首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adria,the African promontory,in mesozoic Mediterranean palaeogeography   总被引:1,自引:0,他引:1  
The orogenic belts encircling the present-day Adriatic Sea are the deformed Mesozoic continental margin of an area known as Adria, the outline of which began to take shape during Middle Triassic continental rifting. Early Jurassic oceanic rifting was usually close to, but not coincident with, sites of earlier continental rifting. The Triassic rifted zones were usually incorporated into the continental margin of Adria, profoundly influencing its subsequent development. The Mesozoic platform/basin morphology of this margin can be correlated along the length of the belt.Palaeomagnetic data from autochthonous outcrops of the foreland of Adria do not indicate relative rotation and moreover suggest that this foreland has moved in coordination with Africa since the Early Mesozoic. Seismic soundings indicate that thick Mesozoic sedimentary sequences which can be correlated with sections on the African platform are continuous beneath the eastern Mediterranean seas. The concept of Adria as having behaved as a promontory of the African plate is tested by correlation of the main tectonic events in the belt with the spreading history of the Atlantic. The simplest model which adequately accounts for available data comprises a continuous Mesozoic continental margin from the Magrebids of Tunisia, through the Apennines, Alps, Dinarides and Hellenides to the alpine belt of Turkey. This margin was the southern margin of the Mesozoic Tethys and its foreland was more or less continuous with the African platform. Some structural and geochemical features of the double ophiolitic belt on the eastern side of Adria may be explained in terms of more external oceanic branches giving a more diversified continental margin of Adria. The present undulations of the Periadriatic belt are mainly a product of Late Cretaceous to recent deformation, which severely modified the shape of this margin by continental collision and by subsequent development of back-arc features.  相似文献   

2.
麻扎塔格地区地层、地貌及构造变形特征的研究,对于认识塔里木盆地新生代构造演化过程、塔里木—西昆仑的盆山耦合关系、新构造运动对塔里木油气资源分布的影响以及塔克拉玛干沙漠的气候、环境变化都具有重要意义。本文通过卫星照片解译、野外变形观察、剖面实测、地球物理资料解释等手段,对该地区晚新生代的构造特征进行了研究,确定了麻扎塔格构造带为典型的逆冲—褶皱带,并探讨了麻扎塔格逆冲—褶皱带的构造指向、活动时限、隆升速率及缩短速率、东西方向的延伸等问题,取得如下认识:1)麻扎塔格逆冲—褶皱带为西昆仑山前陆褶皱冲断带的前缘部位,和田河气田就是处在逆冲前锋背斜顶部,晚新生代变形作用已明显地改造了塔里木盆地南部及中部的古生代和中生代构造,并促成了和田河气田的形成;2)麻扎塔格山在中新世末(约7 Ma)和中更新世(约780 ka B.P.)经历了两次构造隆升,后一次形成了麻扎塔格逆冲—褶皱带和麻扎塔格山现今的地貌特征;3)估算出麻扎塔格逆冲—褶皱带中更新世以来的隆升速率约为0.26~0.4 mm/a,缩短速率约为0.9 mm/a;4)认为麻扎塔格逆冲—褶皱带向西应与同属西昆仑山前褶皱—冲断带前缘的喀什背斜相连,东端的突然消失可能是由于东段和田河附近存在北东—南西向的走滑断层造成。  相似文献   

3.
Surface geology and heophysical data, supplemented by regional structural interpretations, indicate that the Valle del Cauca basin and adjacent areas in west-central Colombia form a west-vergent, basement-involved fold and thrust belt. This belt is part of a Cenozoic orogen developed along the west side of the Romeral fault system. Structural analysis and geometrical constraints show that the Mesozoic ophiolitic basement and its Cenozoic sedimentary cover are involved in a “thick-skinned” west-vergent foreland style deformation. The rocks are transported and shortened by deeply rooted thrust faults and stacked in imbricate fashion. The faults have a NE---SW regional trend, are listric in shape, developed as splay faults which are interpreted as joining a common detachment at over 10 km depth. The faults carry Paleogene sedimentary strata and Cretaceous basement rocks westward over Miocene strata of the Valle del Cauca Basin. Fold axes trend parallel or sub parallel to the thrust faults. The folds are westwardly asymmetrical with parallel to kink geometry, and are interpreted to be fault-propagation folds stacked in an imbricate thrust system. Stratigraphic evidence suggests that the Valle del Cauca basin was deformed between Oligocene and upper Miocene time. The kinematic history outlined above is consistent with an oblique convergence between the Panama and South American plates during the Cenozoic.A negative residual Bouguer anomaly of 20–70 mgls in the central part of the Valle del Cauca basin indicates that a substantial volume of low density sedimentary rocks is concealed beneath the thrust sheets exposed at the land surface. The hydrocarbon potential of the Valle del Cauca should be reevaluated in light of the structural interpretations presented in this paper.  相似文献   

