr). Fe oxides precipitating at or near the chemocline will capture these REE anomalies and thus evidence for this oxide shuttle. In contrast, Archean Fe formations do not display REE + Y patterns indicative of an oxide shuttle, which implies an absence of a distinct Mn redoxcline prior to the rise of atmospheric oxygen in the early Paleoproterozoic. As further evidence for reducing conditions in shallow-water environments of the Archean ocean, REE data for carbonates deposited on shallow-water Archean carbonate platforms that stratigraphically underlie Fe formations also lack negative Ce anomalies. These results question classical models for deposition of Archean Fe formations that invoke oxidation by free oxygen at or above a redoxcline. In contrast, we add to growing evidence that metabolic Fe oxidation is a more likely oxidative mechanism for these Fe formations, implying that the Fe distribution in Archean oceans could have been controlled by microbial Fe uptake rather than the oxidative potential of shallow-marine environments.  相似文献   

17.
云南省澜沧县地处临沧花岗岩的中南段,在其境内发现多地与花岗岩风化壳有关的离子吸附型稀土矿床。文章通过对该区晚三叠世黑云母二长花岗岩风化壳全风化层的剖面及钻孔样品分析,对赋存于花岗岩风化壳离子吸附型稀土矿床的成矿地质地球化学特征进行研究,探讨其关键成矿过程并总结地形地貌与风化壳和矿体露头的关系。研究表明,黑云母二长花岗岩风化壳分层特征明显,离子吸附型稀土矿体规模及形态严格受风化壳发育程度及微地貌控制;花岗岩风化壳全风化层稀土元素配分曲线呈右倾平滑的浅“W”型,轻稀土元素的分异程度强于重稀土元素;除Ce元素外,轻稀土元素的浸出率略高于重稀土元素;矿石类型为以轻稀土元素为主、中重稀土元素配分齐全的混合型稀土矿。通过厘定离子吸附型稀土矿床的关键成矿过程,文章发现内应力、渗透能力、风化程度、黏土矿物含量在风化壳剖面中由上至下变化特征综合决定了稀土矿体主要定位于风化壳全风化层。  相似文献   

18.
Banded iron formations (BIFs) within the Lvliang region of Shanxi Province, China, are hosted by sediments of the Yuanjiacun Formation, part of the Paleoproterozoic Lvliang Group. These BIFs are located in a zone where sedimentation changed from clastic to chemical deposition, indicating that these are Superior-type BIFs. Here, we present new major, trace, and rare earth element (REE) data, along with Fe, Si, and O isotope data for the BIFs in the Yuanjiacun within the Fe deposits at Yuanjiacun, Jianshan, and Hugushan. When compared with Post Archean Australian Shale (PAAS), these BIFs are dominated by iron oxides and quartz, contain low concentrations of Al2O3, TiO2, trace elements, and the REE, and are light rare earth element (LREE) depleted and heavy rare earth element (HREE) enriched. The BIFs also display positive La, Y, and Eu anomalies, high Y/Ho ratios, and contain 30Si depleted quartz, with high δ18O values that are similar to quartz within siliceous units formed during hydrothermal activity. These data indicate that the BIFs within the Yuanjiacun Formation were precipitated from submarine hydrothermal fluids, with only negligible detrital contribution. None of the BIF samples analyzed during this study have negative Ce anomalies, although a few have a positive Ce anomaly that may indicate that the BIFs within the Yuanjiacun Formation formed during the Great Oxidation Event (GOE) within a redox stratified ocean. The positive Ce anomalies associated with some of these BIFs are a consequence of oxidization and the formation of surficial manganese oxide that have preferentially adsorbed Ho, LREE, and Ce4 +; these deposits formed during reductive dissolution at the oxidation–reduction transition zone or in deeper-level reducing seawater. The loss of Ce, LREE, and Ho to seawater and the deposition of these elements with iron hydroxides caused the positive Ce anomalies observed in some of the BIF samples, although the limited oxidizing ability of surface seawater at this time meant that Y/Ho and LREE/HREE ratios were not substantially modified, unlike similar situations within stratified ocean water during the Late Paleoproterozoic. Magnetite and hematite within the BIFs in the study area contain heavy Fe isotopes (56Fe values of 0.24–1.27‰) resulting from the partial oxidation and precipitation of Fe2 + to Fe3 + in seawater. In addition, mass-independent fractionation of sulfur isotopes within pyrite indicates that these BIFs were deposited within an oxygen-deficient ocean associated with a similarly oxygen-deficient atmosphere, even though the BIFs within the Yuanjiacun Formation formed after initiation of the GOE.  相似文献   

