首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Information on grain-size distribution and total organic carbon (TOC) content of surface sediment and cores from the Bornholm Basin, together with dating of cores using the 210Pb method and shallow seismic chirp profiling, has been analysed to elucidate long-term accumulation patterns. The presence of non-depositional areas with lag sediments and low TOC content below the wave base indicates that inflows of dense bottom water originating in the North Sea and associated near-bottom currents have strong influence on the depositional patterns of bulk sediment and organic matter in this deep basin. The general fining in mean grain size towards the northeast corresponds to the direction of inflow currents and prevailing winds. Recent and previously found 210Pb-based mean accumulation rates vary greatly within the basin, between 129 and 1,144 g m−2 year−1. The accumulation rate may vary by a factor of three even between stations located only 3–4 km apart. Rates recorded close to a seismic profile are consistent with the variation in Holocene sediment thickness. This variation reflects a depositional system controlled by near-bottom inflow currents, consisting of a large-scale channel and a wedge-formed sediment package. The spatial variation in TOC content depends partly on water depth, presumably due to generally poorer degradation in the deepest part of the basin because of less frequent oxygen supply by inflow water. Moreover, there is a tendency of higher TOC contents in the southern part of the basin, which may be due to the input of sediments originating from the Oder River. Compared to values for the central, deep Baltic Sea, TOC contents show lower values of 4–6% and insignificant temporal variations. This may be due to the Bornholm Basin being located much closer to the source of the more oxic inflow water, resulting in more favourable degradation conditions.  相似文献   

2.
环雷州半岛近海表层沉积物有机碳分布及其控制因素分析   总被引:1,自引:0,他引:1  
对环雷州半岛近海43个海底表层沉积物的总有机碳(TOC)、总氮(TN)、沉积介质条件(包括沉积物粒度)进行了分析,探讨了沉积物TOC、TN的区域分布特征以及影响有机碳分布的主要因素。结果表明,环雷州半岛近海海域海底表层沉积物有机碳含量在0~0.79%之间,平均值为0.26%。与中国其它近海海域相比,环雷州半岛大部分近海区域海底表层沉积物有机碳含量明显偏低,为有机质贫乏区,仅雷州半岛西南部流沙湾近海海域为TOC相对高值区。总氮含量也不高,在0.011%到0.100%之间,TOC与TN存在较强的正相关性,且平面上TOC与TN分布高度重合,显示氮元素主要以有机化合物形式存在。TOC/TN比值在5.1~14.3之间,表明沉积有机质具有陆源输入和海洋自生来源的混合特征,但以雷州半岛西侧北部及东侧中部海域受陆源有机质输入影响更大。大多数站位海底沉积物粒度构成以粉砂为主、粘土次之,少数站位以砂质沉积为主。沉积物有机碳含量与粘土及粉砂含量呈弱正相关性,与沉积物pH值、Eh值及砂含量呈弱负相关性,这表明海底沉积物有机质丰度受有机质来源输入、海底氧化还原状态和沉积水动力条件(沉积物粒度)等因素综合控制。  相似文献   

