首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was conducted in Lakshadweep islands to determine the feasibility of using Indian Remote Sensing (IRS) satellites for detecting changes in the seagrass from other coastal features. IRS ID and IRS P6 LISS III having spatial resolution of 23.5 m with lower cost compared to all other contemporary satellites with the same spatial resolution have not been widely used for monitoring the changes in seagrass cover. In this context, the present study attempted to explore the effectiveness of LISS III data for mapping seagrasses and to inform the international community about the usefulness of these low-cost imageries for coastal resource monitoring. Supervised classification and change detection studies found a significant decrease in seagrass cover of 73.03 ha in the Lakshadweep group of islands. An overall accuracy of 67.5% was obtained for the change maps, and seagrass cover and its changes vary at different islands.  相似文献   

2.
Seagrasses ecosystems are fragile yet highly productive ecosystems of the world showing declining trend throughout the world due to natural and anthropogenic pressures. Effective conservation and management plan is thus required to protect these resources, to aid with conservation need mapping and monitoring of seagrasses using high resolution remote sensing data is very much required. Hence, the present study was made to record the seagrass aerial cover in the Lakshadweep islands using IRS P6 LISS IV satellite data. The suitability of LISS IV sensor for seagrass mapping was tested for the first time with an overall accuracy of 73.16%. The study found an area of 2590.2?ha of seagrasses in Lakshadweep islands with 1310.8?ha and 1279.4?ha dense and sparse seagrass cover respectively. The study recommends the use of LISS IV data for mapping the shallow water seagrasses, as mapping efficiency increases nearly 4 times more than the LISS III data, as the former (LISS IV) picks up the small patches of seagrasses and delineates the coral and reef vegetation patches from seagrass class.  相似文献   

3.
Assessment of area under agroforestry in Tehri district of North Western Himalaya, Uttarakhand, India has been done using GIS and remote sensing technology. The study district characterized by hilly terrain with varying elevations from 288 m to more than 2800 m and generally gentle slopes, valleys, flat land covers and agricultural terraces. High-resolution satellite imageries (spatial resolution 5.8 m) were used in this study for land uses and land covers classification. According to unsupervised classification, highest area was found under forest class (65.22%) followed by cropland (20.41%). Considerable area was also found under snow cover (9.45%) in the district. Area under agroforestry was estimated to be 5572.26 ha (1.53%) by this method, whereas it was estimated to be 7029.06 ha (1.93%) by supervised classification. Estimated cropland area comes out to be about 20.0%. An accuracy of 86.5% was found in this classification for agroforestry class. Highest area under agroforestry of 3707.36 ha was obtained in 1200–2000 m elevations followed by 2231.26 ha in 288–1200 m elevations. Negligible area was found on high elevation zones of more than 2800 m. The major agroforestry systems of dominated by Grewia oppositifolia (Bhimal), Celtis australis (Kharik) and Quercus leucotrichophora (Banj) were identified and mapped and remaining systems were grouped as others class. Estimated area under G. oppositifolia, C. australis and Q. leucotrichophora based systems come out to be 2330.82, 1456.80 and 1129.10 ha, respectively. These systems are multiple usufructs are food, fuelwood, fodder, fiber and small timber. It has been observed from the accuracy assessment that the estimates of area under agroforestry obtained under this study are reliable.  相似文献   

4.
Land cover changes associated with urbanisation modify microclimate, leading to urban heat islands, whereby cities are warmer than the surrounding countryside. Understanding the factors causing this phenomenon could help urban areas adapt to climate change and improve living conditions of inhabitants. In this study, land surface temperatures (LST) of Aarhus, a city in the high latitudes, are estimated from the reflectance of a thermal band (TIRS1; Band 10; 10.60–11.19 μm) of Landsat 8 on five dates in the summer months (one in 2015, and four in 2018). Spectral indices, modelled on the normalised difference vegetation index (NDVI), using all combinations of the first seven bands of Landsat 8 are calculated and their relationships with LST, analysed. Land cover characteristics, in terms of the percentages of tree cover, building cover and overall vegetation cover are estimated from airborne LiDAR data, building footprints and 4-band aerial imagery, respectively. The correlations between LST, the spectral indices and land cover are estimated.The difference in mean temperature between the rural and urban parts of Aarhus is up to 3.96 °C, while the difference between the warmer and colder zones (based on the mean and SD of LST) is up to 13.26 °C. The spectral index using the near infrared band (NIR; Band 5; 0.85-0.88 μm) and a short-wave infrared band (SWIR2; Band 7; 2.11–2.29 μm) has the strongest correlations (r: 0.62 to 0.89) with LST for the whole study area. This index is the inverse of normalised burn ratio (NBR), which has been used for mapping burnt areas. Spectral indices using different combinations of the infrared bands have stronger correlations with LST than the more widely used vegetation indices such as NDVI. The percentage of tree cover has a higher negative correlation (Pearson’s r: -0.68 to -0.75) with LST than overall vegetation cover (r: -0.45 to -0.63). Tree cover and building cover (r: 0.53 to 0.71) together explain up to 68 % of the variation in LST. Modification of tree and building cover may therefore have the potential to regulate urban LST.  相似文献   

