首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LANDSAT-TM has been evaluated for forest cover type and landuse classification in subtropical forests of Kumaon Himalaya (U.P.) Comparative evaluation of false colour composite generated by using various band combinations has been made. Digital image processing of Landsat-TM data on VIPS-32 RRSSC computer system has been carried out to stratify vegetation types. Conventional band combination in false colour composite is Bands 2, 3 and 4 in Red/Green/Blue sequence of Landsat TM for landuse classification. The present study however suggests that false colour combination using Landsat TM bands viz., 4, 5 and 3 in Red/Green/Blue sequence is the most suitable for visual interpretation of various forest cover types and landuse classes. It is felt that to extract full information from increased spatial and spectral resolution of Landsat TM, it is necessary to process the data digitally to classify land cover features like vegetation. Supervised classification using maximum likelihood algorithm has been attemped to stratify the forest vegetation. Only four bands are sufficient enough to classify vegetaton types. These bands are 2,3,4 and 5. The classification results were smoothed digitaly to increase the readiability of the map. Finally, the classification carred out using digital technique were evaluated using systematic sampling design. It is observed that forest cover type mapping can be achieved upto 80% overall mapping accuracy. Monospecies stand Chirpine can be mapped in two density classes viz., dense pine (<40%) with more than 90% accuracy. Poor accuracy (66%) was observed while mapping pine medium dense areas. The digital smoothening reduced the overall mapping accuracy. Conclusively, Landsat-TM can be used as operatonal sensor for forest cover type mapping even in complex landuse-terrain of Kumaon Himalaya (U.P.)  相似文献   

2.
The study deals with the application of Remote Sensing for delineating various vegetation types along the three coastal districts of Andhra Pradesh. The satellite imagery of the region is divided into three types depending upon tone and texture. Each type is correlated with the ground truth. The species composition has been given and discussed.  相似文献   

3.
In the present study, forest type classification using Landsat TM False Colour Composite (FCC) bands 2, 3, 4 has been evaluated for mapping highly heterogeneous forest environment of Western Ghats (Kerala). Visual interpretation of Landsat TM FCC has been carried out to identify bioclimatic vegetation types. For accuracy estimation maps prepared from 1∶15,000 scale black-and-white aerial photographs have been used as ground check data. For comparison aerial photomap classes have been aggregated to match with Landsat-TM-derived map. The classification accuracy of ten major bioclimatic and landcover types was estimated using systematic sampling procedure. The overall classification accuracy of the forest types for the study area was 88.33%.  相似文献   

4.
高分辨率影像的植被分类方法对比研究   总被引:12,自引:0,他引:12  
颜梅春 《遥感学报》2007,11(2):235-240
高分辨率影像的纹理信息可解决用光谱分类面临的“同物异谱”和“同谱异物”问题,更精确地分辨地物的细微变化,但将纹理作为主要信息进行植被分类的研究较少。本文以南京市钟山景区为例,利用IKONOS影像数据的纹理信息进行植被分类,并将结果与用光谱信息、植被指数信息的分类结果比较。共使用了4个灰度共生矩阵纹理量:CON(对比)、COR(相关)、HOM(同质)和MCON(改进的对比)分析各类植被的纹理表征设阈值分割;用3个植被指数:NDVI(归一化指数)、MSAVI(改进的土壤调节指数)和SAVI(土壤调节指数)(L取0.5和5)选择发现SAVI5最能区分。对纹理和指数信息均设各类型的阈值进行分割提取;基于光谱信息分别用最小距离监督分类和ISODATA非监督分类。研究中先进行数据恢复,再分别用三种信息将试验区植被分为6类:草地、竹林、常绿针叶林、常绿阔叶林、混交林和园地,最后将三种方法4个结果进行比较。精度评价的结论是:纹理信息分类的精度最高,植被指数次之,光谱信息中的非监督分类最低,纹理反映地物光谱及差异信息,可作为最佳方法用于植被分类。  相似文献   

5.
Land cover classification of finer resolution remote sensing data is always difficult to acquire high-frequency time series data which contains temporal features for improving classification accuracy. This paper proposed a method of land cover classification with finer resolution remote sensing data integrating temporal features extracted from time series coarser resolution data. The coarser resolution vegetation index data is first fused with finer resolution data to obtain time series finer resolution data. Temporal features are extracted from the fused data and added to improve classification accuracy. The result indicates that temporal features extracted from coarser resolution data have significant effect on improving classification accuracy of finer resolution data, especially for vegetation types. The overall classification accuracy is significantly improved approximately 4% from 90.4% to 94.6% and 89.0% to 93.7% for using Landsat 8 and Landsat 5 data, respectively. The user and producer accuracies for all land cover types have been improved.  相似文献   

