首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1986年2月4日太阳耀斑的演化研究   总被引:1,自引:0,他引:1  
本文根据乌鲁木齐天文站的H_α耀斑及3.2cm射电流量观侧资料、云南天文台的黑子精细结构照相和Marshall Space Flight Center的向量磁场图,对1986年2月4日的六个耀斑的形态相关及演化联系,特别是0736UT 4B/3X大耀斑的发展过程进行了综合分析。主要结果是: 1.4日大耀斑的初始亮点和闪光相的主要形态演化,与活动区中沿中性线新浮现的强大电流/磁环系密切相关。后者的主要标志是沿中性线的长的剪切半影纤维及它两端的偶极旋涡黑子群(1_3F_3)。 2.上述大耀斑与1972年8月4日0624 UT大耀斑爆发的磁场背景及主要形态特征相似,表明两者的储能和触发机制可能相同。 3.大耀斑爆发的H_α初始亮点,双带出现,环系形成,亮物质抛射和吸收冕珥等现象同3.2cm射电流量的变化在时间上有较好的对应关系。 4.重复性的前期小耀斑爆发位置和发展趋势与大耀斑的主要形态及演化特征相似。它们相对于剪切的纵场中性线两侧的位置相近或相同。因而,可以看作上述强大电流/磁环系不稳性发展过程中的前置小爆发。  相似文献   

2.
In this paper, the 3B flare of February 4, 1986 is studied comprehensively. The escape electrons accelerated to 10–100 keV at the top of coronal loop are confirmed by III type bursts. The energetic electron beams moved downward trigger the eruptions in the low layer of solar atmosphere. The radio and soft X-ray bursts are interpreted, respectively, by the maser mechanism and evaporation effect. Finally, the important role of energetic electron beams in solar flares is pointed out.  相似文献   

3.
A post flare loop system was observed on the west limb at the total solar eclipse of February 16, 1980 in Kenya. Analyzing the monochromatic images and the flash spectra, we obtained the following results: (1) the lower part of the post flare loop system is characterized mainly by distinct cool loops of H and Fe x 6374. Fe x 6374 emitting plasma (T e = 1.0 × 106 K) is highly concentrated in the loops. The 6374 loops are broader in diameter and located very close to but a little higher than the corresponding H loops. The electron densities of the dense part in H and Fe x 6374 loops are 1011 cm-3 and 6 × 109cm-3, respectively; (2) the Ca xv emitting region (3.5 × 106 K) is confined to the upper part of the post flare loops. The electron density of this hot region is estimated as 8 × 109 cm-3 from the Ca xv line intensity ratio, I(5694)I(5445). These observational results led us to construct an empirical model of the post flare loop system which is consistent with the reconnection model of Kopp and Pneuman (1976).Contributions from the Kwasan and Hida Observatories, University of Kyoto, No. 267.  相似文献   

4.
Spectra of a 2B flare on 3 February, 1983 were observed simultaneously at H, H, and Can H, K lines with a multichannel spectrograph in the solar tower telescope of Nanjing University. The flare occurred in an extended region of penumbra at S 17 W07 from 05 : 41 to 07 : 00 UT. By use of an iterative method to solve the equations describing hydrostatic, radiative, and statistical equilibrium for hydrogen and ionized calcium atoms, five semi-empirical models corresponding to different times of the chromospheric flare have been computed. The results show that after the beginning of the flare, the heating of the chromosphere starts and the transition layer begins to be displaced downwards. However, during the impulsive phase the flare chromospheric region has a rapid outward expansion followed by a quick downward contraction. At the same time the transition layer starts to ascend and then descend again. After the H intensity maximum, the flare chromospheric region continues to condense and attains its most dense phase more than ten minutes after the maximum. Finally, the flare chromospheric region returns slowly to the normal chromospheric situation.  相似文献   

5.
A very intense geomagnetic storm, the largest observed in 26 years, was observed in early February 1986 having just been preceded by a series of six solar flares during the period 3–7 February. The storm and its antecedent flares are currently a subject of great interest because of the unusually large magnitude of the various geomagnetic effects that obtained. The fact that the flares were moderate to large in soft X-ray intensity, but much smaller than the largest that the Sun is capable of producing, coupled with the fact that these events occurred near the minimum of the current solar activity cycle, adds to the uniqueness of the overall episode.This paper describes the special circumstances surrounding these events and offers an interpretation of the cause and effect relationships through a numerical simulation of the dynamical evolutionary processes that may have occurred in interplanetary space.  相似文献   

