首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Generally the seismic hazard of an area of interest is considered independent of time. However, its seismic risk or vulnerability, respectively, increases with the population and developing state of economy of the area. Therefore, many areas of moderate seismic hazard gain increasing importance with respect to seismic hazard and risk analysis. However, these areas mostly have a weak earthquake database, i.e., they are characterised by relative low seismicity and uncertain information concerning historical earthquakes. In a case study for Eastern Thuringia (Germany), acting as example for similar places in the world, seismic hazard is estimated using the probabilistic approach. Because of the lack of earthquakes occurring in the recent past, mainly historical earthquakes have to be used. But for these the actual earthquake sources or active faults, needed for the analysis, are imprecisely known. Therefore, the earthquake locations are represented by areal sources, a common practice. The definition of these sources is performed carefully, because their geometrical shape and size (apart from the earthquake occurrence model) influence the results significantly. Using analysis tools such as density maps of earthquake epicentres, seismic strain and energy release support this. Oversizing of areal sources leads to underestimation of seismic hazard and should therefore be avoided. Large location errors of historical earthquakes on the other hand are represented by several alternative areal sources with final superimposition of the different results. In a very similar way information known from macroseismic observations interpreted as source rather than as site effects are taken into account in order to achieve a seismic hazard assessment as realistic as possible. In very local cases the meaning of source effects exceeds those of site effects very likely. The influence of attenuation parameter variations on the result of estimated local seismic hazard is relatively low. Generally, the results obtained by the seismic hazard assessment coincide well with macroseismic observations from the thoroughly investigated largest earthquake in the region.  相似文献   

2.
The seismic hazard assessment of a site that lies in the low seismic region affected by the future existence of a large dam has been given less attention in many studies. Moreover, this condition is not addressed directly in the current seismic codes. This paper explains the importance of such information in mitigating the seismic hazard properly. Ulu Padas Area in Northern Borneo is used as an example for a case study of a site classified as a low seismic region. It is located close to the border of Malaysia, Brunei Darussalam, and Indonesia and may have a large dam in the future as the region lies in hilly geography with river flow. This study conducts probabilistic and deterministic seismic hazard analyses, and reservoir-triggered seismicity of a site affected by the future existence of a large dam. The result shows that the spectrum acceleration of the maximum design earthquake for the investigated site in the Ulu Padas Area in Northern Borneo is taken from the reservoir-triggered seismicity earthquake at short periods and from the current condition at longer periods.  相似文献   

3.
Time independent seismic hazard analysis in Alborz and surrounding area   总被引:1,自引:0,他引:1  
The Bayesian probability estimation seems to have efficiencies that make it suitable for calculating different parameters of seismicity. Generally this method is able to combine prior information on seismicity while at the same time including statistical uncertainty associated with the estimation of the parameters used to quantify seismicity, in addition to the probabilistic uncertainties associated with the inherent randomness of earthquake occurrence. In this article a time-independent Bayesian approach, which yields the probability that a certain cut-off magnitude will be exceeded at certain time intervals is examined for the region of Alborz, Iran, in order to consider the following consequences for the city of Tehran. This area is located within the Alpine-Himalayan active mountain belt. Many active faults affect the Alborz, most of which are parallel to the range and accommodate the present day oblique convergence across it. Tehran, the capital of Iran, with millions of inhabitants is located near the foothills of the southern Central Alborz. This region has been affected several times by historical and recent earthquakes that confirm the importance of seismic hazard assessment through it. As the first step in this study an updated earthquake catalog is compiled for the Alborz. Then, by assuming a Poisson distribution for the number of earthquakes which occur at a certain time interval, the probabilistic earthquake occurrence is computed by the Bayesian approach. The highest probabilities are found for zone AA and the lowest probabilities for zones KD and CA, meanwhile the overall probability is high.  相似文献   

