首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
J. J. Brants 《Solar physics》1985,98(2):197-217
Scatter plots of various pairs of spectral-line parameters that describe the magnetic field and the line-of-sight velocity are discussed in order to relate magnetic structures and the line-of-sight velocity field with characteristic areas of an emerging flux region (EFR).Strong magnetic fields, occurring over about 20% of the resolution elements in the EFR, are either slightly to moderately inclined or transverse. Slightly to moderately inclined strong fields occur in patches near the border of the EFR; the filling factors per resolution element are large, and field strengths are between 800 and 2000 G, and up to 2500 G in pores. There are only a few faculae in the EFR; most of these are located near rapidly growing pores of following polarity.The strongly inclined strong magnetic fields, with field strengths exceeding 1000 G, are located in slightly darkened resolution elements near the line B = 0 separating the magnetic polarities, near large-scale and small-scale upflows. In the central region of the EFR there are some small elements with strongly inclined field of low average field strength of about 500 G, and a tendency for a small-scale upward velocity. These elements may correspond to tops of flux loops during emergence.In 80% of the resolution elements within the EFR the magnetic flux density (averaged over the resolution element) is low, less than 120 G.There is a persistent large-scale velocity field, with upflows near the line B = 0 separating the magnetic polarities and with downflows near rapidly growing pores of following polarity. Some examples of strong small-scale upflows are found in the central region of the EFR, and strong small-scale downflows near rapidly growing following pores. Within the pores and faculae there are no significant small-scale line-of-sight velocities.Based on observations obtained at the Sacramento Peak Observatory (operated by the Association of Universities for Research in Astronomy, Inc. under contract with the National Science Foundation).  相似文献   

2.
We report on three sequences of high-resolution white-light and magnetogram observations obtained in the summer of 1989. The duration of sub-arcsecond seeing was three to four hours on each day. Study of the white-light and magnetogram data yields the following results:
  1. For all but one of the sunspots we have observed, both dark fibrils and bright grains in the inner part of the penumbra of sunspots move toward the umbra with a speed of about 0.5 km s-1. In the outer part of the penumbra, movement is away from the umbra. The one exception is a newly formed spot, which has inflow only in its penumbra.
  2. Granular flows converge toward almost every pore, even before its formation. Pores are observed to form by the concentration of magnetic flux already existing in the photosphere. The pores (or small sunspots), in turn, then move and concentrate to form bigger sunspot.
  3. We followed an emerging flux region (EFR) from 29 to 31 July, 1989 that was composed of a large number of bipoles with magnetic polarities mixed over a large area in the first day of its birth. As time went on, polarities sorted out: the leading polarity elements moved in one direction; the following, the opposite. During the process a large number of cancellations occurred, with some sub-flares and surges observed simultaneously. After about 24 hours, the positive and negative fluxes were essentially separated.
  4. We find two kinds of photospheric dark alignments in the region of new flux emergence: (a) alignments connecting two poles of opposite magnetic polarity form the tops of rising flux tubes; (b) alignments corresponding to the magnetic flux of one polarity, which we call elongated pores.
  相似文献   

3.
本文利用紫金山天文台的太阳精细结构望远镜在1991年10月至1992年6月间拍摄到的标准新浮磁流区(EFR)的资料,研究了四个EFR的生长和发展。我们的观测肯定了新浮磁流区早期的一些观测结果,如EFR从光球下浮出前色球大气就已被加热,以及引起磁场位形改变导致暗条激活。我们还发现反转磁极性的EFR并不向正常方向旋转,观测到EFR中的弧形暗条系(AFS)里除了正常的流动外,还具有和经典的AFS中物质流动相异常的运动。  相似文献   