6.
A very intense geomagnetic storm, the largest observed in 26 years, was observed in early February 1986 having just been preceded by a series of six solar flares during the period 3–7 February. The storm and its antecedent flares are currently a subject of great interest because of the unusually large magnitude of the various geomagnetic effects that obtained. The fact that the flares were moderate to large in soft X-ray intensity, but much smaller than the largest that the Sun is capable of producing, coupled with the fact that these events occurred near the minimum of the current solar activity cycle, adds to the uniqueness of the overall episode. This paper describes the special circumstances surrounding these events and offers an interpretation of the cause and effect relationships through a numerical simulation of the dynamical evolutionary processes that may have occurred in interplanetary space.  相似文献   

7.
In this paper a unique 2.3–4.2 GHz radio spectrum of the flare impulsive phase, showing fast positively drifting bursts superimposed on a slowly negatively drifting burst, is presented. Analyzing this radio spectrum it was found that the flare started somewhere near the transition region, where upward propagating MHD waves were generated during the whole impulsive phase. Moreover, it was found that behind a front of these ascending MHD waves the downward propagating electron beams, which bombarded dense layers of the solar atmosphere, were accelerated. It seems that, simultaneously with the increase of beam bombardment intensity, the intensity of MHD waves was increasing and thus the MHD shock wave generation and the electron beam acceleration and bombardment formed a self-consistently amplifying flare process. At higher coronal heights this process was followed by a type II radio burst, i.e. by the MHD flare shock. To verify this concept, the numerical modeling of the shock-wave generation and propagation in space from a flare site near the transition region up to 3 solar radii was made. Comparing the thermal and magnetic field disturbances, it was found that those of magnetic origin are more relevant in this case. Combining the results of interpretation and numerical simulation, a model of the February 27, 1992 flare is suggested and new aspects of this model are discussed.  相似文献   

8.
A complex analysis in different radio ranges of the evolutionary features of the 3 February, 1983 flare (0543-0619-0812 UT) has shown that the flare is a prolonged ( 15 hr) process of energy release and particle acceleration that gradually extends to still greater zones of the active region (AR) magnetosphere in both area and altitude. Observations from the Siberian Solar Radio Telescope obtained at = 5.2 cm indicate that the flare was preceded by quasi-periodical brightness enhancements with a period of 6–7 min of two sources of size 20 and with a brightness temperature of 107 K.During the flare maximum phase, a type II burst with harmonic structure and the subsequent type FC II continuum with fine structure were both observed in the meter band. It has been found that zebra-structure appearances correlate with the H-flare kernel brightenings at loop tops.The observed characteristics of the type II burst and of the type FC II continuum treated in this paper are interpreted in terms of the complex flare flow structure, involving forward and backward shock waves.  相似文献   

9.
We describe visual observations of a white light flare which displayed a pink color in a part of the flare which covered a sunspot umbra. We then show that visible pink tint, if attributable to strong H emission, requires a minimum equivalent emission line width of approximately 140 A, or three times larger than in any flare previously measured. Such extreme line broadening might be interpreted to result from flare penetration to unusually high chromospheric densities ( 1014 cm–3), or from anomalous Stark broadening due to turbulent electric fields in an unstable plasma (Spicer and Davis, 1975) at lower density.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

10.
We compare two contrasting X-class flares in terms of magnetic free energy, relative magnetic helicity and decay index of the active regions(ARs) in which they occurred. The events in question are the eruptive X2.2 flare from AR 11158 accompanied by a halo coronal mass ejection(CME) and the confined X3.1 flare from AR 12192 with no associated CME. These two flares exhibit similar behavior of free magnetic energy and helicity buildup for a few days preceding them. A major difference between the two flares is found to lie in the time-dependent change of magnetic helicity of the ARs that hosted them. AR 11158 shows a significant decrease in magnetic helicity starting ~4 hours prior to the flare, but no apparent decrease in helicity is observed in AR 12192. By examining the magnetic helicity injection rates in terms of sign, we confirmed that the drastic decrease in magnetic helicity before the eruptive X2.2 flare was not caused by the injection of reversed helicity through the photosphere but rather the CME-related change in the coronal magnetic field. Another major difference we find is that AR 11158 had a significantly larger decay index and therefore weaker overlying field than AR 12192. These results suggest that the coronal magnetic helicity and the decay index of the overlying field can provide a clue about the occurrence of CMEs.  相似文献   