5.
Coral reefs are one of the most diverse of all marine ecosystems and are often referred to as the “rainforests of the sea”. Though they cover less than one per cent of Earth’s surface, they are home to one quarter of all ocean species by providing food and shelter to them. Optical remote sensing has been widely employed for mapping and monitoring coral reefs. But the application of microwave remote sensing has been an alternate domain in this area. This study explores the possibility of utilizing synthetic aperture radar (SAR) data of Radar Imaging Satellite-I, India’s first indigenous microwave satellite to delineate the coral reefs in Andaman and Lakshadweep Islands in the Indian Ocean. The dual polarized data, after reducing the speckle has been classified to delineate the coral reefs in the vicinity of both islands. SAR has a performance comparable with passive optical sensors under favourable conditions of imaging, viz. optimum tidal current and surface winds. The study results are compared with the international coral reef reference map and are found to be highly promising, with an overall accuracy of 98.3% and a Kappa coefficient of 0.944 for fringing reefs in Andaman region. For the atolls in Lakshadweep region, the overall accuracy is found to be 92.99% and the Kappa coefficient is estimated at 0.7377. This study tries to explore a different horizon for microwave remote sensing in coral reef studies. It is seen that, optical and microwave remote sensing can provide a mutually supporting platform in coral reef delineation, in terms of imaging depth as well as climatic conditions.  相似文献   

6.
Impact assessment of watershed development activity assumes greater importance in present day agriculture. Considering the ability of remote sensing technology in watershed monitoring and impact assessment, a study was carried out to investigate the Impact Assessment of Karnataka Watershed Development Project (DANIDA) in Koralahallihalla Sub watershed in Sindagi taluk of Bijapur district in Northern Karnataka using satellite data of two periods i.e., IRS 1?C, LISS-III data of 30 December, 1997 (pre-treatment) and IRS P6, LISS-III data of 17 December, 2004 (post-treatment). The land use/land cover map was derived from the supervised classification. The results revealed that there has been no major shift in cropping patterns over a period of 7?years (1997?C2004). However, rabi cropped area has decreased drastically (187?ha), which might be due to the continuous droughts that occurred during the implementation period. On the other hand, kharif and double cropped area have increased marginally (103?ha and 96?ha, respectively). Increase in double cropped area showed that there was increase in irrigated land, which were earlier being used as rainfed and wastelands turned in to cultivated lands as seen in scrub lands and rabi cropped areas of the sub watershed. Wastelands in the sub-watershed has decreased marginally (36?ha). The vegetation vigour of the sub-watershed has been derived from the NDVI maps of both the periods. These NDVI maps indicate that there was a significant change in biomass status of the sub watershed. The vegetation vigour of the area was classified into three classes using NDVI. Substantial increase in the area under high and low biomass levels was observed (319?ha and 77?ha, respectively). The benefit-cost analysis indicates that the use of remote sensing technology was 2 times cheaper than the conventional methods. Thus, the repetitive coverage of the satellite data provides an excellent opportunity to monitor the land resources and evaluate the land cover changes through comparison of images for the watershed at different periods.  相似文献   

7.
The study reports the impact of migratory livestock in the buffer area of Kedarnath Wildlife Sanctuary. The cumulative impacts of livestock grazing, fuel wood extraction and other anthropogenic pressures on forest cover in and around camping sites have been analyzed using satellite data and field observations. Multi-date satellite data were used to map the forest cover around 16 seasonal livestock camps. An annual loss of about 7.25 ha of forest covers during 1976–1990, 13.57 ha during 1990–1999 and 11.46 ha during 1999–2005 are recorded. A loss of 108.53 ha of forestland has been estimated during 1976–1990, about 122.16 ha during 1990–1999 and 68.78 ha during 1999–2005. It is also observed that many of the isolated camping sites are now connected due to loss of vegetation. Phytosociological analysis indicates that the number of seedlings and saplings in three species of Quercus (Q. leucotrichophora, Q. floribunda and Q. semecarpifolia) as compared to mature tress is very less around cattle camping sites. The ratio of number of sapling with seedling and trees indicates that the status of sapling is nil to very poor, an indication of loss of saplings due to either trampling or grazing.  相似文献   

