首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitra has suggested that the Superrotation of the upper atmosphere is caused by a deposition of meteoroids. The meteoroids are assumed to impart to the atmosphere the excess of their orbital angular momentum per unit mass over the Earth's angular momentum per unit mass. The process is to take place in the height region above 150 km. Only above this height is a Superrotation of the atmosphere observed. In this report the forces that tend to make the atmosphere corotate with the Earth are analysed. It is shown that the most important of these forces is ion drag, and not viscous drag as postulated by Mitra. As the net angular spin momentum imparted by the meteoroids seems to be less than Mitra's estimate and its main part is applied to the atmosphere at altitudes much lower than 150 km, the hypothesis that meteoroids provide a significant contribution to the Superrotation is rejected.  相似文献   

2.
The fate of entering meteoroids in atmosphere is determined by their size, velocity and substance properties. Material from ablation of small-sized meteors (roughly R≤0.01–1 cm) is mostly deposited between 120 and 80 km altitudes. Larger bodies (up to meter sizes) penetrate deeper into the atmosphere (down to 20 km altitude). Meteoroids of cometary origin typically have higher termination altitude due to substance properties and higher entry velocity. Fast meteoroids (V>30–40 km/s) may lose a part of their material at higher altitudes due to sputtering. Local flow regime realized around the falling body determines the heat transfer and mass loss processes. Classic approach to meteor interaction with atmosphere allows describing two limiting cases: – large meteoroid at relatively low altitude, where shock wave is formed (hydrodynamical models); – small meteoroid/or high altitudes – free molecule regime of interaction, which assumes no collisions between evaporated meteoroid particles. These evaporated particles form initial train, which then spreads into an ambient air due to diffusion. Ablation models should make it possible to describe physical conditions that occur around meteor body. Several self-consistent hydrodynamical models are developed, but similar models for transition and free molecule regimes are still under study. This paper reviews existing ablation models and discusses model boundaries.  相似文献   

3.
A model for fast sequential disintegration of meteoroids in the terrestrial atmosphere, which takes a scale factor into account, was published by Ivanov and Ryzhanskii (1997). The trajectory of a nonablating body was determined by stage-by-stage computations; the number of stages could be more than 30. In the present study, this physical model is represented by a set of differential equations, which are solved by the method of separation of variables, in particular, with allowance for ablation. For bounded values of the mass-loss parameter, the solution is expressed in terms of elementary functions. Examples of the calculation of meteoric-body trajectories based on other models and their comparison with the proposed model are presented. Comparison of the results indicate the efficiency of these models in solving the inverse problems of dynamics and disruption of meteoroids in the atmosphere.  相似文献   

4.
The shape and characteristics (beginning and end heights, and height of maximum brightness) of meteor light curves are investigated under the constraint that the surface area S that a meteoroid presents to the oncoming air flow varies as a power law in the meteoroid mass m such that   S ∼ m α  . We investigate the meteoroid ablation for a range of values of α, and find that the  α= 1  condition allows for a fully analytic solution to the coupled differential equations of meteoroid ablation when the density profile is that of an isothermal atmosphere. The possible geometrical properties of Geminid meteoroids are discussed in terms of the  α= 1  ablation model and it is shown that they are consistent with being derived from an asteroidal, rather than cometary, parent body.  相似文献   

5.
Abstract— Two‐station electro‐optical observations of the 1998 Leonid shower are presented. Precise heights and light curves were obtained for 79 Leonid meteors that ranged in brightness (at maximum luminosity) from +0.3 to +6.1 astronomical magnitude. The mean photometric mass of the data sample was 1.4 × 10?6 kg. The dependence of astronomical magnitude at peak luminosity on photometric mass and zenith angle was consistent with earlier studies of faint sporadic meteors. For example, a Leonid meteoroid with a photometric mass of ~1.0 × 10‐7 kg corresponds to a peak meteor luminosity of about +4.5 astronomical magnitudes. The mean beginning height of the Leonid meteors in this sample was 112.6 km and the mean ending height was 95.3 km. The highest beginning height observed was 144.3 km. There is relatively little dependence of either the first or last heights on mass, which is indicative of meteoroids that have clustered into constituent grains prior to the onset of intensive grain ablation. The height distribution, combined with numerical modelling of the ablation of the meteoroids, suggests that silicate‐like materials are not the principal component of Leonid meteoroids and hints at the presence of a more volatile component. Light curves of many Leonid meteors were examined for evidence of the physical structure of the associated meteoroids: similar to the 1997 Leonid meteors, the narrow, nearly symmetric curves imply that the meteoroids are not solid objects. The light curves are consistent with a dustball structure.  相似文献   