4.
The magnetic field in an axisymmetric pore is current free and can be represented by a flux tube with a magnetic potential of the formAJ 0(kr)e -kz. For a given magnetic flux the field in this pore model is uniquely defined if the magnetic pressure balances the gas pressure at two levels. For models with fluxes of 0.5–3.0 × 1020 mx the surface radius varies from 1100–2700 km (diameters of 3–8 arc-sec) and the Wilson depression is estimated at 200 km. As the flux increases, the field becomes nearly horizontal at the edge of the pore and eventually a penumbra is formed. The distinction between pores and sunspots is investigated; the critical flux is about 1020 Mx, corresponding to a radius of 1500 km.Visitor, as a member of the High Altitude Observatory Solar Project, at Sacramento Peak Observatory, Sunspot, N.M., U.S.A.  相似文献   

5.
Coronal bright points, first identified as X-ray Bright Points (XBPs), are compact, short-lived and associated with small-scale, opposite polarity magnetic flux features. Previous studies have yielded contradictory results suggesting that XBPs are either primarily a signature of emerging flux in the quiet Sun, or of the disappearance of pre-existing flux. With the goal of improving our understanding of the evolution of the quiet Sun magnetic field, we present results of a study of more recent data on XBPs and small-scale evolving magnetic structures. The coordinated data set consists of X-ray images obtained during rocket flights on 15 August and 11 December, 1987, full-disk magnetograms obtained at the National Solar Observatory - Kitt Peak, and time-lapse magnetograms of multiple fields obtained at Big Bear Solar Observatory. We find that XBPs were more frequently associated with pre-existing magnetic features of opposite polarity which appeared to be cancelling than with emerging or new flux regions. Most young, emerging regions were not associated with XBPs. However, some XBPs were associated with older ephemeral regions, some of which were cancelling with existing network or intranetwork poles. Nearly all of the XBPs corresponded to opposite polarity magnetic features which wereconverging towards each other; some of these had not yet begun cancelling. We suggest that most XBPs form when converging flow brings oppositely directed field lines together, leading to reconnection and heating of the newly-formed loops in the low corona.  相似文献   

6.
High resolution on- and off-band Hα filtergrams of disk solar surges obtained with the Vacuum Tower Telescope of the Sacramento Peak Observatory have been compared to magnetic data.
  1. Surges constitute clusters of very fine dark (sometimes bright) filaments where each thread connects to an Ellerman bomb brightening. If the magnetic map reveals the existence of a satellite polarity as defined by Rust (1968), the bomb(s) lies over it.
  2. Although a large fraction of surges is not associated with clearly detectable satellite polarities, events are strongly favored in regions of evolving magnetic features, characterized by dimensions of about 10 000 km and significant flux change over a period of less than a day. A flux change rate of 3 × 1015 Mx s?1 has been measured along at least three homologous bomb-surge events in a satellite of region MW 18594. Surges appear to be related to rising flux of one polarity into a region of stronger opposite flux.
  3. The trajectories of surges are matched by magnetic lines of force computed in the current-free approximation.
  相似文献   

7.
S. Latushko 《Solar physics》1996,166(2):261-266
A study is made of the rotation of large-scale magnetic fields using the synoptic maps from the Kitt Peak National Observatory for the time interval 1976–1985. The auto-correlation method and the mass-centers method of magnetic structures was applied to infer mean differential rotation profiles and rotation profiles separately for each magnetic field polarity. It has been found that in both hemispheres the leading polarity rotates faster than the following polarity at all latitudes by about 0.04° day–1. The maximum rotation rate of the leading polarity is reached at about 6° latitude. In the mean profile for both polarities, this brings about two angular velocity maxima at 6° latitudes in both hemispheres. Such a profile appears as to have a dimple on the equator.  相似文献   

8.
Observations of quiescent prominences with the Zeiss Universal Birefringent Filter at Sacramento Peak show short-lived brightenings and velocity transients in H and D3. The larger events range in area from 25 to 170 square arc sec, have lifetimes of approximately 30 min, velocities of 30 km s–1, and total energy excesses up to 7 × 1027 ergs. These events do not disrupt the stable structure of the prominence, and are interpreted as either condensation events or low energy flares.Visiting astronomer, Sacramento Peak Observatory, operated by the Association of Universities for Research in Astronomy Inc. under contrast AST-78-17292 with the National Science Foundation.Visiting student, Sacramento Peak Observatory, operated by the Association of Universities for Research in Astronomy Inc. under contract AST-78-17292 with the National Science Foundation.  相似文献   