3.
A cross-system analysis of bulk sediment composition, total organic carbon (TOC), atomic C/N ratio, and carbon isotope composition (δ13C) in 82 surface sediment samples from natural and planted mangrove forests, bank and bottom of tidal creeks, tidal flat, and the subtidal habitat was conducted to examine the roles of mangroves in sedimentation and organic carbon (OC) accumulation processes, and to characterize sources of sedimentary OC of the mangrove ecosystem of Xuan Thuy National Park, Vietnam. Sediment grain sizes varied widely from 5.4 to 170.2 μm (mean 71.5 μm), with the fine sediment grain size fraction (< 63 μm) ranging from 11 to 99.3% (mean 72.5%). Bulk sediment composition suggested that mangroves play an important role in trapping fine sediments from river outflows and tidal water by the mechanisms of tidal current attenuation by vegetation and the ability of fine roots to bind sediments. The TOC content ranged from 0.08 to 2.18% (mean 0.78%), and was higher within mangrove forests compared to those of banks and bottoms of tidal creeks, tidal flat, and subtidal sediments. The sedimentary δ13C ranged from − 27.7 to − 20.4‰ (mean − 24.1‰), and mirrored the trend observed in TOC variation. The TOC and δ13C relationship showed that the factors of microbial remineralization and OC sources controlled the TOC pool of mangrove sediments. The comparison of δ13C and C/N ratio of sedimentary OC with those of mangrove and marine phytoplankton sources indicated that the sedimentary OC within mangrove forests and the subtidal habitat was mainly composed of mangrove and marine phytoplankton sources, respectively. The application of a simple mixing model showed that the mangrove contribution to sedimentary OC decreased as follows: natural mangrove forest > planted mangrove forest > tidal flat > creek bank > creek bottom > subtidal habitat.  相似文献   

4.
Phytoplankton abundance in the surface waters of Harima Nada, eastern Seto Inland Sea of Japan, decreased after around the late 1970s following a reduction of terrestrial phosphorous inputs, and relatively low levels persisted thereafter. This symptom of de-eutrophication in recent decades might have reduced organic matter storage in surficial sediments. To test this possibility, we examined total organic carbon (TOC) and nitrogen (TN) contents of Harima Nada sediments in 2011, and compared the results to past data from more eutrophic states. In 2011, the TOC and TN varied horizontally within the basin, in relation to physicochemical properties (water and mud content) and phytoplankton remnants (pheo-pigments) of the sediments. These horizontal patterns were fundamentally similar to those of the early 1980s (1982–1983), although discrepancies between the periods were observed in some areas. Differences of mean TOC and TN in the 0–2 cm layer at 63 stations from 1982–1983 to 2011 were consequently <10 %. Hence, the recent de-eutrophication in Harima Nada was associated with little overall change of TOC and TN storage in the sediment. In Harima Nada, changes in water clarity and particle size composition of the sediment seem to have occurred during recent decades. The aforementioned paradoxical phenomenon may therefore be explained by factors that are affected by these environmental changes. Such factors include the ratio of export flux to the seafloor to phytoplankton production, phytoplankton biomass and production in the entire euphotic zone, and accumulation rate of surface sediment.  相似文献   

5.
Grain-size distributions, total organic carbon (TOC) and total nitrogen (TN) concentrations, and TOC/TN ratios (C/N) were analysed for surface sediments from the Lower Yangtze River-East China Sea (ECS) shelf system. Hierarchical cluster analysis of grain-size parameters (mode, mean, sorting, skewness and kurtosis) has been employed to characterize grain-size compositions. The results suggest there are five grain-size compositional types (type-I–V) that fingerprint distinct depositional conditions. In areas with high sedimentation rates, hydrological sorting preferentially enriches the fraction coarser than 6.4ø (12 μm) in shallow seafloor sediments (water depth<30 m) by transporting the finer fraction to the deeper seafloor (water depth>30 m), and thus forms grain-size compositional type-I (shallow) and type-II (deep). In the open shelf, where modern sediment supply is very limited, grain-size types-III–V are identified according to different winnowing intensity. Overall TOC contents significantly correlate with mud proportions, suggesting muddy sediments are the primary control on OM accumulation. However, de-association of terrestrial OM from fine sediments in the Estuary and the occurrence of presumably relict OM in the open shelf exert additional controls on OM dispersal and carbon cycling in the ECS. By considering geography, oceanography, sediment source, and the relation between sedimentation conditions and sedimentary OM distributions, we define six depositional settings: the lower river, the estuary, the coast, the offshore upwelling area, the erosional area, and the open shelf. These settings describe the sediment dispersal and associated organic matter cycling in the Lower Yangtze River-ECS shelf system.  相似文献   

