首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geological identification of past tsunamis is important for risk assessment studies, especially in areas where the historical record is limited or absent. The main problem when using the geological evidence is to distinguish between tsunami and storm deposits. Both are high-energy events that may leave marine traces in coastal stratigraphic sequences. At Martinhal, SW Portugal both storm surge and tsunami deposits are present at the same site within a single stratigraphic sequence, which makes it suitable to study the differences between them, excluding variations caused by local factors.

The tsunami associated with the Lisbon earthquake of November 1st 1755 AD, had a major impact on the geomorphology and sedimentology of Martinhal. It breached the barrier and laid down an extensive sheet of sand, as described in eyewitness reports. Besides the tsunami deposit the stratigraphy of Martinhal also displays evidence for storm surges that have breached and overtopped the barrier, flooding the lowland and leaving sand layers. Both marine-derived flood deposits show similar grain size characteristics and distinctive marine foraminifera. The most important differences are the rip-up clasts and boulders exclusively found in the tsunami deposit and the landward extent of the tsunami deposit that everywhere exceeds that of the storm deposits. Identification of both depositional units was only possible using a collection of different data and extensive stratigraphical information from cores as well as trenches.  相似文献   


2.
Understanding the nature and impacts of tsunamis within the Aegean Sea region ofGreece is of importance to both the academic community and those organisationsconcerned with tsunami disaster management. In order to determine hazard and riskand consequently pre-plan mitigative strategies, it is necessary to analyse historical(documentary) and geological records of former tsunami events. Therefore, firstlythis paper provides a summary of the written sources of information on Aegeantsunamis paying particular attention to published catalogues. From the availabledata, it is noted that a large number of events have been reported during the last3500 years. Secondly, the paper provides a review of the published on-shore(terrestrial) geological records of tsunamis within the region. From this analysisit is seen that little geological evidence has been identified for the large numberof tsunamis reported in the catalogues. Thirdly, the paper considers the reliabilityof the written and geological records and how problems of accuracy, coverage,extent and reliability, may have potential implications for the estimation of hazardand risk. The paper concludes by making recommendations for disaster managers,geologists and historians to work closely together.  相似文献   

3.
The western Peloponnese was repeatedly hit by major tsunami impacts during historical times as reported by historical accounts and recorded in earthquake and tsunami catalogues. Geological signatures of past tsunami impacts have also been found in many coastal geological archives. During the past years, abundant geomorphological and sedimentary evidence of repeated Holocene tsunami landfall was found between Cape Katakolo and the city of Kyparissia. Moreover, neotectonic studies revealed strong crust uplift along regional faults with amounts of uplift between 13 m and 30 m since the mid-Holocene. This study focuses on the potential of direct push in situ sensing techniques to detect tsunami sediments along the Gulf of Kyparissia. Direct push measurements were conducted on the landward shores of the Kaiafa Lagoon and the former Mouria Lagoon from which sedimentary and microfaunal evidence for tsunami landfall are already known. Direct push methods helped to decipher in situ high-resolution stratigraphic records of allochthonous sand sheets that are used to document different kinds of sedimentological and geomorphological characteristics of high-energy inundation, such as abrupt increases in grain size, integration of muddy rip-up clasts and fining upward sequences which are representative of different tsunami inundation pulses. These investigations were completed by sediment coring as a base for local calibration of geophysical direct push parameters. Surface-based electrical resistivity tomography and seismic data with highly resolved vertical direct push datasets and sediment core data were all coupled in order to improve the quality of the geophysical models. Details of this methodological approach, new in palaeotsunami research, are presented and discussed, especially with respect to the question of how the obtained results may help to facilitate tracing tsunami signatures in the sedimentary record and deciphering geomorphological characteristics of past tsunami inundation. Using direct push techniques and based on sedimentary data, sedimentary signatures of two young tsunami impacts that hit the Kaiafa Lagoon were detected. Radiocarbon age control allowed the identification of these tsunami layers as candidates for the ad 551 and ad 1303 earthquake and tsunami events. For these events, there is reliable historical data on major damage on infrastructure in western Greece and on the Peloponnese. At the former Mouria Lagoon, corroborating tsunami traces were found; however, in this case it is difficult to decide whether these signatures were caused by the ad 551 or the ad 1303 event.  相似文献   

