首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
水下机器人-机械臂系统的滑模自抗扰控制   总被引:1,自引:0,他引:1  
李小岗  王红都  黎明  刘鑫 《海洋科学》2020,44(9):130-138
针对水下机器人机械臂系统的强耦合、强非线性、复杂海洋多源干扰等因素影响,提出了滑模自抗扰控制器,将复杂系统模型转变为简单的积分串联系统,将内部参数不确定性、测量误差、建模误差和海洋多源干扰等扰动归结为总扰动,并采用线性扩张观测器对其进行估计并抵消。利用滑模控制器提高系统对参数摄动的不敏感性,增强控制系统的抗干扰性能,通过李雅普诺夫理论分析了控制系统的有界稳定性。仿真结果表明滑模自抗扰与传统滑模控制和自抗扰控制相比,能使水下机器人机械臂实现更好的轨迹跟踪,且系统具有更好的抗干扰能力。  相似文献   

2.
For autonomous manipulation in water, an underwater vehicle-manipulator system (UVMS) should be able to generate trajectori9es for the vehicle and manipulators and track the planned trajectories accurately. In this paper, for trajectory generation, we suggest a performance index for redundancy resolution. This index is designed to minimize the restoring moments of the UVMS during manipulation, and it is optimized without impeding the performance of a given task. As a result, the restoring moments of the UVMS are decreased, and control efforts are also reduced. For tracking control of the UVMS, a nonlinear H optimal control with disturbance observer is proposed. This control is robust against parameter uncertainties, external disturbances, and actuator nonlinearities. Numerical simulations are presented to demonstrate the performance of the proposed coordinated motion control of the UVMS. The results show that control inputs for tracking are reduced, and the UVMS can successfully track generated trajectories.  相似文献   

3.
自治水下机器人机械手系统协调运动研究   总被引:1,自引:0,他引:1  
简单描述了自治水下机器人搭载的三功能水下电动机械手的设计,鉴于自治水下机器人-机械手系统运动学冗余、内部可能干涉以及载体圆筒式外形等特点,将惩罚调节因子引入系统运动学伪逆矩阵,保证了关节在允许范围内运动,避免载体大幅度姿态变化及载体与机械手之间的干涉,同时采用梯度投影法优化海流作用下的系统推力。仿真表明,该算法在解决系统冗余度的同时,有效地协调多任务下的系统动作。  相似文献   

4.
A robust control scheme is presented for controlling systems with time delays. The scheme is based on the Smith controller and the LQG/LTR (linear quadratic Gaussian/loop transfer recovery) methodology. The methodology is applicable to underwater vehicle systems that exhibit time delays, including tethered vehicles that are positioned through the movements of a surface ship and autonomous vehicles that are controlled through an acoustic link. An example, using full-scale data from the tethered vehicle ARGO, demonstrates the developments  相似文献   

5.
In this paper, we examine the issues involved in designing battery systems and power-transfer (charging) techniques for Autonomous Underwater Vehicles (AUVs) operating within an Autonomous Ocean Sampling Network (AOSN). We focus on three different aspects of the problem, battery chemistry, pack management and in situ charging. We look at a number of choices for battery chemistry and evaluate these based on the requirements of maximizing power density and low temperature operation particular to AUVs. We look at the issues involved in combining individual cells into large battery packs and at the problems associated with battery monitoring, and the charging and discharging of packs in a typical AUV application. Finally, we present a methodology for charging an AUV battery pack in situ in support of long term deployments at remote sites  相似文献   

6.
Underwater acoustic communication in the multipath environment encountered in shallow water is restricted mostly by signal fading. It degrades the signal detection and time synchronization required for reliable acoustic communication. An approach to time synchronization and to the frequency diversity method is presented. A communication algorithm for obtaining a reliable acoustic underwater link, and offering an easy-to-implement decoding scheme is introduced, and system realization is described  相似文献   

7.
Sound from an airborne source travels to a receiver beneath the sea surface via a geometric path that is most simply described using ray theory, where the atmosphere and the sea are assumed to be isospeed sound propagation media separated by a planar surface (the air-sea interface). This theoretical approach leads to the development of a time-frequency model for the signal received by a single underwater acoustic sensor and a time-delay model for the signals received by a pair of spatially separated underwater acoustic sensors. The validity of these models is verified using spatially averaged experimental data recorded from a linear array of hydrophones during various transits of a turboprop aircraft. The same approach is used to solve the inverse time-frequency problem, that is, estimation of the aircraft's speed, altitude, and propeller blade rate given the observed variation with time of the instantaneous frequency of the received signal. Similarly, the inverse time-delay problem is considered whereby the speed and altitude of the aircraft are estimated using the differential time-of-arrival information from each of two adjacent pairs of widely spaced hydrophones (with one hydrophone being common to each pair). It is found that the solutions to each of the inverse problems provide reliable estimates of the speed and altitude of the aircraft, with the inverse time-frequency method also providing an estimate that closely matches the actual propeller blade rate  相似文献   