6.
全球范围内有植被定植的海岸带栖息地(红树林、盐沼和海草床)是巨大的沉积物有机碳碳库,同时也是自然生态系统中最密集的碳汇之一,在全球碳循环中发挥着重要作用。针对江苏盐城海岸盐沼湿地沉积物有机碳的研究,区域上的稀疏性和偏向性限制了其作为区域碳汇能力的可靠估计。本研究采用47个100 cm深沉积柱样的现场调查数据,探讨了江苏盐城海岸盐沼湿地沉积物有机碳含量、密度和储量特征。结果表明,0~100 cm深度沉积物有机碳平均含量和平均密度分别为1.68%和23.07 kg/m3,不同盐沼群落沉积物有机碳含量和密度存在一定的差异,其中有机碳平均含量大小排序依次为互花米草>芦苇>盐地碱蓬,有机碳密度排序为芦苇>互花米草>盐地碱蓬。总体而言,3种盐沼群落沉积物有机碳含量的垂向变化趋势与有机碳密度变化趋势具有一致性,芦苇和互花米草表聚性明显。沉积物有机碳含量与其理化性质有关,互花米草群落沉积物有机碳含量具有明显的粒度控制效应,而其他群落不显著。3种盐沼湿地类型0~100 cm深度沉积物总碳储量约为6195.27×103Mg C。研究成果揭...  相似文献   

7.
台湾海峡西部沉积物中碳的来源及埋藏   总被引:4,自引:1,他引:3  
根据2005年夏季航次观测的沉积物中总有机碳(TOC)、无机碳(CaCO3)、总氮(TN)、悬浮体颗粒有机碳(POC)、沉积物粒度数据得出,台湾海峡西部表层沉积物TOC质量分数的范围为0.01~1.79,平均值为0.37±0.24,略高于20多年前台湾海峡南部海区,而低于台湾海峡中、北部海区;TOC的质量分数湾内比湾外...  相似文献   

8.
In May and September 1999 11 stations were sampled in the southern and central North Sea, located in the German Bight, eastern Oyster Ground and Dogger Bank. The study focused on the influence of particle mixing on transport of chlorophyll a to deeper sediment layers and vertical bacterial distribution (max. DEPTH=10 cm). The sampling stations were chosen to reflect a gradient in environmental conditions in the North Sea. The sampling stations differed in respect to redox potential (eH up to −243 mV in the German Bight and up to 274 mV in the offshore regions), silt content (up to 54% in the German Bight and 0·34% at the northern Dogger Bank) and different proportion of fresh organic material on total organic matter content (C/N ratios ranging from 9·27 in the German Bight up to 1·72 in the offshore sediments). Although bacterial densities (8·55×109 g−1in the German Bight up to 0·35×109 g−1in offshore sediments) were significantly correlated to chlorophyll a content in the sediment (P<0·01), inconsistencies in the temporal pattern of both variables in the surficial sediment layer suggested, that the dynamics of bacterial densities is generally controlled by food supply but also by other variables. The chlorophyll a content in the surficial sediments of the German Bight (up to 1·84 μg g−1) was significantly higher than in the Oyster Ground (up to 0·58 μg g−1) and the Dogger Bank area (up to 0·68 μg g−1). With increasing chlorophyll a input to the benthic realm a subsequent enhanced burial of this compound into deeper sediment layers was expected either by biological (bioturbation) or by physical sediment mixing. However, the vertical profile of chlorophyll a decreased steeply in the sediments of the German Bight. Contrary, subsurface peaks were measured in the offshore areas. It was concluded from these results, that the vertical distribution of organic matter in sediments is less limited by the quantitative input from the water column but concomitant with particle mixing itself. The extent and possible mechanisms of particle mixing in the different study areas in relation to specific environmental factors is discussed.  相似文献   