4.
Large earthquakes along the Kuril subduction zone in northern Japan are known to have caused damaging tsunami, although there is a little information on historical earthquakes and tsunami in this area because no documents exist before the 19th century that might refer to tsunami events. To determine the likely timing and size of future events we need information on their recurrence intervals and to do this for the prehistoric past we have investigated sediments located in the Kiritappu marsh in eastern Hokaido that we interpret as laid down by tsunami. Using reliable multiple lines of evidence from sedimentological, geomorphological, micropaleontological, and chronological results, we identify 13 tsunami sands. Two of these lie within a peat bed above a historical tephra, Ta-a (AD 1739); the upper one probably corresponds to the AD 1843 Tempo Tokachi-oki earthquake (M 8.2) tsunami, and the lower to either the AD 1952 Tokachi-oki earthquake (M 8.2) tsunami or the AD 1960 Chilean earthquake (M 9.5) tsunami. Underlying are 11 prehistoric tsunami sand beds (nine large sand beds and two smaller sand beds) deposited during the past 4000 years. Because of the wide spatial distribution of the large sand beds, and inundation distances inland of between 1200 to 3000 m, we suggest that they record unusually large tsunamis along the Kuril subduction zone. According to our analyses, these tsunami sands were derived from the coastal area and, although they do not show clear graded bedding, they commonly have gradational upper boundaries and erosional bases and include internal sedimentary structures such as plane beds, dunes, and current ripples, reflecting bedload transportation. Based on our results we calculate the recurrence interval of unusually large earthquakes (probably M 8.6) along the Kuril subduction zone as about 365–553 years and estimate the youngest large event to have occurred in the 17th century.  相似文献   

5.
Tsunami deposits preserved in the geological record provide a more comprehensive understanding of their patterns of frequency and intensity over longer timescales; but recognizing tsunami deposits can prove challenging due to post-depositional changes, lack of contrast between the deposits and surrounding sedimentary layers, and differentiating between tsunami and storm deposition. Modern baseline studies address these challenges by providing insight into modern spatial distributions that can be compared with palaeotsunami deposits. This study documents the spatial fingerprint of grain size and foraminifera from Hasunuma Beach and the Kujukuri shelf to provide a basis from which tsunami deposits can be interpreted. At Hasunuma Beach, approximately 50 km east of Tokyo, the spatial distribution of three common proxies (foraminiferal taxonomy, foraminiferal taphonomy and sediment grain size) for tsunami identification were mapped and clustered using Partitioning Around Medoids cluster analysis. Partitioning Around Medoids cluster analysis objectively discriminated two coastal zones corresponding to onshore and offshore sample locations. Results show that onshore samples are characterized by coarser grain sizes (medium to coarse sand) and higher abundances of Pararotalia nipponica (27 to 63%) than offshore samples, which are characterized by finer grain sizes (fine to medium sand), lower abundances of Pararotalia nipponica (2 to 19%) and Ammonia parkinsoniana (0 to 10%), higher abundances of planktonics (15 to 58%) and species with fragile tests including Uvigerinella glabra. When compared to grain-size and foraminiferal taxonomy, foraminiferal taphonomy; i.e. surface condition of foraminifera, a proxy not commonly used to identify tsunami deposits, was most effective in discriminating modern coastal zones (identified supratidal, intertidal and offshore environments) and determining sediment provenance for tsunami deposits at Kujukuri. This modern baseline study assists the interpretation of tsunami deposits in the geological record because it provides a basis for sediment provenance to be determined.  相似文献   

