首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《地学前缘(英文版)》2018,9(6):1755-1775
The ophiolite suite from south Andaman Islands forms part of the Tethyan Ophiolite Belt and preserves the remnants of an ideal ophiolite sequence comprising a basal serpentinized and tectonised mantle peridotite followed by ultramafic and mafic cumulate units, basaltic dykes and spilitic pillow basalts interlayered with arkosic wacke. Here, we present new major, trace, rare earth(REE) and platinum group(PGE) element data for serpentinized and metasomatized peridotites(dunites) exposed in south Andaman representing the tectonized mantle section of the ophiolite suite. Geochemical features of the studied rocks, marked by Al_2 O_3/TiO_2 23, LILE-LREE enrichment, HFSE depletion, and U-shaped chondrite-normalized REE patterns with(La/Sm)N 1 and(Gd/Yb)N 1, suggest contributions from boninitic mantle melts. These observations substantiate a subduction initiation process ensued by rapid slab roll-back with extension and seafloor spreading in an intraoceanic fore-arc regime. The boninitic composition of the serpentinized peridotites corroborate fluid and melt interaction with mantle manifested in terms of(i) hydration, metasomatism and serpentinization of depleted, MORB-type, sub-arc wedge mantle residual after repeated melt extraction; and(ii) refertilization of refractory mantle peridotite by boninitic melts derived at the initial stage of intraoceanic subduction. Serpentinized and metasomatized mantle dunites in this study record both MOR and intraoceanic arc signatures collectively suggesting suprasubduction zone affinity. The elevated abundances of Pd(4.4-12.2 ppb) with highΣPPGE/∑IPGE(2-3) and Pd/Ir(2-5.5) ratios are in accordance with extensive melt-rock interaction through percolation of boninitic melts enriched in fluid-fluxed LILE-LREE into the depleted mantle after multiple episodes of melt extraction. The high Pd contents with relatively lower Ir concentrations of the samples are analogous to characteristic PGE signatures of boninitic magmas and might have resulted by the infiltration of boninitic melts into the depleted and residual mantle wedge peridotite during fore-arc extension at the initial stage of intraoceanic subduction. The PGE patterns with high Os + Ir(2-8.6 ppb)and Ru(2.8-8.4 ppb) also suggest mantle rejuvenation by infiltration of melts derived by high degree of mantle melting. The trace, REE and PGE data presented in our study collectively reflect heterogeneous mantle compositions and provide insights into ocean-crust-mantle interaction and associated geochemical cycling within a suprasubduction zone regime.  相似文献   

2.
Contents of platinum group elements (PGE—Os, Ir, Ru, Rh, Pt, and Pd) and rhenium in basalts of different geochemical types from the ophiolite complex of the Kamchatsky Mys Peninsula have been determined by the isotope dilution-mass spectrometry method. The total contents of PGE in different basalts are commensurate (1.4-3.6 ppb), but the element ratios vary considerably. A specific feature of the rocks is the low degree of PGE fractionation (Pd/Ir = 0.9-6.6, Pt/Pd = 1.0-7.3), which makes them similar to the Hawaiian tholeiitic basalts and picrites. The most fractionated PGE pattern is observed for alkali basalt (Pd/Ir = 6.6), and the least fractionated one, for E-MORB (Pd/Ir = 1.7). The similarity of the PGE patterns of basalts of different geochemical types suggests their similar mantle sources. We propose a model explaining the geochemical features of the basalts of the Kamchatsky Mys ophiolite complex by an impurity of the Earth’s core material in the plume source. The Ir/Pd-Ru/Pd and Pd/10-Ir-Ru discrimination diagrams can be used to identify enriched (plume) basalts based on their PGE content.  相似文献   