4.
Intermediate-depth earthquakes in the Vrancea region occur in response to stress generation due to descending lithosphere beneath the southeastern Carpathians. In this article, tectonic stress and seismicity are analyzed in the region on the basis of a vast body of observations. We show a correlation between the location of intermediate-depth earthquakes and the predicted localization of maximum shear stress in the lithosphere. A probabilistic seismic hazard assessment (PSHA) for the region is presented in terms of various ground motion parameters on the utilization of Fourier amplitude spectra used in engineering practice and risk assessment (peak ground acceleration, response spectra amplitude, and seismic intensity). We review the PSHA carried out in the region, and present new PSHA results for the eastern and southern parts of Romania. Our seismic hazard assessment is based on the information about the features of earthquake ground motion excitation, seismic wave propagation (attenuation), and site effect in the region. Spectral models and characteristics of site-response on earthquake ground motions are obtained from the regional ground motion data including several hundred records of small and large earthquakes. Results of the probabilistic seismic hazard assessment are consistent with the features of observed earthquake effects in the southeastern Carpathians and show that geological factors play an important part in the distribution of the earthquake ground motion parameters.  相似文献   

5.
The territory of Croatia and neighboring regions is divided into 17 seismic source zones, considering available seismological and geological data. On this basis, seismic hazard elements (seismicity rate, maximum magnitude, b-value, probabilities of exceedance and return periods for a predefined set of magnitudes) are computed using the maximum likelihood method appropriate for treating data-sets with variable completeness thresholds. The values of long term expected peak horizontal acceleration obtained by using a combination of the deterministic and the probabilistic procedure are the highest in the Dubrovnik zone, while the Zagreb zone has the highest earthquake hazard in the continental part of the country. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
In conventional seismic hazard analysis, uniform distribution over area and magnitude range is assumed for the evaluation of source seismicity which is not able to capture peculiar characteristic of near-fault ground motion well. For near-field hazard analysis, two important factors need to be considered: (1) rupture directivity effects and (2) occurrence of scenario characteristic ruptures in the nearby sources. This study proposed a simple framework to consider these two effects by modifying the predictions from the conventional ground motion model based on pulse occurrence probability and adjustment of the magnitude frequency distribution to account for the rupture characteristic of the fault. The results of proposed approach are compared with those of deterministic and probabilistic seismic hazard analyses. The results indicate that characteristic earthquake and directivity consideration both have significant effects on seismic hazard analysis estimates. The implemented approach leads to results close to deterministic seismic hazard analysis in the short period ranges (T < 1.0 s) and follows probabilistic seismic hazard analysis results in the long period ranges (T > 1.0 s). Finally, seismic hazard maps based on the proposed method could be developed and compared with other methods.  相似文献   

7.
This paper highlights the seismic microzonation carried out for a nuclear power plant site. Nuclear power plants are considered to be one of the most important and critical structures designed to withstand all natural disasters. Seismic microzonation is a process of demarcating a region into individual areas having different levels of various seismic hazards. This will help in identifying regions having high seismic hazard which is vital for engineering design and land-use planning. The main objective of this paper is to carry out the seismic microzonation of a nuclear power plant site situated in the east coast of South India, based on the spatial distribution of the hazard index value. The hazard index represents the consolidated effect of all major earthquake hazards and hazard influencing parameters. The present work will provide new directions for assessing the seismic hazards of new power plant sites in the country. Major seismic hazards considered for the evaluation of the hazard index are (1) intensity of ground shaking at bedrock, (2) site amplification, (3) liquefaction potential and (4) the predominant frequency of the earthquake motion at the surface. The intensity of ground shaking in terms of peak horizontal acceleration (PHA) was estimated for the study area using both deterministic and probabilistic approaches with logic tree methodology. The site characterization of the study area has been carried out using the multichannel analysis of surface waves test and available borehole data. One-dimensional ground response analysis was carried out at major locations within the study area for evaluating PHA and spectral accelerations at the ground surface. Based on the standard penetration test data, deterministic as well as probabilistic liquefaction hazard analysis has been carried out for the entire study area. Finally, all the major earthquake hazards estimated above, and other significant parameters representing local geology were integrated using the analytic hierarchy process and hazard index map for the study area was prepared. Maps showing the spatial variation of seismic hazards (intensity of ground shaking, liquefaction potential and predominant frequency) and hazard index are presented in this work.  相似文献   