8.
Methods for joint ocean-channel estimation and data recovery are derived using an optimal, maximum likelihood (ML) estimation criterion. The resulting ML problems may be complex, thus iterative algorithms are used, e.g. the expectation-maximization (EM) algorithm. The different methods correspond to different assumptions about the ocean channel. The theoretical derivation of these methods as well as preliminary results on simulated ocean data experiments are presented  相似文献   

9.
Robust trajectory control of underwater vehicles   总被引:2,自引:0,他引:2  
underwater vehicles present difficult control-system design problems due to their nonlinear dynamics, uncertain models, and the presence of disturbances that are difficult to measure or estimate. In this paper, a recent extension of sliding mode control is shown to handle these problems effectively. The method deals directly with nonlinearities, is highly robust to imprecise models, explicitly accounts for the presence of high-frequency unmodeled dynamics, and produces designs that are easy to understand. Using a nonlinear vehicle simulation, the relationship between model uncertainty and performance is examined. The results show that adequate controllers can be designed using simple nonlinear models, but that performance improves as model uncertainty is decreased and the improvements can be predicted quantitatively.  相似文献   

10.
水下机器人运动的S面控制方法   总被引:32,自引:4,他引:32  
由于水下机器人的强非线性以及系统存在不确定性,同时考虑到港湾环境下水声的噪声大,因此,水下机器人进行精确作业时的运动控制一直是其实用化过程中困扰人们的问题,通常水下机器人的控制方式有PID控制器,神经网络控制器和模糊逻辑控制器三种,但是,由于这三种方法在实际应用中都存在一些参数难以确定的缺陷,为了解决这一问题,本文从模糊逻辑控制方式出发,借鉴PID控制的结构形式,推导出一种全新而简单有效的控制方法,定义为S面控制法,从水下机器人的水池试验和海上实验来看,不论是定点的控制精度还是运动过程中的控制效果都较令人满意,尤其是在风浪,潮流都比较大的海上实验中得到验证,鲁帮性很好。  相似文献   

11.
Energy-optimal trajectories for underwater vehicles be computed using a numerical solution of the optimal control problem. A performance index consisting of a weighted combination of energy and time consumption is proposed. Collision avoidance is solved by including path constraints. Control vector parameterization with direct single shooting is used in this study. The vehicle is modeled with six-dimensional nonlinear and coupled equations of motion. Optimal trajectories are computed for a vehicle controlled in all six degrees of freedom by dc-motor-driven thrusters. Good numerical results are achieved  相似文献   

12.
This paper is concerned with the robust control synthesis of autonomous underwater vehicle(AUV) for general path following maneuvers.First,we present maneuvering kinematics and vehicle dynamics in a unified framework.Based on H∞ loop-shaping procedure,the 2-DOF autopilot controller has been presented to enhance stability and path tracking.By use of model reduction,the high-order control system is reduced to one with reasonable order,and further the scaled low-order controller has been analyzed in both the frequency and the time domains.Finally,it is shown that the autopilot control system provides robust performance and stability against prescribed levels of uncertainty.  相似文献   

13.
This paper describes a real-time control architecture for Dual Use Semi-Autonomous Underwater Vehicle (DUSAUV), which has been developed at Korea Research Institute of Ships and Ocean Engineering (KRISO) for being a test-bed of development of underwater navigation and manipulator technologies. DUSAUV has three built-in computers, seven thrusters for six DOF motion control, one 4-function electric manipulator, one ballasting motor, built-in power source, and various sensors. A supervisor control system with GUI and a multi-purpose joystick is mounted on the surface vessel and communicates with vehicle through a fiber optic link. Furthermore, QNX, one of real-time operating system, is ported on the built-in control and navigation computers for real-time control purpose, while Microsoft OS product is ported in the supervisor computer for GUI programming convenience. A hierarchical control architecture, which consists of application layer, real-time layer and physical layer, has been developed for efficient control system of above complex underwater robotic system. The experimental results with implementation of the layered control architecture for various motion control of DUSAUV in an ocean engineering basin of KRISO is also presented.  相似文献   

14.
We conducted time-series observations of optical fields near the base of the euphotic zone (approximately 40 m) using moored automatic optical sensors at a time-series station in the Western Pacific Subarctic Gyre from March 2005 to July 2006 (with some gaps). We used the ratio of photosynthetically available radiation at the surface (surface PAR) to in situ quantum irradiance (in situ QI) at about 40 m as an index of opacity (surface PAR/in situ QI), which began to increase in the middle of April and peaked between the end of June and the middle of July 2005. This ratio then decreased toward winter. The ratio increased again beginning in January 2006, and large peaks were observed in June and July 2006. As an index of chlorophyll abundance we used the ratio of spectral irradiance at wavelengths of 555 and 443 nm (Ed555/Ed443) at about 40 m; seasonal variability of this ratio synchronized well with the attenuation coefficient “k” estimated with surface PAR, in situ QI, and BLOOMS depth. We estimated primary productivity (PP) using Ed555/Ed443 and an empirical equation based on a previous model but improved on the basis of shipboard observations. Estimated PP agreed well with observed PP. Seasonal variability of estimated PP was synchronized with that of organic carbon flux observed by sediment traps from approximately 150, 540, 1000, and 5000 m. This study demonstrates that time-series observations of in situ optical fields could contribute to the estimation of primary productivity and the study of the biological pump in the ocean.  相似文献   