3.
The Jurassic Bangong Lake ophiolite, NW Tibet, is a key element within the western part of the Bangong–Nujiang suture zone, which marks the boundary between the Lhasa and Qiangtang blocks. It is a tectonic mélange consisting of numerous blocks of peridotite, mafic lavas and dikes. The mantle peridotites include both clinopyroxene-bearing and clinopyroxene-free harzburgites. The Cpx-bearing harzburgite contains Al-rich spinel with low Cr#s (20–25), resembling peridotites formed in mid-ocean ridge settings. On the other hand, the Cpx-free harzburgite is highly depleted with Cr-rich spinel (Cr# = 69–73), typical of peridotites formed in subduction zone environments. Mafic rocks include lavas of N-MORB and E-MORB affinity and boninites. The N-MORB rocks consist of pillow lavas and mafic dikes, whereas the E-MORB rocks are brecciated basalts. The boninites have high SiO2 (53.2–57.9 wt%), MgO (6.5–12.5 wt%), Cr (166–752 ppm) and Ni (63–213 ppm) and low TiO2 (0.22–0.37 wt%) and Y (5.34–8.10 ppm), and are characterized by having U-shaped, chondrite-normalized REE patterns. The N-MORB and E-MORB lavas probably formed by different degrees of partial melting of primitive mantle, whereas the boninites reflect partial melting of depleted peridotite in a suprasubduction zone environment. The geochemistry of the ophiolite suggests that it is a fragment of oceanic lithosphere formed originally at a mid-ocean ridge (MOR) and then trapped above an intraoceanic subduction zone (SSZ), where the mantle peridotites were modified by boninitic melts. The Bangong–Nujiang suture zone is believed to mark the boundary between two blocks within Gondwanaland rather than to separate Gondwanaland from Eurasia.  相似文献   

4.
The peridotites of the Manipur Ophiolite Complex (MOC) have been examined based on mineral chemistry, major elements and PGE contents. They represent high-magnesian cumulates with Mg# > 0.90 (Mg/Mg+Fe) in olivine and Cr# > 0.12 (Cr/Cr+Al) in spinel. High Mg* contents of the olivine show that these rocks are most likely derived from partial melting of the residual upper mantle. The peridotites contain higher concentration of Palladium Group PGE (PPGE) (Rh=4.4−6.6ppb; Pd=336−458ppb and Pt=14.6−36.4ppb) than the Iridium Group PGE (IPGE) (Os=2.4−5.8ppb; Ir=3.2−4.16ppb and Ru=5.2−7ppb). These are characterized by overall enrichment of PGE concentration (σPGE=365.8 − 516.6 ppb) and high ratio of (Pt+Pd)/(Os+Ir+Ru). This suggests that the rocks are formed by partial melting and crystal fractionation of olivine-rich (picritic) magma.  相似文献   

5.
ABUNDANCE AND DISTRIBUTION OF PLATINUM-GROUP ELEMENTS (PGE) IN PERIDOTITE FROM THE DAGZHUKA OPHIOLITE IN TIBET:IMPLICATIONS FOR MANTLE METASOMATISM  相似文献   

6.
西藏吉定蛇绿岩地球化学特征及其构造指示意义   总被引:1,自引:2,他引:1  
陈根文  刘睿  夏斌  邓腾 《岩石学报》2015,31(9):2495-2507
吉定蛇绿岩位于雅鲁藏布江蛇绿岩带的中段,是该带保存较好的蛇绿岩之一,通过对该岩体的研究及与附近蛇绿岩剖面的对比有助于恢复早白垩世雅鲁藏布江蛇绿岩带的演化过程。吉定蛇绿岩包括玄武岩、辉绿岩、堆晶岩及地幔橄榄岩四个岩石单元。壳层岩石岩浆结晶顺序为:橄榄石→单斜辉石→斜长石,代表湿岩浆系统分异。吉定蛇绿岩壳层熔岩(玄武岩和辉绿岩)Ti O2含量为0.87%~1.45%,平均1.1%,与印度洋N-MORB玻璃(1.19%)相似。REE配分模式具有明显的LREE亏损特征,稀土配分模式与典型的大洋中脊玄武岩相似。但其微量元素蛛网图上表现为富集LILE,而亏损HFSE,并具有较高LILE/HFSE比值特征,与俯冲带上的(SSZ)蛇绿岩相似。蛇绿岩熔岩在岩石地球化学上表现出既亲MORB,又具部分IAB的特征。结合区域上大竹卡、得几等蛇绿岩岩石及地球化学资料对比分析,提出吉定蛇绿岩形成于在洋内俯冲带上发育起来的弧后盆地,并提出日喀则地区早白垩世洋壳演化的解释模式:雅鲁藏布江中段蛇绿岩至少包含三种组分特征的蛇绿岩体,其代表性剖面分别是吉定,得村和大竹卡,分别形成于近俯冲带的弧后盆地、弧前盆地和弧后盆地,这些洋壳共同组成早白垩世时期的与特提斯洋俯冲带斜交的一条分段发育的洋中脊。  相似文献   