8.
Seagrass habitats in subtidal coastal waters provide a variety of ecosystem functions and services and there is an increasing need to acquire information on spatial and temporal dynamics of this resource. Here, we explored the capability of IKONOS (IKO) data of high resolution (4 m) for mapping seagrass cover [submerged aquatic vegetation (%SAV) cover] along the mid-western coast of Florida, USA. We also compared seagrass maps produced with IKO data with that obtained using the Landsat TM sensor with lower resolution (30 m). Both IKO and TM data, collected in October 2009, were preprocessed to calculate water depth invariant bands to normalize the effect of varying depth on bottom spectra recorded by the two satellite sensors and further the textural information was extracted from IKO data. Our results demonstrate that the high resolution IKO sensor produced a higher accuracy than the TM sensor in a three-class % SAV cover classification. Of note is that the OA of %SAV cover mapping at our study area created with IKO data was 5–20% higher than that from other studies published. We also examined the spatial distribution of seagrass over a spatial range of 4–240 m using the Ripley’s K function [L(d)] and IKO data that represented four different grain sizes [4 m (one IKO pixel), 8 m (2 × 2 IKO pixels), 12 m (3 × 3 IKO pixels), and 16 m (4 × 4 IKO pixels)] from moderate-dense seagrass cover along a set of six transects. The Ripley’s K metric repeatedly indicated that seagrass cover representing 4 m × 4 m pixels displayed a dispersed (or slightly dispersed) pattern over distances of <4–8 m, and a random or slightly clustered pattern of cover over 9–240 m. The spatial pattern of seagrass cover created with the three additional grain sizes (i.e., 2 × 24 m IKO pixels, 3 × 34 m IKO pixels, and 4 × 4 m IKO pixels) show a dispersed (or slightly dispersed) pattern across 4–32 m and a random or slightly clustered pattern across 33–240 m. Given the first report on using satellite observations to quantify seagrass spatial patterns at a spatial scale from 4 m to 240 m, our novel analyses of moderate-dense SAV cover utilizing Ripley’s K function illustrate how data obtained from the IKO sensor revealed seagrass spatial information that would be undetected by the TM sensor with a 30 m pixel size. Use of the seagrass classification scheme here, along with data from the IKO sensor with enhanced resolution, offers an opportunity to synoptically record seagrass cover dynamics at both small and large spatial scales.  相似文献   

9.
Human activities have diverse and profound impacts on ecosystem carbon cycles. The Piedmont ecoregion in the eastern United States has undergone significant land use and land cover change in the past few decades. The purpose of this study was to use newly available land use and land cover change data to quantify carbon changes within the ecoregion. Land use and land cover change data (60-m spatial resolution) derived from sequential remotely sensed Landsat imagery were used to generate 960-m resolution land cover change maps for the Piedmont ecoregion. These maps were used in the Integrated Biosphere Simulator (IBIS) to simulate ecosystem carbon stock and flux changes from 1971 to 2010. Results show that land use change, especially urbanization and forest harvest had significant impacts on carbon sources and sinks. From 1971 to 2010, forest ecosystems sequestered 0.25 Mg C ha?1 yr?1, while agricultural ecosystems sequestered 0.03 Mg C ha?1 yr?1. The total ecosystem C stock increased from 2271 Tg C in 1971 to 2402 Tg C in 2010, with an annual average increase of 3.3 Tg C yr?1. Terrestrial lands in the Piedmont ecoregion were estimated to be weak net carbon sink during the study period. The major factors contributing to the carbon sink were forest growth and afforestation; the major factors contributing to terrestrial emissions were human induced land cover change, especially urbanization and forest harvest. An additional amount of carbon continues to be stored in harvested wood products. If this pool were included the carbon sink would be stronger.  相似文献   