4.
A 100 km long balanced structural transect is presented for the Patagonian Andes at 50° S Latitude. The area studied is characterized by a fold belt in the eastern Andean foothills and basement-involved thrusts in a western-basement thrust zone. The basement thrust zone exposes pre-Jurassic, polydeformed sedimentary and layered metamorphic rocks emplaced over Lower Cretaceous rocks above an E-vergent thrust located at the western end of the fold belt.

The fold belt is developed in a 3 km thick deformed Cretaceous–Paleogene sedimentary cover with few basement outcrops and scarce calc-alkaline magmatism. Cover structures related to shallow décollements have a N-S to NW-SE strike, with fold wavelengths from 1100 to 370 m in the east to 20 to 40 m in the west. However, long-wavelength basement-involved structures related to deeper décollements have a dominant N-S to NE-SW trend along the eastern and western parts of the fold belt. Field evidence showing different degrees of inversion of N-S–trending normal faults suggests that the orientation of the Cenozoic compressive basement structures was inherited partially from the original geometry of Mesozoic normal faults.

The deformation propagated toward the foreland in at least two events of deformation. The effects of Paleogene (Eocene?) compressive episode are observed in the western fold belt and a Neogene (Late Miocene) compressive episode is present in the eastern fold belt. Basement-involved structures typically refold older cover structures, producing a mixed thick and thin-skinned structural style. By retrodeforming a regional balanced cross section in the fold belt, a minimum late Miocene shortening of 35 km (26%) was calculated.  相似文献   

5.
通过对库车前陆盆地的2条MT测线和3条地震剖面的重力二维模拟与综合解释,提高了在复杂变形带进行的构造建模的可靠性。模拟结果表明,库车前陆盆地是以断层相关褶皱作为滑动机制的前陆冲断带。沿下第三系膏盐岩和膏泥岩、侏罗系一三叠系煤系地层发育的滑脱层控制了断层相关褶皱的变形模式,并导致浅层背斜与深部圈闭的位置不一致。在盆地北面,南天山古生界楔入了北部单斜带的中生代地层,导致剩余重力异常值升高;盆地南面,新生界沉积厚度的增加使剩余重力值逐渐降低,局部盐体的堆积可形成重力异常低谷。此外,拜城凹陷基底的密度较高,可能是凹陷形成初期岩浆底侵的结果。推覆变形自天山向塔里木盆地推移,反映了中新世以来逐渐增强的南北向挤压应力和地壳缩短,是印度板块与欧亚板块碰撞的远距离效应。  相似文献   

6.
TECTONIC STYLES IN THE SOUTHWEST QINLING AND RELATIONS WITH DYNAMICS OF QINGHAI—TIBET PLATEAU  相似文献   

7.
广西十万大山前陆冲断推覆构造   总被引:8,自引:0,他引:8  
通过十万大山盆地内地震剖面资料和TM遥感图象的地质构造解译,结合重力资料和野外地质观察及构造分析,阐述了十万大山前陆冲断推覆构造的发育特征和前陆盆地的构造演化。前陆冲断推覆构造由3个不同的构造变形带组成:卷入海西和印支期花岗岩体的逆冲断裂带、充填中生代陆相沉积并发生构造滑脱的前陆盆地和对应于华南准地台的前陆腹地。冲断推覆构造的形成和演化是与中、晚古生代钦州海槽晚二叠世的褶皱回返和中生代相继的构造复活密切联系的,它经历了3期主要构造应力作用事件:晚二叠世海西运动晚幕为冲断推覆构造的雏形期,晚三叠世印支运动晚幕的近SN向挤压是陆相前陆盆地的发育期;早白垩世末期燕山运动主幕NW—SE向挤压是现今十万大山前陆冲断推覆构造的成型期。  相似文献   