7.
Fourteen peridotite xenoliths collected in the Massif Central neogene volcanic province (France) have been analyzed for platinum-group elements (PGE), Au, Cu, S, and Se. Their total PGE contents range between 3 and 30 ppb and their PGE relative abundances from 0.01 to 0.001 × CI-chondrites, respectively. Positive correlations between total PGE contents and Se suggest that all of the PGE are hosted mainly in base metal sulfides (monosulfide solid solution [Mss], pentlandite, and Cu-rich sulfides [chalcopyrite/isocubanite]). Laser ablation microprobe-inductively coupled plasma mass spectrometry analyses support this conclusion while suggesting that, as observed in experiments on the Cu-Fe-Ni-S system, the Mss preferentially accommodate refractory PGEs (Os, Ir, Ru, and Rh) and Cu-rich sulfides concentrate Pd and Au. Poikiloblastic peridotites pervasively percolated by large silicate melt fractions at high temperature (1200°C) display the lowest Se (<2.3 ppb) and the lowest PGE contents (0.001 × CI-chondrites). In these rocks, the total PGE budget inherited from the primitive mantle was reduced by 80%, probably because intergranular sulfides were completely removed by the silicate melt. In contrast, protogranular peridotites metasomatized by small fractions of volatile-rich melts are enriched in Pt, Pd, and Au and display suprachondritic Pd/Ir ratios (1.9). The palladium-group PGE (PPGE) enrichment is consistent with precipitation of Cu-Ni-rich sulfides from the metasomatic melts. In spite of strong light rare earth element (LREE) enrichments (Ce/YbN < 10), the three harzburgites analyzed still display chondrite-normalized PGE patterns typical of partial melting residues, i.e., depleted in Pd and Pt relative to Ir and Ru. Likewise, coarse-granular lherzolites, a common rock type in Massif Central xenoliths, display Pd/Ir, Ru/Ir, Rh/Ir, and Pt/Ir within the 15% uncertainty range of chondritic meteorites. These rocks do not contradict the late-veneer hypothesis that ascribes the PGE budget of the Earth to a late-accreting chondritic component; however, speculations about this component from the Pd/Ir and Pt/Ir ratios of basalt-borne xenoliths may be premature.  相似文献   

8.
Ophiolites worldwide show striking diversities in their rock assemblage and structure (i.e., ophiolite diversity), raising a question whether ophiolites are originally similar before intense tectonic dismemberment. Comparison between ophiolites and oceanic lithospheres at modern mid-ocean ridges may provide key constraints on the origin of ophiolite diversity, because oceanic lithospheric structures are inherently controlled by spreading rates. Here, we present a case study of the Xigaze ophiolite in southern Tibet focusing on its gabbroic intrusions outcropping in three localities, i.e., Dazhuqu, Baigang and Jiding. Compared to the Jiding sequence, the Dazhuqu and Baigang gabbroic rocks are less evolved, characterized by higher Cr2O3 contents but lower contents of TiO2 and rare earth element in both clinopyroxene and bulk compositions. It is evident, hence, that the Xigaze ophiolite is characterized by variably evolved and discontinuously distributed gabbroic intrusions, rather by a continuous lower oceanic crust between the mantle and sheeted dike complex as the Penrose-type ophiolites. Our study, along with the identification in previous studies of oceanic detachment faults within the Xigaze ophiolite, demonstrates that the Xigaze ophiolite shows close similarities to oceanic lithospheres at modern slow- and ultraslow-spreading ridges. Hence, the significant structural distinctions between the Xigaze ophiolite and the Penrose-type ophiolites (e.g., the Oman ophiolite) may be inherently associated with different spreading rates of paleo-ridges. Considering the limited scale of the Xigaze gabbroic rocks, here we suggest the Xigaze ophiolite as a typical representative of fossil ultraslow-spreading ridges.  相似文献   

9.
A well-developed, 1,000 m thick basaltic sequence in the Yangliuping region, northern part of the Emeishan basalt province, includes the Lower and Middle Units of tholeiitic basalts and an Upper Unit of both tholeiites and subalkalic basalts. The basalts contain 42–55 wt% SiO2 and 4.1–8.3 wt% MgO. Most of these lavas have Gd/Yb > 2.0, Zr/Nb < 12, and ɛNd(260 Ma) values from +2.5 to +4.7. The platinum-group elements (PGE) are very mildly depleted in most of the basalts which contain 8–19 ppb Pt and 7–27 ppb Pd. However, a significant proportion of the Middle Unit basalts are strongly depleted in PGE with some samples having concentrations lower than detection limits. They have extremely high Zr/Nb ratios (up to 14.5) and low ɛNd(260 Ma) values (+3.21 to +0.65), features of extensive lower crustal contamination. Some samples in this unit have high Ni/Pd (3,965–61,198) and low Pd/Cr (410,000–3,930,000) ratios, indicating sulfide segregation and PGE depletion prior to eruption. The primary magmas were S-undersaturated and derived from partial melting at variable depths in the upper mantle. The early and late stage magmas, as represented by the Lower and Upper Units, underwent AFC processes which induced mild S-saturation and PGE depletion in some of the basalts, whereas the magmas represented by the Middle Unit experienced more extensive crustal contamination resulting in stronger S-saturation and in most cases significant PGE depletion.  相似文献   