6.
Through a combination of aerobraking (drag deceleration) and ablation, meteoroids which enter planetary atmospheres may be slowed sufficiently to soft-land as meteorites. Results of an earlier study suggest that the current 6 mbar atmosphere of Mars is sufficient to aerobrake significant numbers of small (<10 kg) asteroidal-type meteoroids into survivable, low-velocity (<500 m s−1) impacts with the planet's surface. Since rates of meteorite production depend upon the density of Mars's atmosphere, they must also change as the martian climate changes. However, to date, martian meteorite production has received relatively little attention in the literature Here we expand upon our previous work to study martian meteorite production rates and how they depend upon variations of the martian atmosphere, and to estimate the ranges of mass, velocity and entry-angle that produce meteorites. We find that even the current atmosphere of Mars is sufficient to soft-land significant fractions of incident stony and iron objects, and that these fractions increase dramatically for denser martian atmospheres. Therefore, like impact cratering, meteorite populations may preserve evidence of past martian climates.  相似文献   

7.
The drag coefficients and the patterns of supersonic flows around rectangular parallelepipeds (bodies with rectangular and square faces-bricks and tiles, respectively) were found from numerical experiments. These drag coefficients c x are considerably different from the values used, in particular, in the meteor-related literature to calculate the motion of brick-shaped meteor bodies. The values of c x and the flow pattern near the face of the body weakly depend on the relative size of the body within the parameter range considered.  相似文献   

8.
The cometary Leonid meteoroids represent a size range in between largest carbon-richIDPs and the smallest CI meteorites. Their dustball structure and chemistry offer anopportunity to constrain hierarchical dust accretion inferred from petrologic studies ofaggregate and cluster IDPs. The Leonid shower meteoroids of known ``comet ejection'ages provide an opportunity to study space weathering of cometary dust over periodsof up to several hundred years. The meteors and aggregate and cluster IDPs displaycontinuous thermal modification of organics and volatile element (Na, K-bearing phases), that occur as discrete minerals and amorphous solids each different response during kinetically controlled ablation. Leonid meteoroids are not excessively Na-rich. The occurrences of Leonid meteors can now be accurate predicted and combined withknowledge better models for the settling rates, collections of surviving dust becomea comet nucleus-sampling mission. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Radiation energies of bright flashes caused by disintegration of large meteoroids in the atmosphere have been measured using optical sensors on board geostationary satellites. Light curves versus time are available for some of the events. We have worked out several numerical techniques to derive the kinetic energy of the meteoroids that produced the flashes. Spectral opacities of vapor of various types of meteoroids were calculated for a wide range of possible temperatures and densities. Coefficients of conversion of kinetic energy to radiation energy were computed for chondritic and iron meteoroids 10 cm to 10 m in size using radiation–hydrodynamics numerical simulations. Luminous efficiency increases with body size and initial velocity. Some analytical approximations are presented for average conversion coefficients for irons and H-chondrites. A mean value of this coefficient for large meteoroids (1–10 m in size) is about 5–10%. The theory was tested by analyzing the light curves of several events in detail.Kinetic energies of impactors and energy–frequency distribution of 51 bolides, detected during 22 months of systematic observations in 1994–1996, are determined using theoretical values of luminous efficiencies and heat-transfer coefficients. The number of impacts in the energy range from 0.25 to 4 kt TNT is 25 per year and per total surface of the Earth.The energy–frequency distribution is in a rather good agreement with that derived from acoustic observations and the lunar crater record. Acoustic systems have registered one 1 Mt event in 12 years of observation. Optical systems have not detected such an event as yet due to a shorter time of observation. The probability of a 1 Mt impact was estimated by extrapolation of the observational data.  相似文献   

10.
The ballistic coefficients and ablation parameters of Prairie Network (United States) fireballs are determined by the best fitting in velocity–height variables. The braking trajectories based on the model of successive destruction with ablation are used as the test functions. The fitting accuracy of the observed trajectory was found to be approximately the same for the model of successive destruction and for the model of motion of a single body. At least, the fitting accuracy allows us neither to confirm nor to reject the fragmentation of meteoroids within the luminous segment of the trajectory. The previously noted excess of the observed luminosity of the fireballs studied here (Popova, 1997) over the value calculated for the dynamical mass, which was estimated from the model of a single body (Kulakov and Stulov, 1992), can be explained by deviations of the meteoroid shapes from a sphere.  相似文献   