8.
A first generation of probabilistic seismic hazard maps of the Italian country are presented. They are based on seismogenic zoning deriving from a kinematic model of the structural tectonic units and on an earthquake catalogue with the foreshock and aftershock events filtered out. The following ground motion parameters have been investigated and mapped using attenuation equations based on strong-motion recordings of Italian earthquakes: peak ground acceleration and velocity; Arias intensity; strong motion duration; and the pseudovelocity and pseudoacceleration spectral values at 14 fixed frequencies both for the vertical and the largest horizontal component. A Poissonian model of earthquake occurrence is assumed as a default and the hazard maps are presented in terms of ground motion values expected to be exceeded at a 10% probability level in 50 years (return period 475 years) according to the requirement of Eurocode 8 for the seismic classification of national territories, as well as in terms of exceedance probabilities of selected ground motion values. Finally, as a tentative study, the use of hybrid methods (implementing both seismogenic zones and structures), renewal processes (including earthquake forecasting) and the influence of site effects (as the basis for the planning of earthquake scenarios) were explored.  相似文献   

9.
In this study, an integrated multi-channel analysis of Surface Waves (MASW) technique is applied to explore the geotechnical parameters of subsurface layers at the Zafarana wind farm. Moreover, a seismic hazard procedure based on the extended deterministic technique is used to estimate the seismic hazard load for the investigated area. The study area includes many active fault systems along the Gulf of Suez that cause many moderate and large earthquakes. Overall, the seismic activity of the area has recently become better understood following the use of new waveform inversion method and software to develop accurate focal mechanism solutions for recent recorded earthquakes around the studied area. These earthquakes resulted in major stress-drops in the Eastern desert and the Gulf of Suez area. These findings have helped to reshape the understanding of the seismotectonic environment of the Gulf of Suez area, which is a perplexing tectonic domain. Based on the collected new information and data, this study uses an extended deterministic approach to re-examine the seismic hazard for the Gulf of Suez region, particularly the wind turbine towers at Zafarana Wind Farm and its vicinity. Alternate seismic source and magnitude-frequency relationships were combined with various indigenous attenuation relationships, adapted within a logic tree formulation, to quantify and project the regional exposure on a set of hazard maps. We select two desired exceedance probabilities (10 and 20 %) that any of the applied scenarios may exceed the largest median ground acceleration. The ground motion was calculated at 50th, 84th percentile levels for both selected probabilities of exceeding the median.  相似文献   

10.
This paper presents probabilistic assessment of seismically-induced slope displacements considering uncertainties of seismic ground motions and soil properties.A stochastic ground motion model representing both the temporal and spectral non-stationarity of earthquake shakings and a three-dimensional rotational failure mechanism are integrated to assess Newmark-type slope displacements.A new probabilistic approach that incorporates machine learning in metamodeling technique is proposed,by combining relevance vector machine with polynomial chaos expansions(RVM-PCE).Compared with other PCE methods,the proposed RVM-PCE is shown to be more effective in estimating failure probabilities.The sensitivity and relative influence of each random input parameter to the slope displacements are discussed.Finally,the fragility curves for slope displacements are established for sitespecific soil conditions and earthquake hazard levels.The results indicate that the slope displacement is more sensitive to the intensities and strong shaking durations of seismic ground motions than the frequency contents,and a critical Arias intensity that leads to the maximum annual failure probabilities can be identified by the proposed approach.  相似文献   