9.
The active region NOAA 6555 had several locations of highly sheared magnetic field structure, yet, only one of them was the site for all the five X-class flares during its disk passage in March 1991. The pre-flare observations of high-resolution H filtergrams, vector magnetograms and H Dopplergrams of the 2B/X5.3 flare on 25 March 1991 show that the flaring site was characterized by a new rising emerging flux region (EFR) near the highly sheared magnetic field configuration. The polarity axis of the emerging flux was nearly perpendicular to the pre-existing magnetic neutral line. The location of the EFR was the site of initial brightening in H. The post-flare magnetograms show higher magnetic shear at the flare location compared to the post-flare magnetograms, which might indicate that the EFR was sheared at the time of its emergence. As the new EFR coincided with the occurrence of the flare, we suggest that it might have triggered the observed flare. Observations from Big Bear Solar Observatory and Marshall Space Flight Center also show that there was emergence of new flux at the same location prior to two other X-class flares. We find that out of five observed X-class flares in NOAA 6555, at least in three cases there are clear signatures of flare-related flux emergence. Therefore, it is concluded that EFRs might play an important role in destabilizing the observed sheared magnetic structures leading to large X-class flares of NOAA 6555.  相似文献   

10.
G.A. Chapman 《Solar physics》2002,209(1):141-152
This paper is a study of NOAA region 9144, an emerging flux region (EFR) which grew rapidly beginning 25 August 2000. This region was visible in SOHO data at 0 UT on 25 August 2000 as a small, isolated spot. It was recognizable as an active region with multiple spots by 06:00 UT on the 25th and was a fully developed AR by 24h UT on the 26th of August. Data are presented from the Michelson Doppler Imager (MDI) experiment on the Solar and Heliospheric Observatory satellite (SOHO), from Big Bear Solar Observatory (BBSO) and from the San Fernando Observatory (SFO). The MDI data are Dopplergrams, magnetograms, and continuum images. The BBSO data are high-resolution Hα filtergrams. The SFO data are Dopplergrams, magnetograms and continuum images from the Video SpectraSpectroHeliograph (VSSHG). MDI Doppler images show that during the rapid growth of this EFR during the day of 26 August, the most obvious feature in area and lifetime is a red-shifted area in the trailing part of the region. SFO Doppler images show a more complex pattern, but still dominated by red shifts in the trailing part of the region near the end of the day of 26 August.  相似文献   

11.
The Mechanism involved in the Reversals of the Sun's Polar Magnetic Fields   总被引:2,自引:0,他引:2  
Durrant  C.J.  Turner  J.P.R.  Wilson  P.R. 《Solar physics》2004,222(2):345-362
Models of the polarity reversals of the Sun's polar magnetic fields based on the surface transport of flux are discussed and are tested using observations of the polar fields during Cycle 23 obtained by the National Solar Observatory at Kitt Peak. We have extended earlier measurements of the net radial flux polewards of ±60° and confirm that, despite fluctuations of 20%, there is a steady decline in the old polarity polar flux which begins shortly after sunspot minimum (although not at the same time in each hemisphere), crosses the zero level near sunspot maximum, and increases, with reversed polarity during the remainder of the cycle. We have also measured the net transport of the radial field by both meridional flow and diffusion across several latitude zones at various phases of the Cycle. We can confirm that there was a net transport of leader flux across the solar equator during Cycle 23 and have used statistical tests to show that it began during the rising phase of this cycle rather than after sunspot maximum. This may explain the early decrease of the mean polar flux after sunspot minimum. We also found an outward flow of net flux across latitudes ±60° which is consistent with the onset of the decline of the old polarity flux. Thus the polar polarity reversals during Cycle 23 are not inconsistent with the surface flux-transport models but the large empirical values required for the magnetic diffusivity require further investigation.  相似文献   