10.
This paper evaluates the potential of a terrestrial laser scanner (TLS) to characterize forest canopy fuel characteristics at plot level. Several canopy properties, namely canopy height, canopy cover, canopy base height and fuel strata gap were estimated. Different approaches were tested to avoid the effect of canopy shadowing on canopy height estimation caused by deployment of the TLS below the canopy. Estimation of canopy height using a grid approach provided a coefficient of determination of R2 = 0.81 and an RMSE of 2.47 m. A similar RMSE was obtained using the 99th percentile of the height distribution of the highest points, representing the 1% of the data, although the coefficient of determination was lower (R2 = 0.70). Canopy cover (CC) was estimated as a function of the occupied cells of a grid superimposed upon the TLS point clouds. It was found that CC estimates were dependent on the cell size selected, with 3 cm being the optimum resolution for this study. The effect of the zenith view angle on CC estimates was also analyzed. A simple method was developed to estimate canopy base height from the vegetation vertical profiles derived from an occupied/non-occupied voxels approach. Canopy base height was estimated with an RMSE of 3.09 m and an R2 = 0.86. Terrestrial laser scanning also provides a unique opportunity to estimate the fuel strata gap (FSG), which has not been previously derived from remotely sensed data. The FSG was also derived from the vegetation vertical profile with an RMSE of 1.53 m and an R2 = 0.87.  相似文献   

11.
Water harvesting works had been conducted at Jamka micro-watershed of Saurashtra region of Gujarat in India for augmenting artificial groundwater recharge in hard rock aquifers of the semi arid region. In present study groundwater recharge of Jamka micro-watershed was estimated. The natural groundwater recharge through rainfall in the study area was estimated using empirical equations and the artificial groundwater recharge through water harvesting structures which was estimated using remote sensing and GIS. The area under submergence due to water harvesting structures is estimated using remote sensing images. The groundwater recharge in study area was also estimated using water table fluctuation method and compared with total recharge through rainfall and water harvesting structures. The natural groundwater recharge through rainfall in the study area was found varying from 11 to 16 per cent of annual rainfall. The total groundwater recharge in the study area was estimated 390.29?ha?m, in which the contribution of recharge through water harvesting structures was about 38.53%; this revealed that the water harvesting structures played an important role in increasing the groundwater recharge in the region.  相似文献   

12.
Coastal resources viz., coral reefs, seagrasses, mangroves, and coastal land features viz., sandy beach, mudflats and salt pan/aquaculture ponds were classified and assessed in the Palk Bay region of the south-east coast of India using IRS LISS III satellite image (1996, 2000, 2002 and 2004). The study recorded an areal coverage of 286.95 ha of reef area during 2004, which is 177.54 ha lesser than that of the reef area of 1996. The reef vegetation composed mainly of seaweeds has gained over 29.44 ha during the same period. Likewise, sand over reef area has also increased alarmingly i.e. 120.34 ha between 1996 and 2004. The seagrass beds of Munaikkadu region of the Palk Bay are comparatively protected and have gained over 7.5 ha between 1996 and 2004. It has been found that both the dense (2.99 ha) and sparse (36.45 ha) mangroves have gained their areal coverage considerably between 1996 and 2004. Whereas in Devipattinam region, many anthropogenic pressures are exerted only on the seagrass resources which has led to the reduction of over 785.5 ha of dense seagrass beds between 1996 and 2004. The study clearly indicated that the resources are under the pressures of low to high threats, especially the coral reefs and seagrasses, if the pressures continue, coastal resources of the Palk Bay may face serious threats of destruction in this part of the Bay in the years to come.  相似文献   

13.
The knowledge of biomass stocks in tropical forests is critical for climate change and ecosystem services studies. This research was conducted in a tropical rain forest located near the city of Libreville (the capital of Gabon), in the Akanda Peninsula. The forest cover was stratified in terms of mature, secondary and mangrove forests using Landsat-ETM data. A field inventory was conducted to measure the required basic forest parameters and estimate the aboveground biomass (AGB) and carbon over the different forest classes. The Shuttle Radar Topography Mission (SRTM) data were used in combination with ground-based GPS measurements to derive forest heights. Finally, the relationships between the estimated heights and AGB were established and validated. Highest biomass stocks were found in the mature stands (223 ± 37 MgC/ha), followed by the secondary forests (116 ± 17 MgC/ha) and finally the mangrove forests (36 ± 19 MgC/ha). Strong relationships were found between AGB and forest heights (R2 > 0.85).  相似文献   