11.
In the present work a new, deterministic, seismic zonation map for the territory of Armenia is presented. It has been compiled on the basis of the newest seismological, geological and geophisical data. Creation of the map included: determination of a seismic hazard area for the territory of Armenia; compilation of a map of active faults; identification of active blocks; identification of seismic source zones; calculation of a seismic effect from the seismic source zones (SSZs). Seismic effect on the Earth's surface from the singled out SSZs is calculated in the form of an intensity of seismic influences expressed in units of MSK-64 scale, and horizontal soil accelerations expressed in fractions of gravity force acceleration (g). The map compiled will allow comparison between the deterministic model with a probabilistic seismic zonation model for the territory of Armenia (in preparation), in order to analyze the western and eastern standards of seismic hazard assessment on the basis of the same complete data base.  相似文献   

12.
A probabilistic seismic hazard assessment at Kancheepuram in Southern India was carried out with the scope of defining the seismic input for the vulnerability assessment of historical and monumental structures at the site, in terms of horizontal Uniform Hazard Spectra and a suite of spectrum-compatible natural accelerograms to perform time-history analysis. The standard Cornell?CMcGuire and a zone-free approach have been used for hazard computations after the compilation of a composite earthquake catalogue for Kancheepuram. Epistemic uncertainty in the seismic hazard was addressed within a logic-tree framework. Deaggregation of the seismic hazard for the peak ground acceleration shows low seismicity at Kancheepuram controlled by weak-to-moderate earthquakes with sources located at short distances from the archaeological site. Suites of natural accelerograms recorded on rock have been selected by imposing a custom-defined compatibility criterion with the probabilistic spectra. The site of Kancheepuram is characterized by a seismicity controlled by weak-to-moderate earthquakes with sources at short distances from the site, the PGA expected for 475- and 2,475-year return period are, respectively, 0.075 and 0.132?g. The Indian code-defined spectra (DBE and MCE) tend to underestimate spectral ordinates at low periods. On the other hand, the PGA are comparable and the spectral ordinates for longer periods from the probabilistic study are significantly lower.  相似文献   

13.
CHEN  Y.  Liu  J.  Chen  L.  Chen  Q.  Chan  L. S. 《Natural Hazards》1998,17(3):251-267
A global seismic hazard assessment was conducted using the probabilistic approach in conjunction with a modified means of evaluating the seismicity parameters. The earthquake occurrence rate function was formulated for area source cells from recent instrumental earthquake catalogs. For the statistical application of the G–R relation of each source cell, the upper- and lower-bound magnitudes were determined from, respectively, historical earthquake data using a Kernel smoothing operator and detection thresholds of recent catalogs. The seismic hazard at a particular site was obtained by integrating the hazard contribution from influencing cells, and the results were combined with the Poisson distribution to obtain the seismic hazard in terms of the intensity at 10% probability of exceedance for the next 50 years. The seismic hazard maps for three countries, constructed using the same method, agree well with the existing maps obtained by different methods. The method is applicable to both oceanic and continental regions, and for any specific duration of time. It can be used for those regions without detailed geological information or where the relation between existing faults and earthquake occurrence is not clear.  相似文献   

14.
Gwadar City is located at the coastline of Pakistan. The city is currently in a phase of development, which is expected to become a future economic hub for Pakistan. This has led us to choose Gwadar for seismic hazard evaluation. Seismic hazard analysis for Gwadar is carried out using deterministic and probabilistic seismic hazard analysis techniques. The present study will help in sustainable development of a future large city and economic hub for Pakistan on ways of coping from a major threat of earthquake hazard. In deterministic seismic hazard analysis, line sources were identified close to Gwadar. Based on the analysis of maximum magnitude and closest distance (worse conditions), Makran subduction zone was identified out of all the line sources with earthquake potential of 8.2 at a distance of 30 km. This yielded a peak ground acceleration value of 0.38 g for Gwadar City. In second phase, probabilistic seismic hazard analysis technique with the area source modeling was adopted to acquire results at different return periods. For this purpose, seismic data were collected from the Pakistan Meteorological Department and International Seismological Center (2010) databases for development of a comprehensive data catalog. The a and b values were obtained using regression analysis for each source zone, and probabilistic analysis yielded the results of 0.34 g for a return period of 500 years. As per building codes of Pakistan, areas or cities with ground acceleration greater than 0.32 g are considered in seismic zone 4, and both deterministic and probabilistic hazard analysis place the city in seismic zone 4. These values correspond to rock site with shear wave velocity of 760 m/s.  相似文献   