10.
杨胜标  李源  杨经绥  李瑞保  董天赐  裴磊 《岩石学报》2017,33(12):3766-3782
藏南雅鲁藏布蛇绿岩被认为是新特提斯大洋岩石圈的残留。该带中段的日喀则白马让蛇绿岩是保存较完整的蛇绿岩岩块之一。该蛇绿岩主要由橄榄岩、蛇纹岩、镁铁质侵入岩和玄武岩组成,缺堆晶岩系。镁铁质侵入岩主要呈辉绿岩脉、岩床和少量的岩墙产出。辉绿岩脉在整个蛇绿岩层序中均有分布,侵入橄榄岩的部分岩脉已经变为变辉绿岩和异剥钙榴岩。辉绿岩床(墙)向上逐渐过渡为玄武岩。局部可见日喀则群整合覆盖在玄武岩之上。地球化学分析显示不同产状的镁铁质岩均属于低钾或中钾的拉斑玄武岩,亏损Nb、Ta、Ti和LREE,具有弧前玄武岩(FAB)或弧后盆地玄武岩(BABB)的特征,它们的Ti/V和Yb/V的比值与BABB或正常大洋中脊玄武岩(N-MORB)相似,Sr-Nd-Pb同位素数据指示了亏损地幔(DM)与富集地幔(EM)过渡的源区。镁铁质岩野外产出关系和地球化学特征表明,白马让蛇绿岩的镁铁质岩组合可能形成于SSZ环境。考虑到超镁铁质岩、镁铁质岩和日喀则群在空间上的连续性,认为白马让蛇绿岩可能是起源于亚洲大陆边缘俯冲带上的洋盆,属于原地系统,而非外来的构造岩片。  相似文献   

11.
Dunite and serpentinized harzburgite in the Cheshmeh-Bid area, northwest of the Neyriz ophiolite in Iran, host podiform chromitite that occur as schlieren-type, tabular and aligned massive lenses of various sizes. The most important chromitite ore textures in the Cheshmeh-Bid deposit are massive, nodular and disseminated. Massive chromitite, dunite, and harzburgite host rocks were analyzed for trace and platinum-group elements geochemistry. Chromian spinel in chromitite is characterized by high Cr~#(0.72-0.78), high Mg~#(0.62–0.68) and low TiO_2(0.12 wt%-0.2 wt%) content. These data are similar to those of chromitites deposited from high degrees of mantle partial melting. The Cr~# of chromian spinel ranges from 0.73 to 0.8 in dunite, similar to the high-Cr chromitite, whereas it ranges from 0.56 to 0.65 in harzburgite. The calculated melt composition of the high-Cr chromitites of the Cheshmeh-Bid is 11.53 wt%–12.94 wt% Al_2O_3, 0.21 wt%–0.33 wt% TiO_2 with FeO/MgO ratios of 0.69-0.97, which are interpreted as more refractory melts akin to boninitic compositions. The total PGE content of the Cheshmeh-Bid chromitite, dunite and harzburgite are very low(average of 220.4, 34.5 and 47.3 ppb, respectively). The Pd/Ir ratio, which is an indicator of PGE fractionation, is very low(0.05–0.18) in the Cheshmeh-Bid chromitites and show that these rocks derived from a depleted mantle. The chromitites are characterized by high-Cr~#, low Pd + Pt(4–14 ppb) and high IPGE/PPGE ratios(8.2–22.25), resulting in a general negatively patterns, suggesting a high-degree of partial melting is responsible for the formation of the Cheshmeh-Bid chromitites. Therefore parent magma probably experiences a very low fractionation and was derived by an increasing partial melting. These geochemical characteristics show that the Cheshmeh-Bid chromitites have been probably derived from a boninitic melts in a supra-subduction setting that reacted with depleted peridotites. The high-Cr chromitite has relatively uniform mantle-normalized PGE patterns, with a steep slope, positive Ru and negative Pt, Pd anomalies, and enrichment of PGE relative to the chondrite. The dunite(total PGE = 47.25 ppb) and harzburgite(total PGE =3 4.5 ppb) are highly depleted in PGE and show slightly positive slopes PGE spidergrams, accompanied by a small positive Ru, Pt and Pd anomalies and their Pdn/Irn ratio ranges between 1.55–1.7 and 1.36-1.94, respectively. Trace element contents of the Cheshmeh-Bid chromitites, such as Ga, V, Zn, Co, Ni, and Mn, are low and vary between 13–26, 466–842, 22-84, 115–179, 826–-1210, and 697–1136 ppm, respectively. These contents are compatible with other boninitic chromitites worldwide. The chromian spinel and bulk PGE geochemistry for the Cheshmeh-Bid chromitites suggest that high-Cr chromitites were generated from Cr-rich and, Ti-and Al-poor boninitic melts, most probably in a fore-arc tectonic setting related with a supra-subduction zone, similarly to other ophiolites in the outer Zagros ophiolitic belt.  相似文献   