6.
The sandy deposits produced by tsunamis and liquefaction share many sedimentary features, and distinctions between the two are important in seismically active coastal zones. Both types of deposits are present in the wetlands bordering Puget Sound, where one or more earthquakes about 1100 years ago caused both tsunami flooding and sediment venting. This co‐occurrence allows an examination of the resulting deposits and a comparison with tsunami and liquefaction features of modern events. Vented sediments occur at four of five wetland field localities and tsunami deposits at two. In comparison with tsunami deposits, vented sediments in this study and from other studies tend to be thicker (although they can be thin). Vented sediments also have more variable thickness at both outcrop and map scale, are associated with injected dykes and contain clasts derived from underlying deposits. Further, vented sediments tend to contain a greater variety of sedimentary structures, and these structures vary laterally over metres. Tsunami deposits compared with vented sediments are commonly thinner, fine and thin landward more consistently, have more uniform thickness on outcrop and map scales, and have the potential of containing coarser clasts, up to boulders. For both tsunami deposits and vented sediments, the availability and grain size of source material condition the characteristics of the deposit. In the cases presented in this paper, both foraminifera and diatom assemblages within tsunami deposits and vented sediments consisted of brackish and marine species, and no distinction between processes could be made based on microfossils. In summary, this study indicates a need for more careful analysis and mapping of coastal sediments associated with earthquakes to avoid misidentification of processes and misevaluation of hazards.  相似文献   

7.
Tsunami deposits are the primary source of information on (past) large tsunami events and thereby are crucial for accurate hazard assessments. Tsunami deposits studies have developed over the last three decades, but this is still a young geoscience discipline. Following the 5th International Tsunami Field Symposium in 2017 an opportunity arose to publish a Special Issue focusing on present knowledge and future research challenges. This paper aims to briefly review current state-of-the-art research, summarizing major findings and gathering relevant works that describe the progress achieved over the last three decades. In this paper the relevance of tsunami deposits, their peculiar sedimentary characteristics and their differentiation from other high energy events are presented. Especially over the last decade an incredibly high number of studies have been published on tsunami deposits, many of which are of a high quality and provide detailed literature reviews. Some of these studies represent the current progress discussed here. Challenges are also introduced, to spur a discussion on future scientific questions that can and should be addressed by tsunami geoscientists. Coupling onshore–offshore records is an area where tsunami geoscience faces some of its major challenges. Moreover, the application of non-destructive high-resolution techniques to study the internal structure and composition of tsunami deposits can also provide an opportunity to further examine deposits, and from this derive physical parameters of the forcing mechanism. Another topic is better understanding of the erosional signature of tsunami events and a continuation of the effort to better incorporate age-estimation methods by developing more accurate dating methodology. Finally, there is also the need for the improvement of empirical, forward and regressive numerical models to better contribute to the characterization of tsunami events.  相似文献   

8.
After the 2004 Sumatra?CAndaman tsunamigenic earthquake, waters from the ocean moved upstream along rivers, bays, harbors, and lagoons and inundated many coastal and inland locations in the southern, eastern, and northern parts of Sri Lanka. The tsunami waters were observed to move upwards inland and then recede downwards to the ocean after varying inundation periods in different coastal areas. Subsequent massive tsunami waves came with the wave height varying from 3 to 8?m inland with speed of about 30?C40?kmph. The oceanic waves carrying heterogeneous sediments with water deposited them in coastal as well as inland locations about 1?km from the present coastline. Given the chaotic nature of tsunami oceanic waves, pre-tsunami deposits, such as beach sands, debris from coral reefs and buildings, parts of vehicles and ships, and tree trunks are found incorporated in authentic tsunami sediments. Thus, the texture, structure, and composition of sediments deposited by tsunami waters differed from one location to another. Therefore, in identifying paleo-tsunami sediments, care was taken to compare them with diagnostic unmixed uncontaminated recent tsunami sediments having characteristic textures and marine microfossil assemblages, such as foraminifera, radiolarians, and diatoms where preserved in coastal depressions. The radiocarbon ages of the carbonate and the organic fractions of these sediments are stratigraphically inconsistent, indicating mixing of sediments by the tsunami waves. The concentrations of organic carbon and nitrogen and their isotopic signatures confirm marine origin of these sediments.  相似文献   

9.
An accurate assessment of tsunami risk of a region requires a credible record of past tsunami events in the region. Existing surveys on historical tsunamis of South China have not presented a consistent list of events. The current report makes reference to original historical literature and evaluates the validity of suspected tsunami events in published surveys. A set of refined historical data for further investigation of the tsunami hazard in the region was produced. Only two events have been identified as credible reports of tsunami in the current study. Some events previously considered as tsunami, including a few with great reported casualties, are found to be unsubstantiable.  相似文献   