15.
Northeast India is one of the most highly seismically active regions in the world with more than seven earthquakes on an average per year of magnitude 5.0 and above. Reliable seismic hazard assessment could provide the necessary design inputs for earthquake resistant design of structures in this region. In this study, deterministic as well as probabilistic methods have been attempted for seismic hazard assessment of Tripura and Mizoram states at bedrock level condition. An updated earthquake catalogue was collected from various national and international seismological agencies for the period from 1731 to 2011. The homogenization, declustering and data completeness analysis of events have been carried out before hazard evaluation. Seismicity parameters have been estimated using G–R relationship for each source zone. Based on the seismicity, tectonic features and fault rupture mechanism, this region was divided into six major subzones. Region specific correlations were used for magnitude conversion for homogenization of earthquake size. Ground motion equations (Atkinson and Boore 2003; Gupta 2010) were validated with the observed PGA (peak ground acceleration) values before use in the hazard evaluation. In this study, the hazard is estimated using linear sources, identified in and around the study area. Results are presented in the form of PGA using both DSHA (deterministic seismic hazard analysis) and PSHA (probabilistic seismic hazard analysis) with 2 and 10% probability of exceedance in 50 years, and spectral acceleration (T = 0. 2 s, 1.0 s) for both the states (2% probability of exceedance in 50 years). The results are important to provide inputs for planning risk reduction strategies, for developing risk acceptance criteria and financial analysis for possible damages in the study area with a comprehensive analysis and higher resolution hazard mapping.  相似文献   

16.
We designed a new seismic source model for Italy to be used as an input for country-wide probabilistic seismic hazard assessment (PSHA) in the frame of the compilation of a new national reference map.

We started off by reviewing existing models available for Italy and for other European countries, then discussed the main open issues in the current practice of seismogenic zoning.

The new model, termed ZS9, is largely based on data collected in the past 10 years, including historical earthquakes and instrumental seismicity, active faults and their seismogenic potential, and seismotectonic evidence from recent earthquakes. This information allowed us to propose new interpretations for poorly understood areas where the new data are in conflict with assumptions made in designing the previous and widely used model ZS4.

ZS9 is made out of 36 zones where earthquakes with Mw > = 5 are expected. It also assumes that earthquakes with Mw up to 5 may occur anywhere outside the seismogenic zones, although the associated probability is rather low. Special care was taken to ensure that each zone sampled a large enough number of earthquakes so that we could compute reliable earthquake production rates.

Although it was drawn following criteria that are standard practice in PSHA, ZS9 is also innovative in that every zone is characterised also by its mean seismogenic depth (the depth of the crustal volume that will presumably release future earthquakes) and predominant focal mechanism (their most likely rupture mechanism). These properties were determined using instrumental data, and only in a limited number of cases we resorted to geologic constraints and expert judgment to cope with lack of data or conflicting indications. These attributes allow ZS9 to be used with more accurate regionalized depth-dependent attenuation relations, and are ultimately expected to increase significantly the reliability of seismic hazard estimates.  相似文献   


17.
F. Kebede  T. van Eck   《Tectonophysics》1997,270(3-4):221-237
A probabilistic seismic hazard analysis (PSHA) for the Horn of Africa is presented. Our seismicity database consists of a revised and up-to-date regional catalogue compiled from different agencies, checked for completeness with respect to time and homogenized with respect to magnitude (Ms). The seismic source zones are based on our present day knowledge of the regional seismotectonics. Among the results we present regional hazard maps for 0.01 annual probability for intensity and Peak Ground Acceleration (PGA) and hazard curves and response spectra for six economical significant sites within the region. The model uncertainties with respect to seismicity are analysed in a novel approach and form part of a sensitivity analysis that quantifies our PSHA modelling uncertainties.