8.
The late Eocene to Neogene tectonic evolution of the Dinarides is characterised by shortening and orogen-parallel wrenching superposed on the late Cretaceous and Eocene double-vergent orogenic system. The Central Dinarides exposes NW-trending tectonic units, which were transported towards the Adria/Apulian microcontinent during late Cretaceous–Palaeogene times. These units were also affected by subsequent processes of late Palaeogene to Neogene shortening, Neogene extension and subsidence of intramontane sedimentary basins and Pliocene–Quaternary surface uplift and denudation. The intramontane basins likely relate to formation of the Pannonian basin. Major dextral SE-trending strike-slip faults are mostly parallel to boundaries of major tectonic units and suggest dextral orogen-parallel wrenching of the whole Central Dinarides during the Neogene indentation of the Apulian microplate into the Alps and back-arc type extension in the Pannonian basin. These fault systems have been evaluated with the standard palaeostress techniques. We report four palaeostress tensor groups, which are tentatively ordered in a succession from oldest to youngest: (1) Palaeostress tensor group 1 (D1) of likely late Eocene age indicates E–W shortening accommodated by reverse and strike-slip faults. (2) Palaeostress tensor group 2 (D2) comprises N/NW-trending dextral and W/WSW-trending sinistral strike-slip faults, as well as WNW-striking reverse faults. These indicate NE–SW contraction and subordinate NW–SE extension related to Oligocene to early Miocene shortening of the Dinaric orogenic wedge. (3) Palaeostress tensor group 3a (D3a) comprises mainly NW-trending normal faults, which indicate early/middle Miocene NE–SW extension related to syn-rift extension in the Pannonian basin. The subsequent palaeostress tensor group 3b (D3b) includes NE-trending, SE-dipping normal faults indicating NW–SE extension, which is likely related to further extension in the Pannonian basin. (4) Palaeostress tensor group 4 (D4) is characterised by mainly NW-trending dextral and NE-trending sinistral strike-slip faults. Together, with some E-trending reverse faults, they indicate roughly N–S shortening and dextral wrenching during late Miocene to Quaternary. This is partly consistent with the present-day kinematics, with motion of the Adriatic microplate constrained by GPS data and earthquake focal mechanisms. The north–north-westward motion and counterclockwise rotation of the Adriatic microplate significantly contribute the shortening and present-day wrenching in the Central Dinarides.  相似文献   

9.
10.
青藏高原东缘龙门山前陆逆冲带复合结构与生长   总被引:1,自引:1,他引:0  
位于青藏高原东缘的北东向龙门山逆冲带,研究已经证明是中生代与新生代前陆复合扩展和生长的结果。然而,2008年5·12汶川地震地表破裂、余震和滑坡等的单向和分段迁移现象,对龙门山复合逆冲带的结构认识提出了挑战。文章在已有研究成果基础上,针对龙门山复合生长下构建的特殊结构进行了野外调查和构造解析。结果表明,以中生代与新生代两期前陆逆冲带复合生长为基础,龙门山复合逆冲带具有特殊的、主要由前陆逆冲楔叠加后形成的复合结构,而且这种复合逆冲楔具有分级和时序特征;中生代前陆逆冲楔是以逆冲断层-褶皱为特征,并分别组合形成碧口厚皮逆冲推覆体、唐王寨薄皮逆冲推覆体和龙王庙逆冲推覆体,总体从晚三叠世以前开始,至~160 Ma向南递进扩展生长;新生代前陆逆冲楔由逆冲断层和逆冲岩片组成,分为约35~10 Ma和10 Ma以来两个阶段,向南东向递进扩展生长,并可能与川西盆地东侧龙泉山构造相连通。因此,龙门山逆冲带具有前陆逆冲带和生长过程的双重复合结构。   相似文献   