12.
The distribution of platinum-group elements (PGEs), together with spinel composition, of podiform chromitites and serpentinized peridotites were examined to elucidate the nature of the upper mantle of the Neoproterozoic Bou Azzer ophiolite, Anti-Atlas, Morocco. The mantle section is dominated by harzburgite with less abundant dunite. Chromitite pods are also found as small lenses not exceeding a few meters in size. Almost all primary silicates have been altered, and chromian spinel is the only primary mineral that survived alteration. Chromian spinel of chromitites is less affected by hydrothermal alteration than that of mantle peridotites. All chromitite samples of the Bou Azzer ophiolite display a steep negative slope of PGE spidergrams, being enriched in Os, Ir and Ru, and extremely depleted in Pt and Pd. Harzburgites and dunites usually have intermediate to low PGE contents showing more or less unfractionated PGE patterns with conspicuous positive anomalies of Ru and Rh. Two types of magnetite veins in serpentinized peridotite, type I (fibrous) and type II (octahedral), have relatively low PGE contents, displaying a generally positive slope from Os to Pd in the former type, and positive slope from Os to Rh then negative from Rh to Pd in the latter type. These magnetite patterns demonstrate their early and late hydrothermal origin, respectively. Chromian spinel composition of chromitites, dunites and harzburgites reflects their highly depleted nature with little variations; the Cr# is, on average, 0.71, 0.68 and 0.71, respectively. The TiO2 content is extremely low in chromian spinels, <0.10, of all rock types. The strong PGE fractionation of podiform chromitites and the high-Cr, low-Ti character of spinel of all rock types imply that the chromitites of the Bou Azzer ophiolite were formed either from a high-degree partial melting of primitive mantle, or from melting of already depleted mantle peridotites. This kind of melting is most easily accomplished in the supra-subduction zone environment, indicating a genetic link with supra-subduction zone magma, such as high-Mg andesite or arc tholeiite. This is a general feature in the Neoproterozoic upper mantle.  相似文献   

13.
Study on the Tectonic Setting for the Ophiolites in Xigaze, Tibet   总被引:4,自引:0,他引:4  
The Xigaze ophiolite is located in the middle section of the Yarlung Zangbo River ophiolite belt and includes a well-preserved sequence section of seven ophiolite blocks. The relatively complete ophiolitic sequence sections are represented by Jiding, Dejixiang, Baigang, and Dazhuqu ophiolites and consist of three–four units. The complete ophiolite sequence in order from the bottom to top consists of mantle peridotite, cumulates, sheeted sill dike swarms, and basic lavas±radiolarian chert. These cumulates are absent in the remaining blocks of Dejixiang and Luqu. The age of radiolaria in the radiolarian chert is Late Jurassic–Cretaceous. The basalt and ultramafic rock of the ophiolite also are overlaid by Tertiary Liuqu conglomerate, which contains numerous pebble components of ophiolite, indicating that the Tethys Ocean began to close at the end of Cretaceous Period. The isotopic data of gabbro, diabase, and albite granite in the Xigaze ophiolite are approximately 126–139 Ma, which indicates that the ophiolite formed in the Early Cretaceous. The K–Ar age of amphibole in garnet amphibolite in the ophiolite mélange is 81 Ma, indicating that tectonic ophiolite emplacement occurred at the end of Late Cretaceous.  相似文献   