12.
It is shown that leading and following magnetic field lines are inclined toward each other by a few degrees at nearly all latitudes in both the north and south hemispheres. The amplitudes of these inclinations are lower by about a factor 3 for weak fields than for strong fields. There are significant differences between the hemispheres and from one activity cycle to the next in the leading and following polarity field-line inclinations at latitudes poleward of the activity latitudes. In a narrow latitude zone just south of the solar equator the inclinations of both the leading and following fields reduce to zero (or perhaps slightly negative values). Although one would expect such a zone at the equator, where diffusion will mix field lines with opposite inclinations from the two hemispheres, it is not clear why this zone should be on one side of the equator only. The results discussed here were obtained with Mount Wilson magnetograph data (1967–1992), and are confirmed in many respects with National Solar Observatory/Kitt Peak (NSO/KP) data (1976–1986).Operated by the Association of Universities for Research in Astronomy, Inc., under Cooperative Agreement with the National Science Foundation.  相似文献   

13.
We have observed several emerging flux regions (EFRs) using the Video Spectra-Spectro-Heliograph (VSSHG) at the San Fernando Observatory (SFO). The best studied region, NOAA 7968, was near disk center when it was observed on 5–8 June 1996. This EFR showed no organized upflow between the leader and follower spots over the 4-day period covered by our observations. The main concentrations of magnetic flux in the region (leader and follower) showed a slow separation as flux emerged, but little or no upflow was seen. Two other EFRs were observed for part of a single day each and one region was observed for only one sequence. For all regions observed, no discrete features were seen between the leader and follower polarity sunpots that had upflowing material as the regions grew. In all cases, the downward velocities were smaller in area than the magnetic parts of the regions. At times there were several localized areas of greater-amplitude downflows near sunspots.  相似文献   

14.
The observational set-up for a detailed study of the velocity, intensity and magnetic-field fine structure in and around a sunspot is described. On highly resolved spectra we detected in the vicinity of a sunspot a large number of points with strong magnetic fields (magnetic knots). The magnetic field in these knots causes a striking decrease of the line depth (or a line gap after Sheeley, 1967). The properties of the magnetic knots are: (1) magnetic fields up to 1400 gauss; (2) diameter 1100 km; (3) coincidence with dark intergranular spaces; (4) generally downward material motion; (5) lifetime>30min; (6) estimated total number around an unipolar spot 2000; (7) combined magnetic flux comparable to the sunspot flux; (8) coincidence with Ca+ plages.For the smallest sunspots (pores) we obtained magnetic fields >1500 gauss. Hence a magnetic field of about 1400–1500 gauss appears to be a rather critical level for pore and spot formation.We found a large number of small areas producing line gaps without measurable magnetic field. These non-magnetic gap-regions coincide with bright continuum structures.Some aspects arising from the occurrence of hundreds of magnetic knots in an active region are discussed in the last section.Presently guest investigator at the Göttingen Observatory.Previously member of the High Altitude Observatory solar project at Sacramento Peak (Contract Nr. AF (628) - 4078).  相似文献   

15.
Hale's attempts to determine the sun's general magnetic field are reviewed. The field reported by Hale was an order of magnitude stronger than that presently measured with photoelectric techniques. The polarity was opposite to that expected from Babcock's theory of the solar cycle. Practically all the reduction work had been made by Van Maanen with a tipping-plate micrometer.To free the reductions from possible personal bias, a few hundred of the plates from the 1914 series were remeasured by the author with the digitized microphotometer at the Sacramento Peak Observatory. The line profiles were recorded on magnetic tape, and the computations of the Zeeman displacements were made using a CD 3600 at Uppsala.The same plates had been measured visually by Van Maanen. His results show a neat variation of field strength with heliographic latitude, with a maximum of about 11 G at latitudes + and –45 °. The solar equator forms a sharp demarcation line between the opposite polarities in the two hemispheres. In contrast, the computer reductions do not reveal any significant field at any latitude. An approximate upper limit for the observed field strength is 5 G. There is no correlation between the new results and the old values by Van Maanen.  相似文献   