11.
A numerical simulation method is used to show the possibility of forming a current sheet in the solar corona in an active region with four magnetic poles. The evolution of the quasi-stationary current sheet can lead to its transfer to an unsteady state. The MHD instability of this sheet causes its decay, accompanied by a set of events which characterizes the solar flare. The electrodynamical model of a solar flare includes a system of field-aligned currents typical of a magnetospheric substorm. Several events in substorms and solar flares are explained by the generation of field-aligned currents.  相似文献   

12.
One of the most powerful and long-lived flares on the active red dwarf YZ CMi is considered. The flare was observed in the U band at the Terskol Peak Observatory on February 9, 2008. During the formation of the flare over the course of 30 seconds, the flare-induced stellar luminosity increased and became more than 180 times the preflare value. The total duration of the flare was approximately one hour. At the flare maximum, quasi-periodic pulsations having a specified period of approximately 11 s, an initial modulation depth of 5.5%, and an exponential damping time of 29 s were discovered using wavelet analysis. Assuming that the pulsations were caused by fast magnetohydrodynamic oscillations of a flare loop, the following parameters were determined in the region of energy release using coronal seismology methods: plasma concentration (2 × 1010 cm−3), temperature (3 × 107 K), and magnetic field strength (0.015 T).  相似文献   

13.
14.
Longcope  D. W.  Silva  A. V. R. 《Solar physics》1998,179(2):349-377
Observations of the flare on 7 January 1992 are interpreted using a topological model of the magnetic field. The model, developed here, applies a theory of three-dimensional reconnection to the inferred magnetic field configuration for 7 January. In the model field a new bipole ( 1021 Mx) emerges amidst pre-existing active region flux. This emergence gives rise to two current ribbons along the boundaries (separators) separating the distinct, new and old, flux systems. Sudden reconnection across these boundary curves transfers 3 ×1020 Mx of flux from the bipole into the surrounding flux. The model also predicts the simultaneous (sympathetic) flaring of the two current ribbons. This explains the complex two-loop structure noted in previous observations of this flare. We subject the model predictions to comparisons with observations of the flare. The locations of current ribbons in the model correspond closely with those of observed soft X-ray loops. In addition the footpoints and apexes of the ribbons correspond with observed sources of microwave and hard X-ray emission. The magnitude of energy stored by the current ribbons compares favorably to the inferred energy content of accelerated electrons in the flare.  相似文献   

15.
A theoretical study is made of the visible and UV line radiation of He i atoms and He ii ions from a plane-parallel model flare layer. Solutions are obtained of the statistically steady state equations for a 30 level He i-ii-iii model, with parametric representation of the line and continuum radiation fields. Optical depths and some line intensities are presented for a 1000 km thick layer. Results are given for electron temperatures 104 to 5 × 104 K and electron densities 1010 to 1014 cm–3.Work sponsored by the NASA, Marshall Space Flight Center, Alabama under contract NAS8-27988.  相似文献   

16.
Large disturbances in the interplanetary medium were observed by several spacecraft during a period of enhanced solar activity in early February 1986. The locations of six solar flares and the spacecraft considered here encompassed more than 100° of heliolongitude. These flares during the minimum of cycle 21 set the stage for an extensive multi-spacecraft comparison performed with a two-dimensional, magnetohydrodynamic (MHD) numerical experiment. The plasma instruments on the European Space Agency (ESA)'s GIOTTO spacecraft, on its way to encounter Comet Halley in March 1986, made measurements of the solar wind for up to 8 hours per day during February. We compare solar wind measurements from the Johnstone Plasma Analyzer (JPA) experiment on GIOTTO with the MHD simulation of the interplanetary medium throughout these events. Using plasma data obtained by the IMP-8 satellite in addition, it appears that an extended period of high solar wind speed is required as well as the simulated flares to represent the interplanetary medium in this case. We also compare the plasma and magnetometer data from VEGA-1 with the MHD simulation. This comparison tends to support an interpretation that the major solar wind changes at both GIOTTO and VEGA-1 on 8 February, 1986 were due to a shock from a W05° solar flare on 6 February, 1986 (06:25 UT). The numerical experiment is considered, qualitatively, to resemble the observations at the former spacecraft, but it has less success at the latter one.  相似文献   