6.
本文根据植被类型分布与地理环境因子的关系,在地理信息系统和遥感技术支持下,通过GIS叠加、统计分析操作,建立植被分布与年积温、降水量、海拔高度、土壤类型等环境因子的定量化知识向量表。综合应用所得到的地学知识向量表和植被光谱特征值进行分类试验,得到研究区的植被分布图。文章以贺兰山地区为例,详细介绍该方法的应用。  相似文献   

7.
Wetlands have been determined as one of the most valuable ecosystems on Earth and are currently being lost at alarming rates. Large-scale monitoring of wetlands is of high importance, but also challenging. The Sentinel-1 and -2 satellite missions for the first time provide radar and optical data at high spatial and temporal detail, and with this a unique opportunity for more accurate wetland mapping from space arises. Recent studies already used Sentinel-1 and -2 data to map specific wetland types or characteristics, but for comprehensive wetland characterisations the potential of the data has not been researched yet. The aim of our research was to study the use of the high-resolution and temporally dense Sentinel-1 and -2 data for wetland mapping in multiple levels of characterisation. The use of the data was assessed by applying Random Forests for multiple classification levels including general wetland delineation, wetland vegetation types and surface water dynamics. The results for the St. Lucia wetlands in South Africa showed that combining Sentinel-1 and -2 led to significantly higher classification accuracies than for using the systems separately. Accuracies were relatively poor for classifications in high-vegetated wetlands, as subcanopy flooding could not be detected with Sentinel-1’s C-band sensors operating in VV/VH mode. When excluding high-vegetated areas, overall accuracies were reached of 88.5% for general wetland delineation, 90.7% for mapping wetland vegetation types and 87.1% for mapping surface water dynamics. Sentinel-2 was particularly of value for general wetland delineation, while Sentinel-1 showed more value for mapping wetland vegetation types. Overlaid maps of all classification levels obtained overall accuracies of 69.1% and 76.4% for classifying ten and seven wetland classes respectively.  相似文献   

8.
Crop classification is needed to understand the physiological and climatic requirement of different crops. Kernel-based support vector machines, maximum likelihood and normalised difference vegetation index classification schemes are attempted to evaluate their performances towards crop classification. The linear imaging self-scanning (LISS-IV) multi-spectral sensor data was evaluated for the classification of crop types such as barley, wheat, lentil, mustard, pigeon pea, linseed, corn, pea, sugarcane and other crops and non-crop such as water, sand, built up, fallow land, sparse vegetation and dense vegetation. To determine the spectral separability among crop types, the M-statistic and Jeffries–Matusita (JM) distance methods have been utilised. The results were statistically analysed and compared using Z-test and χ2-test. Statistical analysis showed that the accuracy results using SVMs with polynomial of degrees 5 and 6 were not significantly different and found better than the other classification algorithms.  相似文献   

9.
针对土地利用遥感分类方法多样、分类精度高低不一等问题,该文以土地利用变化明显的唐山市路南区、路北区为研究区域,并以中分遥感影像Landsat 8OLI为信息源,在对地类样本进行可分离性分析的基础上,建立研究区土地利用分层分类体系。通过监督分类实验,选择分类效果最好、分类精度最高的最大似然分类器进行地类初分;通过绘制归一化植被指数(NDVI)、归一化建筑指数(NDBI)、两指数差值(NDVI-NDBI)的曲线及地类光谱特征曲线,建立决策树分类规则,进行地类再分。该方法可以较好地完成多种土地利用二级地类的划分,有助于提高中分影像土地利用分类效率。  相似文献   