9.
Sediment samples were collected at stations along cross-shelf transects in Onslow Bay, North Carolina, during two cruises in 1984 and 1985. Station depths ranged from 11 to 285 m. Sediment chlorophyll a concentrations ranged from 0·06 to 1·87 μg g−1 sediment (mean, 0·55), or 2·6–62·0 mg m2. Areal sediment chlorophyll a exceeded water column chlorophyll a a at 16 of 17 stations, especially at inshore and mid-shelf stations. Sediment ATP concentrations ranged from 0 to 0·67 μg g−1 sediment (mean, 0·28). Values for both biomass indicators were lowest in the depth range including the shelf break (50–99 m). Organic carbon contents of the sediments were uniformly low across the shelf, averaging 0·159% by weight. Photography of the sediments revealed extensive patches of microalgae on the sediment surface.Our data suggest that viable benthic microalgae occur across the North Carolina continental shelf. The distribution of benthic macroflora on the North Carolina shelf indicates that sufficient light and nutrients are available to support primary production out to the shelf break. Frequent storm-induced perturbations do not favour settling of phytoplankton, an alternative explanation for the presence of microalgal pigments in the sediments. Therefore, we propose that a distinct, productive benthic microflora exists across the North Carolina continental shelf.  相似文献   

10.
渤海湾表层沉积物中有机碳的分布与物源贡献估算   总被引:9,自引:0,他引:9  
依据渤海湾及其邻近海域163个表层沉积物样品的总有机碳(TOC)和总氮(TN)的分析数据,探讨了渤海表层沉积物TOC的空间分布与物源贡献.结果显示,渤海湾TOC呈现南高北低的空间分布特征,TOC与粒度有一定的相关性且TOC高含量区与泥质区相吻合,表明TOC分布在一定程度上受控于沉积动力环境.TOC和TN之间显著相关,在...  相似文献   

11.
Elemental (TOC, TN, C/N) and stable carbon isotopic (δ13C) compositions and n-alkane (nC16–38) concentrations were measured for Spartina alterniflora, a C4 marsh grass, Typha latifolia, a C3 marsh grass, and three sediment cores collected from middle and upper estuarine sites from the Plum Island salt marshes. Our results indicated that the organic matter preserved in the sediments was highly affected by the marsh plants that dominated the sampling sites. δ13C values of organic matter preserved in the upper fresh water site sediment were more negative (−23.0±0.3‰) as affected by the C3 plants than the values of organic matter preserved in the sediments of middle (−18.9±0.8‰) and mud flat sites (−19.4±0.1‰) as influenced mainly by the C4 marsh plants. The distribution of n-alkanes measured in all sediments showed similar patterns as those determined in the marsh grasses S. alterniflora and T. latifolia, and nC21 to nC33 long-chain n-alkanes were the major compounds determined in all sediment samples. The strong odd-to-even carbon numbered n-alkane predominance was found in all three sediments and nC29 was the most abundant homologue in all samples measured. Both δ13C compositions of organic matter and n-alkane distributions in these sediments indicate that the marsh plants could contribute significant amount of organic matter preserved in Plum Island salt marsh sediments. This suggests that salt marshes play an important role in the cycling of nutrients and organic carbon in the estuary and adjacent coastal waters.  相似文献   

12.
We have conducted elemental, isotopic, and Rock-Eval analyses of Cenomanian–Santonian sediment samples from ODP Site 1138 in the southern Indian Ocean to assess the origin and thermal maturity of organic matter in mid-Cretaceous black shales found at this high-latitude location. Total organic carbon (TOC) concentrations range between 1 and 20 wt% in black to medium-gray sediments deposited around the Cenomanian–Turonian boundary. Results of Rock-Eval pyrolysis indicate that the organic matter is algal Type II material that has experienced modest alteration. Important contributions of nitrogen-fixing bacteria to the amplified production of organic matter implied by the high TOC concentrations is recorded in δ15N values between −5 and 1‰, and the existence of a near-surface intensified oxygen minimum zone that favored organic carbon preservation is implied by TOC/TN ratios between 20 and 40. In contrast to the marine nature of the organic matter in the Cenomanian–Turonian boundary section, deeper sediments at Site 1138 contain evidence of contributions land-derived organic matter that implies the former presence of forests on the Kerguelen Plateau until the earliest Cenomanian.  相似文献   