10.
Following the catastrophic “Great Sumatra–Andaman” earthquake- tsunami in the Indian Ocean on the 26th December 2004, questions have been asked about the frequency and magnitude of tsunami within the region. We present a summary of the previously published lists of Indian Ocean Tsunami (IOT) and the results of a preliminary search of archival materials held at the India Records Office, at the British Library in London. We demonstrate that in some cases, normal tidal movements and floods associated with tropical cyclones have been erroneously listed as tsunami. We summarise archival material for tsunami that occurred in 1945, 1941, 1881, 1819, 1762 and a little known tsunami in 1843. We present the results of modelling of the 2004, 1861 and 1833 tsunami generated by earthquakes off Sumatra and the 1945 Makran earthquake and tsunami, and examine how these results help to explain some of the historical observations. The highly directional component to tsunami propagation illustrated by the numerical models may explain why we are unable to locate archival records of the 1861 and 1833 tsunami at important locations like Rangoon, Kolkata (formally Calcutta) and Chennai (formally Madras), despite reports that these events created large tsunami that inundated western Sumatra. The numerical models identify other areas (particularly the central and southern Indian Ocean islands) where the 1833 tsunami may have had a large enough effect to produce a historic record. We recommend further archival research, coastal geological investigations of tsunami impacts and detailed modelling of tsunami propagation to better understand the record and effects of tsunami in the Indian Ocean and to estimate their likelihood of occurring in the future.  相似文献   

11.
前人对浙西下寒武统大陈岭组沉积相分析一直存在半深水相和浅水相两种观点。大陈岭组化石极少,仅中上部产营漂浮或游泳生活的节头虫类Arthicocephalus, ArthricocephalitesChangaspis,不见底栖类化石。对大陈岭组碳酸盐岩碳氧同位素分析显示,对应于产半深水相生物化石的层位存在碳同位素正漂移,表明此处水体较深;但该组大量发育碳酸盐岩台坪相的沉积标志-鸟眼构造,与较深水相生物和碳同位素正漂移的解释结果相悖。作者在对浙西开化、常山、江山寒武系野外调查时发现大陈岭组存在一套地震-海啸沉积岩系,且海啸岩的产出层位与江山较深水相化石、碳同位素正漂移层位相当。研究认为,海啸作用可以使不同环境的沉积物相互混合,造成沉积异常,浙西下寒武统大陈岭期沉积异常是海啸事件的反映,海啸作用把较深水生物和沉积物带到浅水区沉积下来,并造成碳氧同位素短暂、急剧的正漂移。  相似文献   

12.
A New Zealand palaeotsunami database has been developed. The philosophy has been to include as much tsunami-related data as possible. Most of the events recorded are true palaeotsunamis that occurred prior to the historical record or have no written observations. Some are hybrids that are in some manner poorly recorded historical events. Data include physical evidence from geological, archaeological and geomorphological sources and cultural information from anthropological research and prehistorical Māori oral recordings. Each line of data represents a summary of one piece of evidence containing key details listed under a series of headings. The estimated veracity of each line item is based upon the sum of the information contained in the linked reference(s). The palaeotsunami database contains approximately 300 line items and describes between 35 and 40 palaeotsunamis. This wealth of data helps to improve our understanding of tsunami sources, event its magnitude and frequency.  相似文献   