For 0.01 annual probability we find randomly oriented horizontal PGA that exceed just 0.2 g and MM-scale intensity VIII in the Afar depression and southern Sudan. Uncertainties amount to 20% g PGA in some cases, mainly due to attenuation uncertainties. Intensity uncertainties seldom exceed 0.5 intensity units. Relatively large seismic hazard is found for Djibouti (VIII for 0.01 annual probability), slightly lower for the port of Massawa (between VII and VIII for 0.01 annual probability) and low for the port of Assab (between VI and VII for 0.01 annual probability).  相似文献   


18.
The use of recent ground motion prediction equations in probabilistic seismic hazard analysis (PSHA) with area type of seismic sources requires defining the probability distributions of various source-to-site distance metrics with finite fault rupture taken into account. This task is rendered very difficult due to large epistemic uncertainties involved in specifying the details of the causative faults for area sources of diffused seismicity. However, it may generally be possible to constrain the strike and dip angles for fault ruptures in area sources from regional seismotectonic and geological information. This paper proposes to estimate the various finite fault distance measures from a site to a location in an area source by averaging the distances for several fault rupture scenarios with randomly distributed strike and dip over specified ranges. To consider the spatial distribution of the seismicity, the paper then provides the guidelines for defining the distance distributions by assigning suitable weight factors to the distance estimates for a grid of locations in the source area. The PSHA computation based on the distance distributions thus defined is shown to provide quite realistic and objective estimate of the hazard.  相似文献   

19.
蒙特卡罗模拟在区域地震滑坡灾害评价中应用   总被引:1,自引:0,他引:1  
汪华斌  Sassa Kyoji 《岩土力学》2007,28(12):2565-2569
2004年10月23日,日本新泻中越地区发生史上最强地震之一,震级达到Mw6.6。这次地震诱发上千个规模大小不一、形式各样的滑坡,造成一定的灾害损失和人员伤亡。因此,为了有效地避免和减轻这方面的灾害,有必要有效地、科学地预测和评价地震诱发滑坡的空间发生规律。为此以一定的地区作为研究对象,提出了蒙特卡罗随机模拟和Newmark滑动体位移分析法在区域地震斜坡失稳概率分析中的应用。该法充分考虑到岩土参数和相关地震参数空间变异性,结合地理信息系统空间分析的优势,以网格模型为基础,分析该区斜坡滑动体位移分布规律,并以2cm为失稳临界值探讨网格斜坡破坏的概率。实例证明,所提出的模型有效地预测了滑坡发生的空间分布规律。  相似文献   

20.
This work involves updating the evaluation of seismic hazard in Northeast Algeria by a probabilistic approach. This reassessment attempts to resolve inconsistencies between seismic zoning in regional building codes and is further motivated by the need to refine the input data that are used to evaluate seismic hazard scenarios. We adopted a seismotectonic model that accounts for differences in interpretations of regional seismicity. We then performed a probabilistic assessment of regional seismic hazard in Northeast Algeria. Based on a homogeneous earthquake catalog and geological and seismotectonic data gathered in the first part of the study, a seismotectonic zoning map was created and seven risk areas were identified. For each area, peak ground acceleration hazard maps were produced. Details of the calculations are provided, including hazard curves at periods of 0.1, 0.2, 0.33, 0.5, 1.0, and 2.0 s and uniform hazard spectra at urban locations in the area, including Sétif, Constantine, Kherrata, Bejaia, and Jijel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号