13.
New seismic data off East Greenland were acquired in the summer of 2002, between 77°N and 81°N, north of the Greenland Fracture zone. The data were combined with results from the Greenland Basin and ODP site 909, and indicate a pronounced middle Miocene unconformity within the deep sea basins between 72°N and 81°N. Seismic unit NA-1 consists of sediments older than middle Miocene age and unit NA-2 contains sediments younger than the middle Miocene. Classification of a thinly bedded succession in the Molloy Basin resulted in a subdivision into four units (unit I, unit II, unit IIIA and unit IIIB). A comparison of volume estimations and sediment thickness maps between 72°N and 81°N indicates differences in sediment accumulation in the Greenland, Boreas and Molloy basins. Important controls on the variation of accumulation included different opening times of the basins, as well as tectonic conditions and varying sources of sediment transport.Due to prominent basement structures and the varying reflection character of the sediments along the entire East Greenland margin, we defined an age model of shelf sediments on the basis of similar sediment deposit geometry and known results from other regions. The seismic sequences on the shelf up to an age of middle Miocene are divided into three sub-units along the East Greenland margin: middle Miocene–middle late Miocene (SU-3), middle late Miocene–Pleistocene (SU-2), Pleistocene (SU-1). The differences in the geometry of the sequences show more ice stream related sedimentation between 72°N and 77°N and more ice sheet related sedimentation north of 78°N. The region south of 68°N is dominated by more aggradational sedimentary strata so that a glacio-fluvial drainage seems the main transport mechanism. Due to the Greenland Inland–ice borderlines, we assume the glaciers between the Scoresby Sund and 68°N did not reach the shelf break. A first comparison of the sediment structure of the Northeast Greenland margin with the Southeast Greenland margin made it possible to demonstrate significant differences in sedimentation along this margin.  相似文献   

14.
Surface sediment samples from a matrix of fifty-five sites covering virtually the entire Bohai Sea (Bohai), China were analyzed for total organic carbon (TOC), total nitrogen (TN), n-alkanes, unresolved complex mixture (UCM), biomarkers and stable carbon isotopic composition (δ13C), and principal component analysis was performed for source identification of organic matter (OM). The distribution of organic carbon correlated well with sediment grain size with the finest sediments having the highest concentration, suggesting the influence of hydrodynamics on the accumulation of sedimentary organic matter (SOM). The corrected TOC/ON (organic nitrogen) ratios and δ13C indicated mixed marine and terrestrial sources of SOM. Results suggested that δ13C could be used as a potential indicator to observe the dispersion of Huanghe-derived sediments in Bohai. Total n-alkane concentrations varied over 10-fold from 0.39 to 4.94 μg g− 1 (dry weight) with the maximum terrigenous/aquatic alkane ratio observed at the Huanghe River Estuary (HRE) due to more higher plant OM from riverine inputs. C12–C22 n-alkanes with even-to-odd predominance were observed in several central-eastern Bohai sites. The HRE and its adjacent area is the main sink for the Huanghe river-derived OC. The ubiquitous presence of UCM, biomarkers (hopanes and steranes) and PCA results indicated the presence of petroleum contamination in Bohai, mainly from offshore oil exploration, discharge of pollutants from rivers, shipping activities and atmospheric deposition.  相似文献   