19.
The Eocene (ca. 55–38 Ma) Bear Lodge alkaline complex in the northern Black Hills region of northeastern Wyoming (USA) is host to stockwork-style carbonatite dikes and veins with high concentrations of rare earth elements (e.g., La: 4140–21000 ppm, Ce: 9220–35800 ppm, Nd: 4800–13900 ppm). The central carbonatite dike swarm is characterized by zones of variable REE content, with peripheral zones enriched in HREE including yttrium. The principle REE-bearing phases in unoxidized carbonatite are ancylite and carbocernaite, with subordinate monazite, fluorapatite, burbankite, and Ca-REE fluorocarbonates. In oxidized carbonatite, REE are hosted primarily by Ca-REE fluorocarbonates (bastnäsite, parisite, synchysite, and mixed varieties), with lesser REE phosphates (rhabdophane and monazite), fluorapatite, and cerianite. REE abundances were substantially upgraded (e.g., La: 54500–66800 ppm, Ce: 11500–92100 ppm, Nd: 4740–31200 ppm) in carbonatite that was altered by oxidizing hydrothermal and supergene processes. Vertical, near surface increases in REE concentrations correlate with replacement of REE(±Sr,Ca,Na,Ba) carbonate minerals by Ca-REE fluorocarbonate minerals, dissolution of matrix calcite, development of Fe- and Mn-rich gossan, crystallization of cerianite and accompanying negative Ce anomalies in secondary fluorocarbonates and phosphates, and increasing δ18O values. These vertical changes demonstrate the importance of oxidizing meteoric water during the most recent modifications to the carbonatite stockwork. Scanning electron microscopy, energy dispersive spectroscopy, and electron probe microanalysis were used to investigate variations in mineral chemistry controlling the lateral complex-wide geochemical heterogeneity. HREE-enrichment in some peripheral zones can be attributed to an increase in the abundance of secondary REE phosphates (rhabdophane group, monazite, and fluorapatite), while HREE-enrichment in other zones is a result of HREE substitution in the otherwise LREE-selective fluorocarbonate minerals. Microprobe analyses show that HREE substitution is most pronounced in Ca-rich fluorocarbonates (parisite, synchysite, and mixed syntaxial varieties). Peripheral, late-stage HREE-enrichment is attributed to: 1) fractionation during early crystallization of LREE selective minerals, such as ancylite, carbocernaite, and Ca-REE fluorocarbonates in the central Bull Hill dike swarm, 2) REE liberated during breakdown of primary calcite and apatite with higher HREE/LREE ratios, and 3) differential transport of REE in fluids with higher PO43−/CO32− and F/CO32− ratios, leading to phosphate and pseudomorphic fluorocarbonate mineralization. Supergene weathering processes were important at the stratigraphically highest peripheral REE occurrence, which consists of fine, acicular monazite, jarosite, rutile/pseudorutile, barite, and plumbopyrochlore, an assemblage mineralogically similar to carbonatite laterites in tropical regions.  相似文献   

20.
The modal and chemical composition of sands from Cox’s Bazar beach (CBB) and Kuakata beach (KB) areas of Bangladesh has been investigated to infer their maturity, chemical weathering, and provenance signatures. The CBB and KB sands are typically high quartz, low feldspar, and lithic fragments, representing a recycled orogen source. Major element compositions of CBB sands are characterized by high SiO2 (83.52–89.84 wt%) and low Al2O3 (4.39–6.39 wt%), whereas KB sands contained relatively low SiO2 (63.28–79.14 wt%) and high Al2O3 (9.00–11.33 wt%) contents. The major, trace and rare earth element (REE) compositions of beach sands display comparable distribution patterns with enriched Th and SiO2 for both sands relative to upper continental crust (UCC). Pb, Rb, Y, and Fe for KB sands are little higher than UCC and the rest of the elements are marked depleted for both suites reflecting destruction of plagioclase and K-feldspar during fluvial transportation. The CBB and KB sands are compositionally low mature to immature in nature subsequently classified as subarkose and litharenite, respectively. Chondrite-normalized REE patterns for CBB and KB sands show LREE enrichment and nearly flat HREE (LaN/YbN, 7.64–9.38 and 5.48–8.82, respectively) coupled with prominent Eu anomalies (Eu/Eu*, 0.51–0.72 and 0.52–0.76, respectively), suggesting felsic source provenance. The provenance discrimination diagrams, immobile trace element ratios (Th/Sc, Zr/Sc, Ce/Sc, and Ti/Zr), and REE (∑LREE/HREE, Eu/Eu* and GdN/YbN) parameters indicate that CBB and KB sands were largely derived from felsic source rocks, with compositions close to average rhyolite, granodiorite, granite, and UCC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号