14.
The potential of the short-wave infrared (SWIR) bands to detect dry-season vegetation mass and cover fraction is investigated with ground radiometry and MODIS data, confronted to vegetation data collected in rangeland and cropland sites in the Sahel (Senegal, Niger, Mali). The ratio of the 1.6 and 2.1 μm bands (called STI) acquired with a ground radiometer proved well suited for grassland mass estimation up to 2500 kg/ha with a linear relation (r2 = 0.89). A curvilinear regression is accurate for masses ranging up to 3500 kg/ha. STI proved also well suited to retrieve vegetation cover fraction in crop fields, fallows and rangelands. Such dry-season monitoring, with either ground or satellite data, has important applications for forage, erosion risk and fire risk assessment in semi-arid areas.  相似文献   

15.
李旺  牛铮  高帅  覃驭楚 《遥感学报》2013,17(6):1612-1626
利用机载激光雷达点云数据,计算了9种度量指标,并将其分为冠层的高度指标、结构复杂度指标和覆盖度指标。利用高度指标和结构复杂度指标,结合大量实测单木结构与年龄估测数据,从样点和区域尺度分别分析了青海云杉林冠层垂直结构分布,分析得知实验区内主要以中龄林和成熟林为主,冠层垂直分布复杂程度偏低,高度分化程度一般。通过回归分析发现首次回波覆盖度指标FCI与实测的有效植被面积指数PAIe有良好的相关性(R2=0.66),在此基础上基于辐射传输模型反演了实验区内PAIe的水平分布,且用实测数据验证发现反演的PAIe略高于实测值(R2=0.67),绝对平均误差为0.65。分析结果很好地反映了激光雷达在森林空间结构信息提取方面的应用潜力。  相似文献   

16.
In the present study, soil loss in Nagpur district of Maharashtra is predicted employing USLE method and adopting integrated analysis in GIS to prioritise the tahsils for soil conservation and for delineation of suitable conservation units. Remote sensing techniques are applied to delineate the land cover of the district and to arrive at annual cover factors. Results indicate that potential soil loss of very slight to slight (>5–10 tons/ha/year) exist in the valleys in north western, northern and in the plains of central and eastern parts of the district. Moderate to moderately severe erosion rates (10 to 20 tones/ha/year) is noticed in the southeastern and some central parts. Severe, very severe and extremely severe erosion types (20 to 80 tons/ha/year) are noticed in the northern, western, southwestern and southern parts of the district. The average soil loss is estimated to be 23.1 and 15.5 tons/ha/yr under potential and actual conditions respectively. Slight, moderate, moderately severe and extremely severe potential erosion covering about 41 per cent area of the district is reduced to negligible and very slight rates of actual erosion under the influence of present land cover leading to a reduction of 7421.2 tones of potential soil loss. Priority rating of the tahsils is evaluated from the area weighted mean quantum of soil loss. Multi-criteria overlay analysis with the parameters of soil erosion, slope, soil depth, land cover and surface texture with rating for the constituent classes has resulted in delineation of nine conservation units. Appropriate agronomic and mechanical practices are suggested in the identified units for minimizing the erosion hazard.  相似文献   

17.
Winter cover crops are an essential part of managing nutrient and sediment losses from agricultural lands. Cover crops lessen sedimentation by reducing erosion, and the accumulation of nitrogen in aboveground biomass results in reduced nutrient runoff. Winter cover crops are planted in the fall and are usually terminated in early spring, making them susceptible to senescence, frost burn, and leaf yellowing due to wintertime conditions. This study sought to determine to what extent remote sensing indices are capable of accurately estimating the percent groundcover and biomass of winter cover crops, and to analyze under what critical ranges these relationships are strong and under which conditions they break down. Cover crop growth on six fields planted to barley, rye, ryegrass, triticale or wheat was measured over the 2012–2013 winter growing season. Data collection included spectral reflectance measurements, aboveground biomass, and percent groundcover. Ten vegetation indices were evaluated using surface reflectance data from a 16-band CROPSCAN sensor. Restricting analysis to sampling dates before the onset of prolonged freezing temperatures and leaf yellowing resulted in increased estimation accuracy. There was a strong relationship between the normalized difference vegetation index (NDVI) and percent groundcover (r2 = 0.93) suggesting that date restrictions effectively eliminate yellowing vegetation from analysis. The triangular vegetation index (TVI) was most accurate in estimating high ranges of biomass (r2 = 0.86), while NDVI did not experience a clustering of values in the low and medium biomass ranges but saturated in the higher range (>1500 kg/ha). The results of this study show that accounting for index saturation, senescence, and frost burn on leaves can greatly increase the accuracy of estimates of percent groundcover and biomass for winter cover crops.  相似文献   