15.
对南海北部陆坡柱状沉积物样品总有机碳、总硫含量,以及其中的自生黄铁矿形貌、含量进行分析.结果显示,沉积物中黄铁矿(FeS2)、总有机碳(TOC)、总硫(TS)的质量分数分别为0~0,71%、0.37%~1.18%、0.04%~0.81%;黄铁矿和总有机碳、总硫的含量随深度加深逐渐增大,达到峰值后不断减少,三者的分布趋势基本一致;扫描电镜下观察到黄铁矿主要以莓球状集合体和八面体微晶形貌产出,局部层位亦发现管状、生物内膜状和立方体状黄铁矿晶体.表明该区浅表层环境为缺氧环境,硫化物主要以黄铁矿形式产出,其成因与有机质的厌氧氧化作用有关,而甲烷的厌氧氧化作用也可能促使自生黄铁矿的加速形成.莓球状黄铁矿占主导亦指示一种强还原性的缺氧微环境.黄铁矿富集的缺氧环境与下伏地层中天然气水合物分解释放的甲烷有关,为天然气水合物在该区的勘探提供一定的科荤依据.  相似文献   

16.
Thirty-one surficial sediment samples were collected from the floor of Izmit Bay with a grab onboard the R/V Bilim in summer 1987 and analysed for their grain size, total carbonate, and organic carbon distribution.Low calcareous-terrigenous mud (2–45% CaCO3) with a relatively high silt percentage was the principal sediment type found on the floor of Izmit Bay. Sediments rich in sand and gravel usually occur in the narrow and shoal areas of the bay, where biogenic and topography-related hydrodynamic conditions are dominant factors controlling the nature of bottom deposits. The carbonates are made up almost entirely of the remains of calcareous organisms. Organic carbon concentrations of the sediments (0·35-1·62%) are probably associated with the high primary production rates in this region. Thus, the rates of sedimentation in the Izmit Bay calculated from the organic carbon and primary productivity data are estimated to be up to 70 cm/1000 years.  相似文献   

17.
This study investigated the organic carbon accumulation rates (OCARs) and sulfate reduction rates (SRRs) in slope and basin sediments of the Ulleung Basin, East/Japan Sea. These sediments have high organic contents at depths greater than 2,000 m; this is rare for deep-sea sediments, except for those of the Black Sea and Chilean upwelling regions. The mean organic carbon to total nitrogen molar ratio was estimated to be 6.98 in the Ulleung Basin sediments, indicating that the organic matter is predominantly of marine origin. Strong organic carbon enrichment in the Ulleung Basin appears to result from high export production, and low dilution by inputs of terrestrial materials and calcium carbonate. Apparent sedimentation rates, calculated primarily from excess 210Pb distribution below the zone of sediment mixing, varied from 0.033 to 0.116 cm year−1, agreeing well with previous results for the basin. OCARs fluctuated strongly in the range of 2.06–12.5 g C m−2 year−1, these rates being four times higher at the slope sites than at the basin sites. Within the top 15 cm of the sediment, the integrated SRRs ranged from 0.72 to 1.89 mmol m−2 day−1, with rates approximately twice as high in the slope areas as in the basin areas. SRR values were consistently higher in areas of high sedimentation and of high organic carbon accumulation, correlating well with apparent sedimentation rates and OCARs. The sulfate reduction rates recorded in the basin and slope sediments of the Ulleung Basin are higher than those reported for other parts of the world, with the exception of the Peruvian and Chilean upwelling regions. This is consistent with the high organic carbon contents of surface sediments of the Ulleung Basin, suggesting enhanced organic matter fluxes.  相似文献   