10.
高分六号宽幅多光谱数据人工林类型分类   总被引:1,自引:0,他引:1  
高分六号(GF-6)卫星于2018年成功发射,2019-03正式投入使用。由于GF-6宽幅相机的WFV(Wide Field of View)影像较GF-1的同类影像新增2个红边波段,将会提高对农业、林业、草原等资源监测能力。为了分析GF-6的WFV影像在人工林分类方面的能力,促进高分数据在林业领域的应用,本文选取广西高峰林场为研究区,以最新的GF-6 WFV影像为数据源,结合地面实测类型数据,进行广西南宁高峰林场的桉树,杉木等人工林类型提取。主要运用随机森林(random forests)的分层分类法:首先计算6种植被指数,并利用随机森林法进行植被指数的特征优选,然后确定4种波段组合数据集的分类方案,4种数据集分别为(1)无红边的前4个波段,(2)有红边的8个波段,(3) 8个波段加上未优化的植被指数特征组合,(4) 8个波段加上优化的植被指数特征组合。再进行WFV影像4种数据集的随机森林分类,随机森林采用分类回归树(CART)算法来生成分类树,结合了bagging和随机选择特征变量的优点,是一种有效的分类方法。最后比较4个方案的分类结果并进行精度验证。结果表明:方案2比方案1精度提高了4.99%,Kappa系数提高了0.058。说明包含红边的8波段数据比4个波段数据精度有大幅提升。方案4的8波段加上优化植被指数特征组合的分类精度最高,达到了85.38%,比方案2包含红边波段组和方案1无红边波段组的精度分别提高了3.98%,8.97%,Kappa系数分别提高了0.046,0.104。说明WFV影像加入红边波段比无红边波段精度明显增高。由结果可知,红边指数的引入,增强了植被信息,能够较准确地反映人工林类型特征差异,明显提升了人工林的分类精度。本研究方法可以有效改善广西人工林类型信息提取效果,为GF-6影像质量的评价及其在林业应用潜力提供科学参考依据。  相似文献   

11.
单变量特征选择的苏北地区主要农作物遥感识别   总被引:2,自引:0,他引:2  
遥感识别多源特征综合和特征优选是提高遥感影像分类精度的关键技术。农作物遥感识别中,识别特征的相对单一和数量过多均会导致作物识别精度不理想。随机森林(random forests)采用分类与回归树(CART)算法来生成分类树,结合了bagging和随机选择特征变量的优点,是一种有效的分类方法。单变量特征选择(univariate feature selection)能够对每一个待分类的特征进行测试,衡量该特征和响应变量之间的关系,根据得分舍弃不好的特征,优选得到的特征用于分类。本文基于随机森林和单变量特征选择,利用多时相光谱信息、植被指数信息、纹理信息及波段差值信息,设计多组分类实验方案,对江苏省泗洪县的高分一号(GF-1)和环境一号(HJ-1A)影像进行分类研究,旨在选择最佳的分类方案对实验区主要农作物进行识别和提取。实验结果表明:(1)多源信息综合的农作物分类精度明显高于单一的原始光谱特征分类,说明不同类型特征的引入能改善分类效果;(2)基于单变量特征选择算法的优选特征分类效果最佳,总体精度97.07%,Kappa系数0.96,表明了特征优选在降低维度的同时,也保证了较高的分类精度。随机森林和单变量特征选择结合的方法可以提高遥感影像的分类精度,为农作物的识别和提取研究提供了有效的方法。  相似文献   

12.
Abstract

Wildfire is a major disturbance agent in Mediterranean Type Ecosystems (MTEs). Providing reliable, quantitative information on the area of burns and the level of damage caused is therefore important both for guiding resource management and global change monitoring. Previous studies have successfully mapped burn severity using remote sensing, but reliable accuracy has yet to be gained using standard methods over different vegetation types. The objective of this research was to classify burn severity across several vegetation types using Landsat ETM imagery in two areas affected by wildfire in southern California in June 1999. Spectral mixture analysis (SMA) using four reference endmembers (vegetation, soil, shade, non‐photosynthetic vegetation) and a single (charcoal‐ash) image endmember were used to enhance imagery prior to burn severity classification using decision trees. SMA provided a robust technique for enhancing fire‐affected areas due to its ability to extract sub‐pixel information and minimize the effects of topography on single date satellite data. Overall kappa classification accuracy results were high (0.71 and 0.85, respectively) for the burned areas, using five canopy consumption classes. Individual severity class accuracies ranged from 0.5 to 0.94.  相似文献   

13.
结合Landsat-8遥感数据,采用多级决策树分类方案,利用归一化植被指数、波段比值、主成分分量等光谱特征参数并融合其他非遥感知识,对黄河三角洲地区土地利用与覆盖的信息展开了全面的提取、研究与分析,获得了该地区5个一级类、12个二级类地物的分布情况,分类总体精度93.88%,优于传统监督分类。同时采用聚类、分类叠加和人机交互等分类后处理操作以获得更贴近地面实际的制图效果,开展基于海岸线的缓冲区分析以获得各地物特别是距离海岸线10 km、20 km范围内地物类型的空间分布并完成相关制图与分析,为黄河三角洲地区滨海土地的利用与开发提供了数据支持。  相似文献   

14.