16.
Highly resolved photographs of 25 sunspots and pores of different areas in 2 continuous wavelengths, obtained in summer 1966 at the Sacramento Peak Observatory, have been used to reinvestigate the dependence of sunspot minimum intensity on area. Special care was taken to correct for parasitic light caused by blurring or image motion and by light scattering in the instrument and atmosphere. We find a very small, if any, dependence ofI min on sunspot area in contradiction to older measurements but in agreement with Sitnik's and Zwaan's statements.  相似文献   

17.
A program to measure long-period brightness oscillations at the solar limb has been pursued at Sacramento Peak Observatory for several years. Past improvements in observing technique and data analysis are reviewed. The encouraging results aid in the verification of the reality and the origin of oscillatory signals. However, the main stumbling block to this and other observational programs is the length of observing sequences imposed by the day/night cycle. The South Pole has received considerable attention as a site where extended observations might be possible. Currently, the Sacramento Peak program is developing a South Pole telescope designed for the observing technique and data analysis proven in Sunspot. A review of pertinent South Pole site parameters is given here for other workers who may be considering South Pole observations. Observing sequences longer than 150 hr are possible, though rare. Data sets of this duration are very attractive for solar oscillation studies.Proceedings of the 66th IAU Colloquium: Problems in Solar and Stellar Oscillations, held at the Crimean Astrophysical Observatory, U.S.S.R., 1–5 September, 1981.Operated by the Association of Universities for Research in Astronomy, Inc., under contract AST 78-17292 with the National Science Foundation.Summer Research Assistant at Sacramento Peak Observatory.  相似文献   

18.
I examined a moderately active sunspot group, McMath 9735, and found that 15 of 16 flares observed in 1968, October 20–21 occurred near, and were preceded by, at least one of several EFR's (Emerging Flux Regions) in the area. Flares were larger and more numerous when: (1) the EFR appeared close to already existing spots, (2) a large amount of filament reorientation was occurring, and when (3) the EFR was most active, i.e., it was increasing in area and brightness and was accompanied by violent surging and great brightness fluctuations at the feet of the dark fibrils. Only two flares occurred at an inverted EFR, i.e., a leading spot with f polarity, however the largest event (2B) of the 15 quickly spread to this region after starting in a different EFR. A sunspot appeared in the inverted emerging flux region less than three hours after the flares. However this is thought to be merely an indication of the growing EFR and, therefore, a secondary effect.  相似文献   

19.
Durrant  C.J.  Mccloughan  J. 《Solar physics》2004,219(1):55-78
We describe the application of the synoptic transport equation to simulate the temporal evolution of the magnetic flux over the solar surface. This provides a means of predicting each day both the synoptic maps for the Carrington rotation starting the next day and the instantaneous map of the solar flux over the whole solar surface for the next day. The reliability of the predicted synoptic maps is tested by comparing the locations of the zero-flux contour with those of the observed maps produced by the National Solar Observatory, Kitt Peak and with the locations of Hα filaments measured on filtergrams obtained by the Big Bear Solar Observatory. We conclude that the best match at high latitudes is obtained by long-term simulations (over 20 rotations) with flux updates each rotation between latitudes ± 60°. We illustrate the use of the simulations to describe the evolution of the polar fields at the time of the polarity reversals in Cycle 23. The reconstruction of the instantaneous maps is tested by comparison with full-disk magnetograms. The method provides a simple means of estimating the large-scale flux distribution over the whole surface. It does not take account of flux emerging after the central meridian passage each rotation so it is only approximate in the activity belts but provides a reliable map beyond those latitudes.  相似文献   

20.
A case of cancellation of magnetic fields is observed during the decay of a small active region. Three different sources of information were simultaneously used: high resolution magnetograms, chromospheric Caii filtergrams and transverse velocity fields.A magnetic structure is apparently dragged to the network by the supergranular velocity field while it splits into two. There, they meet another structure with opposite magnetic polarity. After a period of coexistence, the magnetic pairs vanish, leaving no trace of either magnetic or chromospheric structures.Visiting astronomer, Sacramento Peak Observatory, operated by the Association of Universities for Research in Astronomy, Inc. under contract AST-78-17292 with the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号