11.
对于印度与欧亚板块的侧向碰撞带,即藏东三江地区的新生代构造分析揭示出三种不同性质的构造样式,它们形成于不同的地质时期,发育于不同的地壳层次:(1)区域规模至露头尺度上发育的具有薄皮属性的逆冲断层与推覆构造,它们广泛分布于三江地区,尤其是兰坪-思茅盆地内;(2)以红河-哀牢山断裂、澜沧江和怒江-高黎贡山断裂等为代表的区域高温型走滑韧性剪切带构造和局部发育的脆性走滑断裂构造,后者在中新生代盆地内部断裂更为发育;(3)遍布全区发育的变质核杂岩构造与地堑-半地堑盆地.区域岩浆活动性与区域构造事件的发生具有密切的时空联系.区域性递进收缩事件与走滑事件发生于碰撞过程的早期阶段,并随后伴随着早期具有岩石圈板块俯冲性质的碰撞弧高钾岩浆活动,而后期的递进伸展事件诱发了板内伸展环境中的晚期高钾岩浆活动.二者之间的碱性岩浆活动间歇期,对应着区域构造体制的转变与区域伸展作用的发生,变质核杂岩的发育与微弱的钙碱性岩浆活动是其最直接的表现.区域古地磁资料分析表明,印度-欧亚板块之间的板块相互作用、区域板块与地块的旋转以及由此所致的不同构造环境制约着各种地质事件的发生与发展.北向运动的印度板块的旋转致使三江地块在新生代演化中发生了两次规模与特点不一的地块旋转过程,即早期的大角度快速旋转和晚期的小角度慢速旋转事件.它们分别对应于早期的递进收缩变形、走滑事件和具有碰撞弧属性的碱性岩浆活动与中期的区域伸展、变质核杂岩的发育与微弱的钙碱性岩浆活动性,以及后期的递进伸展作用和晚期陆内碱性岩浆活动性.  相似文献   

12.
基于多封闭系统低温热年代学特征的浅部地貌构造模型重建在揭示褶皱冲断带-前陆盆地系统形成演化过程中受到越来越广泛的重视与应用。青藏高原东缘龙门山地区多封闭系统低温年代学年龄总体上具有逐渐从冲断带前缘、由SE向NW至高原内部减小趋势,且走向上由NE向SW也具微弱减小趋势;龙门山褶皱冲断带热年代学年龄变化范围明显大于高原内部,揭示出盆-山过渡带新生代加强的褶皱冲断剥蚀浅表作用。基于龙门山区域低温热年代学和褶皱冲断带-前陆盆地系统稳态冲断剥蚀热模型,揭示出青藏高原东向扩展速率约为5~10 mm/a,抬升剥蚀速率为0.4~1.0 mm/a和龙门山褶皱冲断带缩短速率为0~15 mm/a,它们与现今地质学和大地测量学特征具有较好的一致性。因此,青藏高原东缘由西向东的多封闭系统热年代学年龄特征反映出新生代稳态的高原东向扩展生长过程,即龙门山褶皱冲断带冲断扩展和浅表剥蚀作用耦合过程。  相似文献   

13.
Cenozoic sedimentary deposits in central-southern Ningxia province, NW China are an important record of Tertiary tectonic events along the evolving Qinghai–Tibetan Plateau’s northeast margin. Shortly after the onset of the Indo-Eurasia collision to the south, a thrust belt and adjoining foreland basin began to form during 40–30 Ma. The Eocene Sikouzi Formation developed in a distal setting to this basin, in normal fault-bound basins that may have formed in a forebulge setting. Subsequent deposition of the Oligocene Qingshuiying Formation occurred during a phase of apparently less intense tectonism and the previous underfilled foreland basin became overfilled. During the Early Miocene, contractional deformation was mainly distributed to the west of the Liupan Shan. This resulted in deformation of the Qingshuiying Formation as indicated by an unconformity with the overlying Miocene Hongliugou Formation. The unconformity occurs proximal to the Haiyuan Fault suggesting that the Haiyuan Fault may have begun movement in the Early Miocene. In the Late Miocene, thrusting occurred west of the southern Helan Shan and an unconformity developed between the Hongliugou and Qingshuiying Formations proximal to the the Cha-Gu Fault. Relationships between the Miocene stratigraphy and major faults in the region imply that during the Late Miocene the deformation front of the Qinghai–Tibetan Plateau had migrated to the Cha-Gu Fault along the western Ordos Margin, and the Xiang Shan was uplifted. Central-southern Ningxia was then incorporated into the northeast propagating thrust wedge. The driving force for NE propagation of the thrust wedge was most likely pronounced uplift of the northeastern plateau at the same time. Analysis of the sedimentary record coupled with consideration of the topographic evolution of the region suggests that the evolving fold-and-thrust belt experienced both forward-breaking fold-and-thrust belt development, and out-of-sequence fault displacements as the thrust wedge evolved and the foreland basin became compartmentalised. The documented sedimentary facies and structural relationship also place constraints on the Miocene-Recent evolution of the Yellow River and its tributaries.  相似文献   