11.
Abstract— We present the basic differential equations of meteor physics (the single body equations). We solve them numerically including two possible types of fragmentation: into large pieces and into a cluster of small fragments. We have written a Fortran code that computes the motion, ablation and light intensity of a meteoroid at chosen heights, and allows for the ablation and shape density coefficients σ and K, as well as the luminous efficiency τ, to be variable with height/time. We calibrated our fragmentation model (FM) by the best fit to observational values for the motion, ablation, radiation, fragmentation and the terminal masses (recovered meteorites) for the Lost City bolide. The FM can also handle multiple and overlapping meteor flares. We separately define both the apparent and intrinsic values of σ, K, and τ. We present in this paper values of the intrinsic luminous efficiency as function of velocity, mass, and normalized air density. Detailed results from the successful application of the FM to the Lost City, Innisfree, and Benesov bolides are also presented. Results of applying the FM to 15 bolides with very precise observational data are presented in a survey mode (Table 7). Standard deviations of applying our FM to all these events correspond to the precision of the observed values. Typical values of the intrinsic ablation coefficient are low, mostly in the range from 0.004 to 0.008 s2 km?2, and do not depend on the bolide type. The apparent ablation coefficients reflect the process of fragmentation. The bolide types indicate severity of the fragmentation process. The large differences of the “dynamic” and “photometric” mass from numerous earlier studies are completely explained by our FM. The fragmentation processes cannot be modeled simply by large values of the apparent ablation coefficient and of the apparent luminous efficiency. Moreover, our new FM can also well explain the radiation and full dynamics of very fast meteoroids at heights from 200 km to 130 km.  相似文献   

12.
A detailed analysis of a photographic spectrum of a Geminid fireball obtained in December 14, 1961 at the Ondrejov Observatory is presented. We have computed a synthetic spectrum for the fireball and compared it with the observed spectrum assuming chemical equilibrium in the meteor head. In this way we have determined relative chemical abundances in meteor vapors. Comparing the relative chemical abundances of this Geminid meteoroid with those obtained from meteoroids associated with comets 55P/Tempel-Tuttle and 109P/Swift-Tuttle we found no significant chemical differences in main rock-forming elements. Despite of this similarity, the deepest penetration of the Geminid meteoroids and their ability to reach high rotation rates in space without fragmentation suggest that thermal processing is affecting their physical properties. We suggest that as consequence of space weathering a high-strength envelope is produced around these particles. In this picture, heating processes of the mineral phases could result in the peculiar properties observed during atmospheric entry of the Geminid meteoroids, especially their strength, which is evidenced by its resistance to ablation. Finally, although one meteoroid cannot be obviously considered as representative of the composition of its parent body, we conclude that 3200 Phaethon is able to produce millimetre-size debris nearly chondritic in composition, but the measured slight overabundance of Na would support a cometary origin for this body.  相似文献   

13.
Assuming that similar organic components as in comet 81P/Wild 2 are present in incoming meteoroids, we try to anticipate the observable signatures they would produce for meteor detection techniques. In this analysis we consider the elemental and organic components in cometary aggregate interplanetary dust particles and laboratory analyses of inter- and circumstellar carbon dust analogues. On the basis of our analysis we submit that (semi) quantitative measurements of H, N and C produced during meteor ablation will open an entire new aspect to using meteoroids as tracers of these volatile element abundances in active comets and their contributions to the mesospheric metal layers.  相似文献   

14.
The Advanced Research Project Agency (ARPA) Long Range Tracking and Instrumentation Radar has recorded thousands of head echoes from small meteoroids, which include detailed trajectory information as well as ionization measurements. In total, 25 complete ionization curves have been matched using a detailed model of meteoroid ablation, though the solutions are not necessarily unique. While measurements of the spread along the trajectory of the echoes indicate that most meteors in this size range do not have large separations among fragments, the ionization curves are consistent with fragmenting bodies in the most cases. Very precise radar measurements of meteors can be a valuable source of data on the chemical and physical properties of small meteoroids.  相似文献   

15.
Abstract— We report on studies of the Fe, Ca, and K atom densities in the trails of meteors. The measurements of the densities were taken simultaneously and in a common volume by three ground-based lidars. We report and analyze the data obtained during two nights of Leonid showers (1996 and 1998 November 16/17) and of one night five days after the 1998 Leonids. The lidar-observed trails of Leonids differ from those of other meteor showers in both their mean altitude and in mean metal composition. The Leonid trails show a highly depressed Ca/Fe abundance ratio in comparison to CI meteoritic composition. Our observations are interpreted with the help of a numerical model that describes the ablation processes occurring during the high-speed entry of meteoroids into the Earth's atmosphere. We conclude that for the lidar-observed meteoroids, the ablation process occurs differentially for the three elements. This leads to a mixture of metals in the meteor trails, the composition of which is strongly altitude dependent and at any one altitude deviates significantly from a CI meteoritic composition. The model predicts differing altitudes and durations of trail observations for different showers, allowing us to tentatively assign the origin to the observed trails.  相似文献   