13.
14.
Kakawis Lake situated four metres above sea level on western Vancouver Island, British Columbia, Canada, was the target of a palaeotsunami investigation. Six percussion cores recovered from this lake contain six anomalous deposits interbedded within the unconsolidated lacustrine sediments. Detailed sedimentological, geophysical and macro-fraction analyses were performed. The methods new to palaeoseismic approaches proved to be successful tools to characterize the anomalously coarse layers enriched in terrestrial plant detritus and marine shells. Based on at least eight types of evidence, six tsunami inundations are suggested as mechanisms responsible for the anomalous deposition, spanning from 3,634 to 2,534 cal yrs BP. Each tsunami event consists of a combination of different lithological facies resulting from different stages of tsunami inundation and settling of the material in the lake basin (pulses and inter-pulses). Tsunami deposits in lakes are shown to be less vulnerable to erosional and bioturbation processes than those found in marshes or beaches as well as underwater marine environments. However, few palaeoseismic studies have been carried out in low-elevation lakes along the Cascadia Subduction Zone region. The three last tsunami events known to have inundated areas along the Pacific shores of southern British Columbia, Canada and northern USA are not present at Kakawis Lake, establishing a current <4 m above mean sea level vertical limit as possible maximum tsunami height for areas located away from fjord heads on Vancouver Island. The anomalous deposits found in Kakawis Lake may be the oldest geological evidence of inferred tsunami on Vancouver Island, providing a possible recurrence interval between 200 and 400 years.  相似文献   

15.
The history of the solar system is locked within the planets, asteroids and other objects that orbit the Sun. While remote observations of these celestial bodies are essential for understanding planetary processes, much of the geological and geochemical information regarding solar system heritage comes directly from the study of rocks and other materials originating from them. The diversity of materials available for study from planetary bodies largely comes from meteorites; fragments of rock that fall through Earth's atmosphere after impact‐extraction from their parent planet or asteroid. These extra‐terrestrial objects are fundamental scientific materials, providing information on past conditions within planets, and on their surfaces, and revealing the timing of key events that affected a planet's evolution. Meteorites can be sub‐divided into four main groups: (1) chondrites, which are unmelted and variably metamorphosed ‘cosmic sediments’ composed of particles that made up the early solar nebula; (2) achondrites, which represent predominantly silicate materials from asteroids and planets that have partially to fully melted, from a broadly chondritic initial composition; (3) iron meteorites, which represent Fe‐Ni samples from the cores of asteroids and planetesimals; and (4) stony‐iron meteorites such as pallasites and mesosiderites, which are mixtures of metal and dominantly basaltic materials. Meteorite studies are rapidly expanding our understanding of how the solar system formed and when and how key events such as planetary accretion and differentiation occurred. Together with a burgeoning collection of classified meteorites, these scientific advances herald an unprecedented period of further scientific challenges and discoveries, an exciting prospect for understanding our origins.  相似文献   

16.
In recent years numerical investigations of tsunami wave propagation have been spurred by the magnitude 9.3 earthquake along the Andaman–Sumatra fault in December, 2004. Visualization of tsunami waves being modeled can yield a much better physical understanding about the manner of wave propagation over realistic seafloor bathymetries. In this paper we will review the basic physics of tsunami wave propagation and illustrate how these waves can be visualized with the Amira visualization package. We have employed both the linear and nonlinear versions of the shallow-water wave equation. We will give various examples illustrating how the files can be loaded by Amira, how the wave-heights of the tsunami waves can be portrayed and viewed with illumination from light sources and how movies can be used to facilitate physical understanding and give important information in the initial stages of wave generation from interaction with the ambient geological surroundings. We will show examples of tsunami waves being modeled in the South China Sea, Yellow Sea and southwest Pacific Ocean near the Solomon Islands. Visualization should be a part of any training program for teaching the public about the potential danger arising from tsunami waves. We propose that interactive visualization with a web-portal would be useful for understanding more complex tsunami wave behavior from solving the 3-D Navier–Stokes equation in the near field.  相似文献   

17.
Benthic foraminifera is the first kind of eukaryotes reported to carry on denitrification, which breaks the understanding of the eukaryotic metabolic way. Numerous studies have demonstrated that the contribution of benthic foraminifera to sedimentary denitrification exceeds the prokaryotes. Furthermore, benthic foraminifera stores large amount of nitrate intracellularly, which far exceeds the amount of nitrate in pore water. These findings challenge our understanding of the nitrogen cycle in sediments. The study of foraminiferal intracellular nitrate storage and denitrification is significant to figure out the metabolic way of eukaryote in anoxic environment and to quantify the balance of nitrogen in marine environment. The history of foraminiferal intracellular nitrate storage and denitrification study was discussed. In addition, the distribution of foraminiferal intracellular nitrate and denitrification rates in marine environment was also discussed. The latest research progresses about the related mechanism were also summarized. Finally, the problems and challenges in present and future studies were discussed.  相似文献   