14.
The Apennine-Maghrebian fold-and-thrust belt devel-oped from the latest Cretaceous to Early Pleistocene at the subduction-collisional boundary between the Euro-pean and the westward-subducted Ionian and Adria plates. Large parts of the Mesozoic oceanic lithosphere were subducted during an Alpine phase from the Late Cretaceous to Middle Eocene. The chain developed through the deformation of major paleogeographic internal domains (tectono-sedimentary sequences of the Ligurian-Piedmont Ocean) and external domains (sedi-mentary sequences derived from the deformation of the continental Adria-African passive mareinL The continu-ity of the Apennine chain is abruptly interrupted in the Calabrian Arc by the extensive klippe of Kabylo-Calabrian crystalline exotic terranes, derived from deformation of the European passive margin.Major complexities (sharp deflections in the arcuate configuration of the thrust belt, out-of-sequence propagation of the thrusts) are referred to contrasting rheology and differential buoyancy of the subducted lithosphere (transitional from conti-nental to oceanic) and consequent differential roll-back of the Adria plate margin, and to competence contrasts in the Mesozoic stratigraphic sequences,where multiple décollement horizons at different stratigraphic levels may have favored significant differential shortening.From the Late Miocene, the geometry of the thrust belt was strongly modified by extensional fault-ing, volcanic activity, crustal thinning and formation of oceanic crust correlated with the development of the Tyrrhenian Basin.  相似文献   

15.
A map-view palinspastic restoration of tectonic units in the Alps, Carpathians and Dinarides reveals the plate tectonic configuration before the onset of Miocene to recent deformations. Estimates of shortening and extension from the entire orogenic system allow for a semi-quantitative restoration of translations and rotations of tectonic units during the last 20 Ma. Our restoration yielded the following results: (1) The Balaton Fault and its eastern extension along the northern margin of the Mid-Hungarian Fault Zone align with the Periadriatic Fault, a geometry that allows for the eastward lateral extrusion of the Alpine-Carpathian-Pannonian (ALCAPA) Mega-Unit. The Mid-Hungarian Fault Zone accommodated simultaneous strike-perpendicular shortening and strike-slip movements, concomitant with strike-parallel extension. (2) The Mid-Hungarian Fault Zone is also the locus of a former plate boundary transforming opposed subduction polarities between Alps (including Western Carpathians) and Dinarides. (3) The ALCAPA Mega-Unit was affected by 290 km extension and fits into an area W of present-day Budapest in its restored position, while the Tisza-Dacia Mega-Unit was affected by up to 180 km extension during its emplacement into the Carpathian embayment. (4) The external Dinarides experienced Neogene shortening of over 200 km in the south, contemporaneous with dextral wrench movements in the internal Dinarides and the easterly adjacent Carpatho-Balkan orogen. (5) N–S convergence between the European and Adriatic plates amounts to some 200 km at a longitude of 14° E, in line with post-20 Ma subduction of Adriatic lithosphere underneath the Eastern Alps, corroborating the discussion of results based on high-resolution teleseismic tomography.The displacement of the Adriatic Plate indenter led to a change in subduction polarity along a transect through the easternmost Alps and to substantial Neogene shortening in the eastern Southern Alps and external Dinarides. While we confirm that slab-pull and rollback of oceanic lithosphere subducted beneath the Carpathians triggered back-arc extension in the Pannonian Basin and much of the concomitant folding and thrusting in the Carpathians, we propose that the rotational displacement of this indenter provided a second important driving force for the severe Neogene modifications of the Alpine-Carpathian-Dinaridic orogenic system.  相似文献   