16.
We used light curve analysis to search for evidence of the dustball meteoroid model. Leonid, Taurid, Alpha Monocerotid and sporadic meteors from November 2003 were observed and analyzed using uniform methodology. Meteors from these four sources were examined for evidence of fragmentation by examining light curve shape and searching for light curve irregularities. Differences in meteoroid structure should be reflected by differences in meteor light curves. The resulting meteor light curve F-parameter values showed no statistically significant differences between the meteors from the various cometary showers or the sporadic meteors. The F-parameter values also suggest that the meteoroids from these sources do not follow a single body ablation model, which suggests that all four sources produce meteoroids with a dustball structure.  相似文献   

17.
Bulk compositions of aggregate meteoroids made of the originally accreted dust with its highly varied in mineral content and chemistry and considerable grain size variations do not have a chondritic bulk composition. Deviations from CI element abundances reflect indigenous variations within and among comet nuclei. These unmodified meteoroids that are heterogeneous in all their properties are fundamentally different from meteoroids with a CI bulk composition that are fine-grained, equigranular materials and chemically and mineralogically homogeneous. Collection and data reduction bias exists but the compositions of individual fast meteors are entirely constrained by the measured main component meteor abundances.  相似文献   

18.
Plasma formed in the immediate vicinity of a meteoroid as it descends through Earth's atmosphere enables high-gain radars such as those found at Kwajalein, Arecibo, and Jicamarca to detect ablating meteoroids. In the work presented here, we show that these head echo measurements preferentially detect more energetic meteoroids over less energetic ones and present a method of estimating the effects of this bias when measuring the velocity distributions. To do this, we apply ablation and ionization models to estimate a meteoroid's plasma production rate based on its initial kinetic energy and ionization efficiency. This analysis demonstrates that, almost regardless of the assumptions made, high-gain radars will preferentially detect faster and more massive meteoroids. Following the model used by Taylor (1995, Icarus 116, 154-158), we estimate the biases and then apply them to observed meteoroid velocity distributions. We apply this technique to observations of the North Apex meteoroid source made by the Advanced Research Project Agency Long Range Tracking and Instrumentation Radar (ALTAIR) at two frequencies (160 and 422 MHz) and compare results from the Harvard Radio Meteor Project (HRMP) at High Frequency (HF, 40.9 MHz). Both studies observe a peak in the distribution of North Apex meteoroids at approximately 56 km s−1. After correcting for biases using Taylor's method, the results suggest that the mass-weighted peak of the distribution lies near 20 km s−1 for both studies. We attribute these similarities to the fact that both radar systems depend upon similar ablation and ionization processes and thus have a common mass scale.  相似文献   

19.
Gas-surface interactions and satellite drag coefficients   总被引:1,自引:0,他引:1  
Information on gas-surface interactions in orbit has accumulated during the past 35 years. The important role played by atomic oxygen adsorbed on satellite surfaces has been revealed by the analysis of data from orbiting mass spectrometers and pressure gauges. Data from satellites of special design have yielded information on the energy accommodation and angular distributions of molecules reemitted from satellite surfaces. Consequently, it is now possible to calculate satellite drag coefficients from basic physical principles, utilizing parameters of gas-surface interactions measured in orbit. The results of such calculations are given. They show the drag coefficients of four satellites of different compact shapes in low-earth orbit with perigee altitudes in the range from about 150 to 300 km, where energy accommodation coefficients and diffuse angular distributions have been measured. The calculations are based on Sentman's analysis of drag forces in free-molecular flow. His model incorporates the random thermal motion of the incident molecules, and assumes that all molecules are diffusely reemitted The uncertainty caused by the assumption of diffuse reemission is estimated by using Schamberg's model of gas-surface interaction, which can take into account a quasi-specular component of the reemission. Such a quasi-specular component is likely to become more important at higher altitudes as the amount of adsorbed atomic oxygen decreases. A method of deducing accommodation coefficients and angular distributions at higher altitudes by comparing the simultaneous orbital decay of satellites of different shapes at a number of altitudes is suggested. The purpose is to improve thermospheric measurements and models, which are significantly affected by the choice of drag coefficients.  相似文献   

20.
High dispersion photographic spectra of three Leonid and five Perseid meteors are used to derive relative abundances of nine chemical elements in the radiating meteoric vapors and in the meteoroids. Al and Ca were found to be incompletely evaporated in the main spectral component at 5000 K but completely evaporated in the second component at 10,000 K. Si lines are present in both components which enhances the reliability of determination of the Si abundance. The composition of the meteoroids was found to be more similar to comet Halley than to chondritic meteoroids. Fe, Cr, and Mn are depleted and Si, Na, and H are enhanced relative to Mg in comparison with CI chondrites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号