Forest vegetation of Vindhyan range located in the north of G.B. Pant Sagar (dam) has been subjected to degradation due to high biotic pressure caused by the installation of thermal power plants, coal mining, heavy cattle grazing etc. In the present study Landsat TM FCC of 1∶250,000 scale was visually analysed with respect to forest vegetation types, crown density and structure along with other landuse/land cover classes. ExceptShorea robusta (Sal) andLagerstroemia parviflora (Lendia) all forest vegetation types show higher percentage of degradation and under-stocked condition with respect to their areal extent under study. Overall classification accuracy of the forest types has been found to be 88.94%. This indicates that for obtaining reliable mapping accuracy in dry deciduous areas, satellite remote sensing data of appropriate season is essential.

  相似文献   

15.
The purpose of this study was to assess the environmental impacts of forest fires on part of the Mediterranean basin. The study area is on the Kassandra peninsula, prefecture of Halkidiki, Greece. A maximum likelihood supervised classification was applied to a post-fire Landsat TM image for mapping the exact burned area. Land-cover types that had been affected by fire were identified with the aid of a CORINE land-cover type layer. Results showed an overall classification accuracy of 95%, and 83% of the total burned area was ‘forest areas’. A normalized difference vegetation index threshold technique was applied to a post-fire Quickbird image which had been recorded six years after the fire event to assess the vegetation recovery and to identify the vegetation species that were dominant in burned areas. Four classes were identified: ‘bare soil’, ‘sparse shrubs’, ‘dense shrubs’ and ‘tree and shrub communities’. Results showed that ‘shrublands’ is the main vegetation type which has prevailed (65%) and that vegetation recovery is homogeneous in burned areas.  相似文献   

16.
Airborne laser scanning (ALS) is increasingly being used for the mapping of vegetation, although the focus so far has been on woody vegetation, and ALS data have only rarely been used for the classification of grassland vegetation. In this study, we classified the vegetation of an open alkali landscape, characterized by two Natura 2000 habitat types: Pannonic salt steppes and salt marshes and Pannonic loess steppic grasslands. We generated 18 variables from an ALS dataset collected in the growing (leaf-on) season. Elevation is a key factor determining the patterns of vegetation types in the landscape, and hence 3 additional variables were based on a digital terrain model (DTM) generated from an ALS dataset collected in the dormant (leaf-off) season. We classified the vegetation into 24 classes based on these 21 variables, at a pixel size of 1 m. Two groups of variables with and without the DTM-based variables were used in a Random Forest classifier, to estimate the influence of elevation, on the accuracy of the classification. The resulting classes at Level 4, based on associations, were aggregated at three levels — Level 3 (11 classes), Level 2 (8 classes) and Level 1 (5 classes) — based on species pool, site conditions and structure, and the accuracies were assessed. The classes were also aggregated based on Natura 2000 habitat types to assess the accuracy of the classification, and its usefulness for the monitoring of habitat quality. The vegetation could be classified into dry grasslands, wetlands, weeds, woody species and man-made features, at Level 1, with an accuracy of 0.79 (Cohen’s kappa coefficient, κ). The accuracies at Levels 2–4 and the classification based on the Natura 2000 habitat types were κ: 0.76, 0.61, 0.51 and 0.69, respectively. Levels 1 and 2 provide suitable information for nature conservationists and land managers, while Levels 3 and 4 are especially useful for ecologists, geologists and soil scientists as they provide high resolution data on species distribution, vegetation patterns, soil properties and on their correlations. Including the DTM-based variables increased the accuracy (κ) from 0.73 to 0.79 for Level 1. These findings show that the structural and spectral attributes of ALS echoes can be used for the classification of open landscapes, especially those where vegetation is influenced by elevation, such as coastal salt marshes, sand dunes, karst or alluvial areas; in these cases, ALS has a distinct advantage over other remotely sensed data.  相似文献   