18.
Sue Dawson   《Sedimentary Geology》2007,200(3-4):328-335
Distinctive diatom assemblages may be associated with tsunami sediments and may often contrast with the assemblages found within sediments underlying the tsunami deposit as well as those associated with the modern coastal environment. Sediments associated with the 1998 tsunami that destroyed much of the Sissano lagoon area in northern Papua New Guinea have been investigated. Surface sediments from three transects across the sediment spit near Warapu have been examined for diatom content and preservation. The preservation is variable, and the data show an, often chaotic, assemblage that can be attributed to the tsunami waves incorporating and depositing diatoms from distinctive habitat zones during their runup and subsequent backwash. The diatoms identified within the Warapu sediments indicate an origin from within the inter-tidal and offshore area rather than from the beach–sand spit complex. The sand deposits disclose a high percentage, in excess of 75%, of broken diatom valves, and a predominance of centric (circular) species due to preferential preservation. The study demonstrates that the application of diatom biostratigraphy to modern tsunami deposits can be used in conjunction with other stratigraphical lines of evidence to interpret the source and provenance of historical and palaeo-tsunami deposits.  相似文献   

19.
A method of geochronology based on the chemical racemization of amino acids has been developed within the last few years. The various amino acids that make up the proteins of all living organisms consist virtually entirely of thel-enantiomer. After death, thel-enantiomer for each amino acid is slowly racemized over geological time and eventually forms an equilibrium mixture consisting of equal amounts of thed- andl-enantiometer. The increase in D/L ratio can be used to obtain a measure of the time that has elapsed since the organism died. The range of applicability of this method is the Pleistocene and may eventually be useful throughout the Pliocene in some cases. This paper presents a review of the literature on these applications as well as several suggested areas for future research.Unlike radionuclide decay rates, chemical reaction rates are sensitive to changes in such common environmental parameters as temperature, pH, solvent-medium, etc. For this reason, kinetic studies have been conducted at elevated temperatures in various “fossil-types” in order to simulate the changes that occur over long periods of time at the low temperatures found on the surface of the earth. Such studies, while of somewhat limited value for precise extrapolation, do nevertheless provide valuable information on which to base the theoretical concepts necessary for a complete understanding of the geochemical implications of the racemization reaction.Skeletal remains form the most suitable fossils for chronological study. Proteinaceous material is found embedded within the carbonate exoskeletons of invertebrates and the phosphatic endoskeletons of vertebrates. Most of the geochemical racemization studies have been conducted on foraminiferal shells and on bones. However, some work has also been reported on shells of other invertebrates, marine and lacustrine clays, and a few abiogenic concretions.Since the racemization reaction is temperature dependent, it has been used as a paleothermometer to estimate the average temperature to which bones and shells of independently known age have been exposed since their deposition. These average temperatures as a function of time have then been converted into estimates of the magnitude of the Holocene postglacial/Wisconsin glacial temperature change on land. They have also been used to obtain estimates of the “time-averaged” thermal gradient in deep-sea sediments using foraminifera isolated from the sediments.  相似文献   

20.
B.G. McFadgen  J.R. Goff   《Sedimentary Geology》2007,200(3-4):263-274
Historical and geological records both indicate tsunami inundation of New Zealand in the 700 years since the first human settlement. In addition, Maori oral traditions refer to unusual waves that might have been tsunami waves, although the accounts are open to other interpretations. Tsunami evidence has rarely been proposed from archaeological sites, primarily because of a limited understanding of the requisite evidence and environmental context. We list a criteria suggesting possible tsunami inundation of archaeological sites based upon geoarchaeological data, and use them in a case study from the Archaic Maori occupation site at Wairau Bar. The list is possibly incomplete, but indicates that archaeological investigations can gain from assessments of changing environmental conditions through time at any individual site. Our intention is not to prove tsunami inundation; rather, it is to point to archaeological sites as possible sources of information. We highlight the potential of the Wairau Bar site for further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号