16.
From surface and subsurface data, line-length and area balancing were used to construct four balanced and restored sections of the Pyrenees. In the Mesozoic cover, a thin-skinned tectonic model is used. In the basement an anticlinal stack geometry is applied for the foreland part of the thrust nappes. We present and discuss three possible models for the deep structures of the belt: a thin-skinned tectonic model, a thick-skinned tectonic model and an inhomogeneous strain model. The thrusts steepen downwards and the displacements die out in ductile deformation deep in the section. Therefore, we use the inhomogeneous strain model and we equal-area balance the surface of the continental crust.Hanging-wall sequence diagrams are constructed taking into account (1) the strong N-S thickness variations of the Mesozoic cover related to the Cretaceous drift of Spain and (2) the related crustal thinning of the North Pyrenean Zone superimposed upon a previous late Hercynian rise of the lower crust.The Moho step at the vertical of the North Pyrenean Fault results from the thinning of the North Pyrenean Zone. The thickening of both the Axial Zone and the North Pyrenean Zone during the Eocene compressional event preserved the step geometry.Calculated values of the minimum shortening range from 55 km in the western part of the belt to 80 km in the eastern part. Most of the shortening occurs south of the North Pyrenean Fault in the eastern part (Axial Zone) and north of the North Pyrenean Fault in the western part (Labourd thrust).  相似文献   

17.
The Teisseyre-Tornquist Zone that separates the East European Craton from the Palaeozoic Platform forms one of the most fundamental lithospheric boundaries in Europe. Devonian to Cretaceous-Paleogene evolution of the SE segment of this zone was analyzed using high-quality seismic reflection data that provided detailed information regarding entire Palaeozoic and Mesozoic sedimentary cover, with particular focus on problems of Late Carboniferous and Late Cretaceous-Paleogene basin inversion and uplift. Two previously proposed models of development and inversion of the Devonian-Carboniferous Lublin Basin seem to only partly explain configuration of this sedimentary basin. A new model includes Late Devonian-Early Carboniferous reverse faulting within the cratonic area NE from the Kock fault zone, possibly first far-field effect of the Variscan orogeny. This was followed by Late Carboniferous inversion of the Lublin Basin. Inversion tectonics was associated with strike-slip movements along the Ursynów-Kazimierz fault zone, and thrusting along the Kock fault zone possibly triggered by deeper strike-slip movements. Late Carboniferous inversion-related deformations along the NE boundary of the Lublin Basin were associated with some degree of ductile (quasi-diapiric) deformation facilitated by thick series of Silurian shales. During Mesozoic extension and development of the Mid-Polish Trough major fault zones within the Lublin Basin remained mostly inactive, and subsidence centre moved to the SW, towards the Nowe Miasto-Zawichost fault zone and further to the SW into the present-day Holy Cross Mts. area. Late Cretaceous-Paleogene inversion of the Mid-Polish Trough and formation of the Mid-Polish Swell was associated with reactivation of inherited deeper fault zones, and included also some strike-slip faulting. The study area provides well-documented example of the foreland plate within which repeated basin inversion related to compressive/transpressive deformations was triggered by active orogenic processes at the plate margin (i.e. Variscan or Carpathian orogeny) and involved important strike-slip reactivation of crustal scale inherited fault zones belonging to the Teisseyre-Tornquist Zone.  相似文献   

18.
大陆盆地的聚敛-闭合过程研究:以塔里木盆地为例   总被引:1,自引:0,他引:1  
印度与欧亚大陆第三纪以来碰撞汇聚,造成亚洲大陆内部强烈缩短变形。塔里木盆地如何发生相应的变形调节和应变分解,成为中亚板内构造的重要问题。塔里木陆块新生代以来被板内造山带及走滑断裂系环绕,盆地内部以刚性为特征,未发生强烈构造变形。区域大断裂与塔里木盆地的冲断、走滑构造边界共同作用,形成盆地边缘复杂的构造系。其新生代构造变形主要集中于盆地的构造边界上,4条构造边界显示差异性的运动特征和构造交切关系。盆地边缘构造带叠加并向盆内扩展,造成盆地总体上水平缩短,并发生应变分解。盆地内部发生沉积-构造分异,发育前陆盆地、前缘隆起、复合前陆盆地、拉分盆地等单元。其中,盆地西北缘及西南缘发生陆内俯冲,形成前陆盆地及前陆冲断带,对盆内构造演化有重要影响。区域构造研究表明,塔里木盆地新生代主要发生了4期区域构造变形,第三纪以来还发生顺时针旋转。大陆盆地构造边界上的运动组合、盆内不均匀阻挡和滑脱拆离,造成其变形扩展方式的差异,并影响盆内单元构造演化。因此,塔里木盆地是认识大陆盆地聚敛与闭合过程的天然实验室。  相似文献   