15.
Model-based feedback control of autonomous underwater gliders   总被引:6,自引:0,他引:6  
We describe the development of feedback control for autonomous underwater gliders. Feedback is introduced to make the glider motion robust to disturbances and uncertainty. Our focus is on buoyancy-propelled, fixed-wing gliders with attitude controlled by means of active internal mass redistribution. We derive a nonlinear dynamic model of a nominal glider complete with hydrodynamic forces and coupling between the vehicle and the movable internal mass. We use this model to study stability and controllability of glide paths and to derive feedback control laws. For our analysis, we restrict to motion in the vertical plane and consider linear control laws. For illustration, we apply our methodology to a model of our own laboratory-scale underwater glider  相似文献   

16.
To lay down the foundation for an underwater omni-directional optical communication system for tele-operation, we tested a point-to-point optical communication system, using laser-emitting diodes (LEDs). The LEDs used in the test emitted light in the green and blue light spectrum and were tested in a pool and in a tank filled with lake water. The primary objective of these tests was to get profiles of the behaviors of such communication systems with respect to water characteristics such as turbidity levels, prior to building the proposed omni-directional optical communication. The results of the tests indicated that turbidity level, viewing angle and separation distance plays a significant role in the behavior of blue light in water. Furthermore, it was possible to graph the profile of the behavior of light with respect to the parameters of interest. The results of the tests and related research are discussed in this paper.  相似文献   

17.
A new control scheme for robust trajectory control based on direct estimation of system dynamics is proposed for underwater vehicles. The proposed controller can work satisfactorily under heavy uncertainty that is commonly encountered in the case of underwater vehicle control. The dynamics of the plant are approximately canceled through the feedback of delayed accelerations and control inputs. Knowledge of the bounds on uncertain terms is not required. It is shown that only the rigid body inertia matrix is sufficient to design the controller. The control law is conceptually simple and computationally easy to implement. The effectiveness of the controller is demonstrated through simulations and implementation issues are discussed.  相似文献   

18.
A six-degree-of-freedom model for the maneuvering of an underwater vehicle is used and a sliding-mode autopilot is designed for the combined steering, diving, and speed control functions. In flight control applications of this kind, difficulties arise because the system to be controlled is highly nonlinear and coupled, and there is a good deal of parameter uncertainty and variation with operational conditions. The development of variable-structure control in the form of sliding modes has been shown to provide robustness that is expected to be quite remarkable for AUV autopilot design. It is shown that a multivariable sliding-mode autopilot based on state feedback, designed assuming decoupled modeling, is quite satisfactory for the combined speed, steering, and diving response of a slow AUV. The influence of speed, modeling nonlinearity, uncertainty, and disturbances, can be effectively compensated, even for complex maneuvering. Waypoint acquisition based on line-of-sight guidance is used to achieve path tracking  相似文献   

19.
方志远  葛彤  连琏 《海洋工程》2006,24(1):79-85
在潜水器控制系统的基础上,按照结构、功能和组件的关系,为潜水器控制系统进行故障诊断建模。依据基于模型的层次故障诊断技术,建立了适用于潜水器控制系统故障诊断的具体诊断和推理策略,开发了故障诊断软件系统,描述了故障诊断具体过程,并利用数字仿真验证系统设计的有效性。  相似文献   

20.
This paper addresses the problem of simultaneous depth tracking and attitude control of an underwater towed vehicle. The system proposed uses a two-stage towing arrangement that includes a long primary cable, a gravitic depressor, and a secondary cable. The towfish motion induced by wave driven disturbances in both the vertical and horizontal planes is described using an empirical model of the depressor motion and a spring-damper model of the secondary cable. A nonlinear, Lyapunov-based, adaptive output feedback control law is designed and shown to regulate pitch, yaw, and depth tracking errors to zero. The controller is designed to operate in the presence of plant parameter uncertainty. When subjected to bounded external disturbances, the tracking errors converge to a neighbourhood of the origin that can be made arbitrarily small. In the implementation proposed, a nonlinear observer is used to estimate the linear velocities used by the controller thus dispensing with the need for costly sensor suites. The results obtained with computer simulations show that the controlled system exhibits good performance about different operating conditions when subjected to sea-wave driven disturbances and in the presence of sensor noise. The system holds promise for application in oceanographic missions that require depth tracking or bottom-following combined with precise vehicle attitude control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号