17.
根据Marshall空间飞行中心(MSFC)太阳天文台的矢量磁场测量和云南天文台的黑子细节照相资料,作者们详细研究了1986年2月初太阳大活动区(AR4711)的形态和演化。主要结论如下: i)几乎在活动区中每处地方,相距五小时观测到横向磁场排列方向和黑子半影纤维形态之间存在良好的相似性。 ii)利用文[4]的方法,推断了本活动区强的垂直电流源和强的水平电流渠道。 iii)与1972年8月初著名的太阳活动区(McMath 11976)相类似,沿老活动区的中性线的新浮磁通管的两足点(偶极黑子)的分离运动导致了一个密集四极磁结构的形成。 iv)新浮磁通管似乎是本活动区最强的电流系统。 上述结论将为进一步研究本区电流/磁场环系的演化及其与耀斑活动的关系提供一个基础数据。  相似文献   

18.
We compare solar X-ray observations from the UCSD experiment aboard OSO-7 with high resolution energetic electron observations from the UCAL experiment on IMP-6 for a small solar flare on 26 February 1972. A proportional counter and NaI scintillator covered the X-ray energy range 5–300 keV, while a semiconductor detector telescope covered electrons from 18 to 400 keV. A series of four non-thermal X-ray spikes were observed from 1805 to 1814 UT with average spectrum dJ/d (hv) (hv)–4.0 over the 14–64 keV range. The energetic electrons were observed at 1 AU beginning 1840 UT with a spectrum dJ/dE E –3.1. If the electrons which produce the X-ray emission and those observed at 1 AU are assumed to originate in a common source, then these observations are consistent with thin target X-ray production at the Sun and inconsistent with thick target production. Under a model consistent with the observed soft X-ray emission, we obtain quantitative estimates of the total energy, total number, escape efficiency, and energy lost in collisions for the energetic electrons.  相似文献   

19.
The energetics and mass transfer during the X-ray flare of 1831 GMT on 5 September, 1973 have been studied using the observations in the objective grating mode of the AS&E X-ray spectrographic telescope on Skylab. The flare was a moderately energetic one, Class M1 according to Solrad. In H, however, it was only a subflare of class - N. The data are approximately monochromatic images of the small X-ray source. They show a continued rise in the emission for several minutes followed by a decline. The size and temporal evolution are slightly different for ions associated with higher temperatures (Fe xxii, Si xiii) than with those of lower temperatures (Fe xvii, Mg xi). The time of maximum emission moves from one side of the flare to the other and peaks earlier for hotter temperature ions. The observations are analyzed using a two-temperature model in order to determine the changes in the distribution of emission measure and of the amount of material as a function of temperature. The development of the flare can be divided into three periods in each of which different mechanisms are operating. For the first 3–4 min, evaporation drives mass into the entire emitting region. Second, the evaporation ceases: Hot material loses energy, and we see a loss of hot material and a corresponding gain of cool material. Later, after 1838, we see a decline in the emission measure.  相似文献   

20.
C. de Jager 《Solar physics》1983,86(1-2):21-32
We define the impulsive phase of a flare as its first phase, characterized by: X-ray bursts of short (seconds to tens of seconds) duration, a patchy X-ray morphology, and injection of energy. It lasts some five to ten minutes. The gradual or diffuse phase starts virtually at the same time as the impulsive one and is characterized by a gradually varying X-ray flux from a larger, diffuse, area situated higher than the sources of the impulsive X-ray bursts. The diffuse cloud is initially (during the first five minutes) hotter by a few million degrees than the sources of the impulsive phase bursts and is assumed to be caused by convective motions with upward velocities of a few hundred km s?1. It contains about the same number of energetic electrons as the impulsive burst patches contained initially. It cools gradually down by radiative and conductive losses, a process that may last for about an hour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号