19.
南黄海盆地占据了下扬子板块的主体,自元古宙以来经历了多期构造运动,受到华北板块、扬子板块、华南板块、太平洋板块多个板块相互作用的影响,形成多期盆地演化阶段的叠合盆地。分析了南黄海盆地前人钻井资料及最新二维地震资料,并与下扬子苏北盆地地层及构造特征进行对比,认为整个下扬子区域受华北—扬子板块碰撞的影响,经历了中生代前陆盆地演化阶段。下扬子陆域部分地区发育相对完整的中生代沉积,记录了华北—扬子板块之间洋壳消减、陆陆碰撞、前陆盆地发育及碰撞后活动。而在下扬子对应海域延伸部分的南黄海盆地中,仅在盆地北部烟台坳陷东北缘通过钻井证实有侏罗纪前陆盆地地层,钻遇地层仅发育侏罗系上部陆相沉积,在地震剖面中可以解释出侏罗系下部海陆交互相地层,向上转变为陆相沉积地层。对比下扬子陆域与海域地层发育情况,华北—扬子板块碰撞造山过程对于下扬子整个区域的影响因地而异,在三叠纪末期—侏罗纪时期南黄海盆地内沉积缺失,南黄海海域区处于广泛抬升状态,印支运动期间地层挤压活动强烈,烟台坳陷内海相地层中逆冲断层广泛发育。在南黄海盆地东北缘,前陆盆地侏罗系地层发育于南倾边界断层的上盘,认为南黄海盆地侏罗纪前陆盆发育的构造背景受到同期北侧千里岩超高压变质带从深部折返影响,随着千里岩隆起带的快速抬升,为南黄海盆地北缘提供了沉积空间及物源,沉积了大套的侏罗系前陆盆地地层。  相似文献   

20.
Balancing lateral orogenic float of the Eastern Alps   总被引:2,自引:0,他引:2  
Oligocene to Miocene post-collisional shortening between the Adriatic and European plates was compensated by frontal thrusting onto the Molasse foreland basin and by contemporaneous lateral wedging of the Austroalpine upper plate. Balancing of the upper plate shortening by horizontal retrodeformation of lateral escaping and extruding wedges of the Austroalpine lid enables an evaluation of the total post-collisional deformation of the hangingwall plate. Quantification of the north–south shortening and east–west extension of the upper plate is derived from displacement data of major faults that dissect the Austroalpine wedges. Indentation of the South Alpine unit corresponds to 64 km north–south shortening and a minimum of 120 km of east–west extension. Lateral wedging affected the Eastern Alps east of the Giudicarie fault. West of the Giudicarie fault, north–south shortening was compensated by 50 to 80 km of backthrusting in the Lombardian thrust system of the Southern Alps. The main structures that bound the escaping wedges to the north are the Inntal fault system (ca. 50 km sinistral offset), the Königsee–Lammertal–Traunsee (KLT) fault (10 km) and the Salzach–Ennstal–Mariazell–Puchberg (SEMP) fault system (60 km). These faults, as well as a number of minor faults with displacements less than 10 km, root in the basal detachment of the Alps. The thin-skinned nature of lateral escape-related structures north of the SEMP line is documented by industry reflection seismic lines crossing the Northern Calcareous Alps (NCA) and the frontal thrust of the Eastern Alps. Complex triangle zones with passive roof backthrusts of Middle Miocene Molasse sediments formed in front of the laterally escaping wedges of the northern Eastern Alps. The aim of this paper is a semiquantitative reconstruction of the upper plate of the Eastern Alps. Most of the data is published elsewhere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号