17.
In-season rice area estimation using C-band Synthetic Aperture Radar (SAR) data from RADARSAT-1 is being done in India for more than a decade. Decision rule based models in backscatter domain have been calibrated and validated using extensive field data and a long term backscatter signature bank of rice fields has been developed. Since the rice crop growing environment in India is a diverse one in the world having all the rice cultural types, the rice backscatter is quite exhaustive. This paper highlights the results of classification of rice lands in Bangladesh using the signature bank of India. The results showed that the Aman rice crop of Bangladesh has a typical temporal backscatter of shallow and intermediate rice fields of that of West Bengal state. The mean backscatter of the intermediate/deep water fields in southern Bangladesh was ?19?dB, while that of shallow cultural types mostly in northern Bangladesh was ?17?dB. The signature of the rice crop in Southern Bangladesh matched well with that of Gangetic West Bengal, particularly that of the 24 Parganas, Howrah and Hughli districts. The signature of rice crop in the Sub-Himalayan West Bengal particularly that of Dinajpur and Maldah districts matched well with that of the northern area of Bangladesh. State level rice area estimated using the selected models was found with in 5% deviation from that of the reported acreage.  相似文献   

18.
Improving image classification and its techniques have been of interest while handling satellite data especially in hilly regions with evergreen forests particularly with indistinct ecotones. In the present study an attempt has been made to classify evergreen forests/vegetation in Moulirig National Park of Arunachal Pradesh in Eastern Himalayas using conventional unsupervised classification algorithms in conjunction with DEM. The study area represents climax vegetation and can be broadly classified into tropical, subtropical, temperate and sub-alpine forests. Vegetation pattern in the study area is influenced strongly by altitude, slope, aspect and other climatic factors. The forests are mature, undisturbed and intermixed with close canopy. Rugged terrain and elevation also affect the reflectance. Because of these discrimination among the various forest/vegetation types is restrained on satellite data. Therefore, satellite data in optical region have limitations in pattern recognition due to similarity in spectral response caused by several factors. Since vegetation is controlled by elevation among other factors, digital elevation model (DEM) was integrated with the LISS III multiband data. The overall accuracy improved from 40.81 to 83.67%. Maximum-forested area (252.80 km2) in national park is covered by sub-tropical evergreen forest followed by temperate broad-leaved forest (147.09 km2). This is probably first attempt where detailed survey of remote and inhospitable areas of Semang sub-watershed, in and around western part of Mouling Peak and adjacent areas above Bomdo-Egum and Ramsingh from eastern and southern side have been accessed for detailed ground truth collection for vegetation mapping (on 1:50,000 scale) and characterization. The occurrence of temperate conifer forests and Rhododendron Scrub in this region is reported here for the first time. The approach of DEM integrated with satellite data can be useful for vegetation and land cover mapping in rugged terrains like in Himalayas.  相似文献   

19.
The vegetation of Kolli Hill, has been classified for its forest cover types using landsat TM FCCs of two season namely summer (March) and winter (November). The FCCs of two seasons were interpreted visually based on the standard interpretation elements. Extensive field checks were done and corrections were made in both the maps wherever found necessary’. Finally the forest cover type map of Kolli Hill on 1:50,000 scale was drawn by overlaying the interpreted maps of the two seasons The different types of forest were named following Champion and Seth’s classification scheme and the areas of different forest types estimated.  相似文献   

20.
The vegetation dynamics and land use/land cover types of Birantiya Kalan watershed located in the arid tracts of western Rajasthan have been characterized and evaluated using Remote Sensing and Geographical Information System (GIS). The watershed under study falls in the transitional plain of Luni Basin and is characterized by Aravali ranges in the eastern half and vast alluvial plains in the west. The land use/land cover types, as identified are cropland, fallow, forest, land with scrub, land without scrub, sandy area and the water body. Land with scrub occupied maximum area (39% area of the watershed) in 1996 in place of crop land which was dominant (43% of total area) in the year 1988. During eight years period, seasonal fallow land increased significantly and the areal extent of water body decreased to almost half. Vegetation vigour types have been classified into very poor, poor. moderate, good and very good categories. Moderate vigour type reduced from 62 to 27% and poor type increased from 34 to 68% during the period 1988 to 1996. Other vegetation vigour types have not shown any significant changes. To quantify the changes over the years in both vegetation and land use/land cover, weightages have been given to each type and composite values of both vegetation vigour and land use types for 1996 and 1988 have been calculated. It has been observed that the ratio for vegetation vigour has been found to be 0.85 showing that the overall vegetation have not improved after the treatment. The ratio for land use is found to be 1.01, which indicates negligible change in land use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号