14.
Seamount volcanism associated with the Xigaze ophiolite, Southern Tibet   总被引:6,自引:0,他引:6  
Basaltic lavas at Renbu, Southern Tibet are associated with the Xigaze ophiolite in the Yarlung-Zangbo suture zone. They are alkaline lavas rich in large ion lithophile elements (LILE, Ba, Rb and Sr) and high field strength elements (HFSE, Nb, Ta, Zr and Hf), but poor in Cr, Co and Ni. All of the rocks have chondrite-normalized REE patterns enriched in light rare earth elements (LREE), comparable to modern basalts of the Society Islands, Kerguelen Plateau and Broken Ridge. Abundances of some immobile or moderately immobile elements (Nb, Ta, Zr, Hf, Y, Ti and REE) are also comparable to Kerguelen alkaline basalts. The Renbu basalts are geochemically similar to oceanic island basalts (OIB) and have some elemental ratios, such as Nb/Ta ratios = 15.7–18.1, Th/Nb =  0.06–0.10, La/Nb = 0.59–0.83 and Th/Ta = 1.03–1.52, similar to the primitive mantle. Their 87Sr/86Sr ratios (0.70453–0.70602) are relatively high, similar to OIB. In the 87Sr/86Sr vs. εNd(t) diagram, the Renbu basalts plot along a trend from N-MORB to EMII (enriched mantle II), suggesting the involvement of at least two mantle sources in their generation. The Renbu basalts represent seamount volcanism associated with the Xigaze ophiolite. They formed from an OIB-type mantle source within the Neo-Tethyan Ocean that had a composition similar to the modern Indian Ocean mantle.  相似文献   

15.
We have analysed 18 samples of komatiite from five consecutivelava flows of the Komati Formation at Spinifex Creek, BarbertonMountain Land. Our samples include massive komatiite, varioustypes of spinifex-textured komatiite, and flow-top breccias.The rocks have low platinum-group element (PGE) contents andPd/Ir ratios relative to komatiites from elsewhere, at 0·45–2ppb Os, 1–1·4 ppb Ir, <1–5 ppb Ru, 0·33–0·79ppb Rh, 1·7–6 ppb Pt, 1·6–6·1ppb Pd, and Pd/Ir 3·3. Pt/Pd ratios are c. 1·1.Platinum-group elements are depleted relative to Cu (Cu/Pd =15 300). They display a tendency to increase in the less magnesiansamples, suggesting that the magmas were S-undersaturated uponeruption and that all PGE were incompatible with respect tocrystallizing olivine. Komatiites from the Westonaria Formationof the Ventersdorp Supergroup and the Roodekrans Complex nearJohannesburg have broadly similar PGE patterns and concentrationsto the Komati rocks, suggesting that the PGE contents of SouthAfrican ultrabasic magmas are controlled by similar processesduring partial mantle melting and low-P magmatic crystallization.Most workers believe that the Barberton komatiites formed byrelatively moderate-degree batch melting of the mantle at highpressure. Based on the concentration of Zr in the Komati samples,we estimate that the degree of partial melting was between 26and 33%. We suggest that the low PGE contents and Pd/Ir ratiosof all analysed South African komatiites are the result of sulphideshaving been retained in the mantle source during partial melting.The difference in Pd/Ir between our samples and Al-undepletedkomatiites from elsewhere further suggests that the PGE arefractionated during progressive partial melting of the mantle.Thus, our data are in agreement with other recent studies showingthat the PGE are hosted by different phases in the mantle, withPd being concentrated by interstitial Cu-rich sulphide, andthe IPGE (Os, Ir, Ru) and Rh resting in monosulphide solid solutionincluded within silicates. Pt is possibly controlled by a discreterefractory phase, as Pt/Pd ratios of most komatiites worldwideare sub-chondritic. KEY WORDS: platinum-group elements; komatiites; Barberton; mantle melting; South Africa  相似文献   