18.
To examine the source and preservation of organic matter in the shelf sediments of the East China Sea (ECS), we measured bulk C/N and isotopes, organic biomarkers (n-alkanes and fatty acids) and compound-specific (fatty acids) stable carbon isotope ratios in three sediment cores collected from two sites near the Changjiang Estuary and one in the ECS shelf. Contrasting chemical and isotopic compositions of organic matter were observed between the estuarine and shelf sediments. The concentrations of total n-alkanes and fatty acids in the shelf surface sediments (0–2 cm) were 5–10 times higher than those in estuarine surface sediments but they all decreased rapidly to comparable levels below the surface layer. The compositions of n-alkanes in the estuarine sediments were dominated by C26-C33 long-chain n-alkanes with a strong odd-to-even carbon number predominance. In contrast, the composition of n-alkanes in the shelf sediment was dominated by nC15 to nC22 compounds. Long-chain (>C20) fatty acids (terrestrial biomarkers) accounted for a significantly higher fraction in the estuarine sediments compared to that in the shelf sediment, while short-chain (<C20) saturated and unsaturated fatty acids were more abundant in the shelf surface sediments than in the estuarine sediments. Stable carbon isotopic ratios of individual fatty acids showed a general positive shift from estuarine to shelf sediments, consistent with the variations in bulk δ 13CTOCTOC. These contrasts between the estuarine and shelf sediments indicate that terrestrial organic matter was mainly deposited within the Changjiang Estuary and inner shelf of ECS. Post-depositional diagenetic processes in the surface sediments rapidly altered the chemical compositions and control the preservation of organic matter in the region.  相似文献   

19.
A superficial sediment layer (SL) is the top 2–3 mm layer of surface sediment that may contribute to high upward nutrient flux. To study the characteristics and the biogeochemical processes in the superficial layer, the seasonal variation in the total phytopigments (chlorophyll a and pheo-pigments), total organic carbon (TOC), and total nitrogen (TN) of the surface sediments in a shallow coastal area, Shido Bay, were measured, and the influence of the superficial sediment layer on nutrient flux at the sediment–water interface was investigated. TOC and TN content were relatively constant for the SL and subsurface layers (0–1 and 1–2 cm) during the study period. In contrast, total phytopigments content was higher in the SL layer than in the subsurface layers. The results of upward nutrient flux experiments showed higher nutrient release within the whole sediment core (SL remaining) than the SL-less (SL removed) core. Moreover, high nutrient fluxes were observed during the high temperature season, indicating that seasonal variation in nutrient flux was regulated by temperature. Moreover, in the low temperature season, the SL seemed to absorb nutrients, probably because of microphytobenthos photosynthesis that took up the nutrients under the sufficient light penetration to the sea floor.  相似文献   

20.
Total hydrolysable amino acids (THAA), individual amino acid distributions, total organic carbon (TOC) and total nitrogen (TN) were measured in sediments across the Goban Spur continental slope at water depths of 651, 1296 and 3650 m. Objectives were to examine (1) differences in organic matter (OM) degradation state in surface sediments across the slope from sedimentary amino acid compositions, and (2) whether these differences are related to particle size distributions. Application of a ‘reaction–diffusion’ model to the sediment concentration profiles showed that TOC and THAA degradation rate constants decreased with increasing water depth. Ratios of degradation rate constants of THAA over TOC indicated that THAA turn over faster than TOC at 651 and 1296 m water depth only. From estimates of degradation rate constants of individual amino acids, it was concluded that with increasing water depth fewer amino acids contribute to overall THAA degradation. The contribution of THAA to TOC mineralisation decreased from the upper to the lower slope. Since at all three sampling stations the amino acids with the highest relative contribution to THAA had a higher abundance in sediments with reduced THAA mineralisation rates, we conclude that the overall amino acid reactivity decreases with increasing water column depth. A principal component analyses, carried out on normalised amino acid mole percentages, established significant shifts in amino acid compositions and confirmed that (1) OM degradation state increased from 651 to 3650 m and (2) that OM in the finest fraction at the shallowest station appeared to be considerably less degraded than in the coarser fractions or any size fractions at the deeper stations. Therefore, we conclude that downslope transport, sorting and accumulation of fine particles with continuous mineralisation of OM attached to the particles during vertical and lateral transport results in an increasing organic matter degradation state from the upper slope to the abyssal plain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号