18.
Seagrass meadows are at increasing risk of thermal stress and recent work has shown that water temperature around seagrass meadows could be used as an indicator for seagrass condition. Satellite thermal data have not been linked to the thermal properties of seagrass meadows. This work assessed the covariation between 20 in situ average daily temperature logger measurement sites in tropical seagrass meadows and satellite derived daytime SST (sea surface temperature) from the daytime MODIS and Landsat sensors along the Great Barrier Reef coast in Australia. Statistically significant (R2?=?0.787–0.939) positive covariations were found between in situ seagrass logger temperatures and MODIS SST temperature and Landsat sensor temperatures at all sites along the reef. The MODIS SST were consistently higher than in situ temperature at the majority of the sites, possibly due to the sensor’s larger pixel size and location offset from field sites. Landsat thermal data were lower than field-measured SST, due to differences in measurement scales and times. When refined significantly and tested over larger areas, this approach could be used to monitor seagrass health over large (106?km2) areas in a similar manner to using satellite SST for predicting thermal stress for corals.  相似文献   

19.
For the soil moisture retrieval from passive microwave sensors, such as ESA’s Soil Moisture and Ocean Salinity (SMOS) and the NASA Soil Moisture Active and Passive (SMAP) mission, a good knowledge about the vegetation characteristics is indispensable. Vegetation cover is a principal factor in the attenuation, scattering and absorption of the microwave emissions from the soil; and has a direct impact on the brightness temperature by way of its canopy emissions. Here, brightness temperatures were measured at three altitudes across the TERENO (Terrestrial Environmental Observatories) Rur catchment site in Germany to achieve a range of spatial resolutions using the airborne Polarimetric L-band Multibeam Radiometer 2 (PLMR2). The L-band Microwave Emission of the Biosphere (L-MEB) model which simulates microwave emissions from the soil–vegetation layer at L-band was used to retrieve surface soil moisture for all resolutions. A Monte Carlo approach was developed to simultaneously estimate soil moisture and the vegetation parameter b’ describing the relationship between the optical thickness τ and the Leaf Area Index (LAI). LAI was retrieved from multispectral RapidEye imagery and the plant specific vegetation parameter b′ was estimated from the lowest flight altitude data for crop, grass, coniferous forest, and deciduous forest. Mean values of b’ were found to be 0.18, 0.07, 0.26 and 0.23, respectively. By assigning the estimated b′ to higher flight altitude data sets, a high accuracy soil moisture retrieval was achieved with a Root Mean Square Difference (RMSD) of 0.035 m3 m−3 when compared to ground-based measurements.  相似文献   

20.
Funafuti Atoll, Tuvalu is located in the southwestern Pacific Ocean, which has experienced some of the highest rates of global sea-level rise over the past 60 years. Atoll islands are low-lying accumulations of reef-derived sediment that provide the only habitable land in Tuvalu, and are considered vulnerable to the myriad possible impacts of climate change, especially sea-level rise. This study examines the shoreline change of twenty-eight islands in Funafuti Atoll between 2005 and 2015 using 0.65 m QuickBird, 0.46 m WorldView-2, and 0.31 m WorldView-3 imagery using an image segmentation and decision tree classification. Shoreline change estimates are compared to previous study that used a visual interpretation approach. The feasibility of estimating island area with Landsat-8 Operational Land Imager (OLI) data is explored using CLASlite software. Results indicate a 0.13% (0.35 ha) decrease in net island area over the study time period, with 13 islands decreasing in area and 15 islands increasing in area. Substantial decreases in island area occurred on the islands of Fuagea, Tefala and Vasafua, which coincides with the timing of Cyclone Pam in March, 2015. Comparison between the WorldView-2 shoreline maps and those created from Landstat-8 indicate that the estimates tend to be in higher agreement for islands that have an area > 0.5 ha, a compact shape, and no built structures. Ten islands had > 90% agreement, with percent disagreements ranging from 2.78 to 100%. The methods and results of this study speak to the potential of automated EoV shoreline monitoring through segmentation and classification tree approach, which would reduce down data processing and analysis time. With the growing constellation of high and medium spatial resolution satellite-based sensors and the development of semi or fully automated image processing technology, it is now possible to remotely assess the short and medium-term shoreline dynamics on dynamic atolls. Landsat estimates were reasonably matched to those derived from fine resolution imagery, with some caveats about island size and shape.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号