16.
Present study reports the PGE-geochemistry of mantle peridotites and Nd-isotope geochemistry of arc related mafic rocks from the Indus Suture Zone (ISZ), western Ladakh. The total PGE concentration of the Shergol and Suru Valley peridotites (∑PGE = 96–180 ppb) is much higher than that of the primitive mantle and global ophiolitic mantle peridotites. The studied peridotites show concave upward PGE-distribution patterns with higher palladium-group PGE/Iridium-group PGE ratios (i.e., 0.8–2.9) suggesting that the partial melting is not the sole factor responsible for the evolution of these peridotites. The observed PGE-distribution patterns are distinct from residual/refractory mantle peridotites, which have concave downward or flat PGE-distribution patterns. Relative enrichment of palladium-group PGE as well as other whole-rock incompatible elements (e.g., LILE and LREE) and higher Pd/Ir ratio (1.1–5.9) reflects that these peridotites have experienced fluid/melt interaction in a supra-subduction zone (SSZ) tectonic setting. Also, the Shergol mafic intrusives and Dras mafic volcanics, associated with the studied peridotites, have high 143Nd/144Nd ratios (i.e., 0.512908–0.513078 and 0.512901–0.512977, respectively) and positive εNd(t) (calculated for t = 140 Ma) values (i.e., +5.3 to +8.6 and + 5.1 to +6.6, respectively), indicating derivation from depleted mantle sources within an intra-oceanic arc setting, similar to Spongtang and Nidar ophiolites from other parts of Ladakh Himalaya. The transition from SSZ-type Shergol and Suru Valley peridotites to Early Cretaceous tholeiitic Shergol mafic intrusives followed by tholeiitic to calc-alkaline Dras mafic volcanics within the Neo-Tethys Ocean exhibit characteristics of subduction initiation mechanism analogous to the Izu-Bonin-Mariana arc system within western Pacific.  相似文献   

17.
INTRODUCTIONIn comparison with studies on the geochemistryof the REE and trace elements of the Emeishan Per-mian basalts ,there has been onlyli mited research onthe platinum group elements ( PGE) . Preli minarystudies have been carried out on the PGE geochemis-try of the basalts in the Emeishan area ( QingyingPower Station profile) and Xinjie area (Zhang andLi ,1998) ,andinthe Shuicheng and Weining areasinGuizhou (Li et al .,2003) . There are no PGEanaly-sis data of the basaltsin…  相似文献   

18.
The Nurali lherzolite massif is one of the dismembered ophiolite bodies associated with the Main Uralian Fault (Southern Urals, Russia). It comprises a mainly lherzolitic mantle section, an ultramafic clinopyroxene-rich cumulate sequence (Transition Zone), and an amphibole gabbro unit.The cumulate section hosts small chromitite bodies at different stratigraphic heights within the sequence. Chromitite bodies from three different levels along a full section of the cumulate sequence and two from other localities were investigated. They differ in the host lithology, chromitite texture and composition, and PGE content and mineralogy. Chromitites at the lowest level, which are hosted by clinopyroxenite, form cm-scale flattened lenses. They have high Cr# and low Mg# chromites and are enriched in Pt and Pd relative to Os and Ir. At a higher, intermediate level, the chromitites are hosted by dunite. They form meter thick lenses, contain low Cr# and high Mg# chromites, have high PGE contents (up to 26,700 ppb), and are enriched in Os, Ir and Ru relative to Pt and Pd, reflecting a mineralogy dominated by laurite–erlichmanite and PGE–Fe alloys. At the highest level are chromitites hosted by olivine–enstatite rocks. These chromitites have high Cr# and relatively low Mg# chromites and very low PGE content, with laurite as the dominant PGE mineral.The platinum group minerals (PGMs) show extreme zoning, with compositions ranging from erlichmanite to almost pure laurite and from Os-rich to Ru-rich alloys, with variable and irregular zoning patterns.Two chromitite bodies up to 6 km from the main sequence can be correlated with the latter based on geochemistry and mineralogy, implying that the variations in chromitite geochemistry are due to processes that operated on the scale of the massif rather than those that operated on the scale of the outcrop.Pertsev et al. [Pertsev, A.N., Spadea, P., Savelieva, G.N., Gaggero, L., 1997. Nature of the transition zone in the Nurali ophiolite, Southern Urals. Tectonophysics 276, 163–180.] propose that the Transition Zone formed by solidification of a series of small magma bodies that partially overlapped in time and space. The magmas formed by successive partial melting of the underlying mantle. We suggest that this process determined the changing PGE geochemistry of the successive batches of magma. The PGE distribution fits a model of selected extraction from the mantle, where monosulphide solid solution–sulphide liquid equilibrium was attained until complete melting of the monosulphide solid solution. Later and localized variations in fS2 resulted in the formation of different PGMs with complex zoning patterns.  相似文献   

19.
The Binchuan area of Yunnan is located in the western part of the Emeishan large igneous province in the western margin of the Yangtze Block.In the present study,the Wuguiqing profile in thickness of about 1440 m is mainly composed of high-Ti basalts,with minor picrites in the lower part and andesites,trachytes,and rhyolites in the upper part.The picrites have relatively higher platinum-group element(PGE) contents(ΣPGE=16.3-28.2 ppb),with high Cu/Zr and Pd/Zr ratios,and low S contents(5.03-16.9 ppm),indicating the parental magma is S-unsaturated and generated by high degree of partial melting of the Emeishan large igneous province(ELIP) mantle source.The slightly high Cu/Pd ratios(11 000-24 000) relative to that of the primitive mantle suggest that 0.007%sulfides have been retained in the mantle source.The PGE contents of the high-Ti basalts exhibit a wider range(ΣPGE=0.517-30.8 ppb).The samples in the middle and upper parts are depleted in PGE and haveεNd(260 Ma) ratios ranging from -2.8 to -2.2,suggesting that crustal contamination of the parental magma during ascent triggered sulfur saturation and segregation of about 0.446%-0.554% sulfides,and the sulfide segregation process may also provide the ore-forming material for the magmatic Cu-Ni-PGE sulfide deposits close to the studied basalts.The samples in this area show Pt-Pd type primitive mantle-normalized PGE patterns,and the Pd/Ir ratios are higher than that of the primitive mantle(Pd/Ir=1),indicating that the obvious differentiation between Ir-group platinum-group elements(IPGE) and Pd-group platinum-group elements(PPGE) are mainly controlled by olivine or chromites fractionation during magma evolution.The Pd/Pt ratios of most samples are higher than the average ratio of mantle(Pd/Pt=0.55),showing that the differentiation happened between Pt and Pd.The differentiation in picrites may be relevant to Pt hosted in discrete refractory Pt-alloy phase in the mantle;whereas the differentiation in the high-Ti basalts is probably associated with the fractionation of Fe-Pt alloys,coprecipitating with Ir-Ru-Os alloys.Some high-Ti basalt samples exhibit negative Ru anomalies,possibly due to removal of laurite collected by the early crystallized chromites.  相似文献   

20.
Whole-rock major, trace, and platinum-group elemental (PGE) data, and major and trace element compositions of diopsides are reported for peridotite xenoliths from (1) early Mesozoic volcanic breccias in Xinyang, located at the southern margin of the North China Craton, and (2) Cenozoic basalts in Hebi and Shanwang, both of which are situated within the craton and lie on the North-South Gravity Line and the Tanlu fault zone, respectively. The early Mesozoic Xinyang xenoliths are harzburgites containing <2% Cpx with high Cr# and enriched in LREE but depleted in HFSE. These xenoliths have chondritic Pd/Ir (1.9-6.6) and Ru/Ir (3.5-4.0) ratios and high Ni and low CaO, Al2O3, and S contents, indicating derivation from a highly refractory mantle that experienced carbonatitic metasomatism. Negative Ce (mean δCe = 0.50) and low Mg/Si ratios of the Xinyang peridotites record the addition of crustal components likely produced from subducted continental material of the Yangtze Craton in the early Mesozoic. The subduction-related modification of the lithospheric mantle was limited to the area close to the collision zone rather than being pervasive throughout the craton. The Cenozoic Hebi peridotite xenoliths are harzburgites with ≤4.5% Cpx and have low CaO and Al2O3 but high Ni contents, chondritic Ru/Ir ratios (2.5-5.4), and a wide range of CaO/Al2O3, Na2O/TiO2, Pt/Ir (0.4-2.3), and Pd/Pt (1.1-8.5) ratios. These peridotites are interpreted as the shallow relics of the cratonic mantle. In contrast, the Cenozoic Shanwang xenoliths are lherzolites (5.6%-19.5% Cpx), which have low Ni contents and low Ni/Cu and Mg/Si ratios, but high CaO, Al2O3, S, and HREE contents, and relatively high Ru/Ir and Pd/Ir ratios. The Shanwang peridotites show pronounced positive Ti and Sr, negative Th, and slightly negative Y, Zr, and Hf anomalies. They are believed to represent newly accreted fertile lithospheric mantle derived from cooling of upwelling asthenosphere. The documented temporal and spatial variations in the Mesozoic-Cenozoic mantle support the previous suggestion that the buoyant refractory continental keel in the eastern part of the North China Craton was heterogeneously replaced by younger fertile lithospheric mantle in the late Cretaceous-early Tertiary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号