首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
地震丛集的分形新方法—物理分形   总被引:3,自引:0,他引:3  
吴如山  陈凌 《中国地震》1997,13(2):106-113
地震时间丛集的传统分形分析方法把地震事件看作是时间轴上无质量的数学点。这些方法得到的结果主要反映了大量小地震的活动特征。本文发展了一个新的物理分形分析的筛子方法,采用一系列震级筛子来研究不同震级地震的分布特征。对华北和南加洲的研究结果表明,同一地区地震目录中不同震级范围的子集合具有近似相等的分维数,华北D=0.3,南加洲D=0.4。  相似文献   

3.
地震前兆吸引子的演化特征   总被引:3,自引:0,他引:3       下载免费PDF全文
用非线性动力学重建相空间的方法对唐山地震前后(1971~1978年)昌黎地电台和地应力台前兆观测资料分别进行了关联维的计算.结果表明,地电阻率和地应力前兆资料吸引子具有分数维结构,并且发现这两种不同前兆资料的吸引子具有相同的前兆动态变化特征.在计算中发现,地电阻率的分数维具有多层次性.对此还进行了简单的讨论  相似文献   

4.
The distributions of contact areas in single, natural fractures in quartz monzonite (Stripa granite) are found to have fractal dimensions which decrease fromD=2.00 to values nearD=1.96 as stress normal to the fractures is increased from 3 MPa up to 85 MPa. The effect of stress on fluid flow is studied in the same samples. Fluid transport through a fracture depends on two properties of the fracture void space geometry. the void aperture; and the tortuosity of the flow paths, determined through the distribution of contact area. Each of these quantities change under stress and contribute to changes observed in the flow rate. A general flow law is presented which separates these different effects. The effects of tortuosity on flow are largely governed by the proximity of the flow path distribution to a percolation threshold. A fractal model of correlated continuum percolation is presented which quantitatively reproduces the flow path geometries. The fractal dimension in this model is fit to the measured fractal dimensions of the flow systems to determine how far the flow systems are above the percolation threshold.  相似文献   

5.
台湾地区地震的空间关联维特征与构造环境研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用关联维方法对台湾地区地震活动的空间特征进行了研究。先利用 10 0a来台湾的地震目录计算各个地震区、带的关联维数 ,将地震空间分布的分形特征定量表达出来 ,然后综合分析地震空间分布的关联维数和孕震构造环境之间的关系 ,得出了以下结论 :1)台湾东、西部地震区由于地震属于不同的大地构造单元 ,因此关联维数有较大的差异 ;2 )在各地震区内部的各个地震带由于板块构造、地壳结构、活断层分布上的差异 ,而具有与其构造特征相对应的关联维数 ;3)各地震带内部的各个不同的部位又由于不同的构造应力场 ,而导致地震分布上出现不同的丛集性 ,表现为不同的关联维数。这些结论充分说明通过关联维分析所得到的地震活动的空间图像与地震活动所代表的不同地质构造背景有着良好的对应关系  相似文献   

6.
This study aims at quantifying the effect of rheology on plan-view shapes of lava flows using fractal geometry. Plan-view shapes of lava flows are important because they reflect the processes governing flow emplacement and may provide insight into lava-flow rheology and dynamics. In our earlier investigation (Bruno et al. 1992), we reported that flow margins of basalts are fractal, having a characteristic shape regardless of scale. We also found we could use fractal dimension (D, a parameter which quantifies flow-margin convolution) to distinguish between the two endmember types of basalts: a a (D: 1.05–1.09) and pahoehoe (D: 1.13–1.23). In this work, we confirm those earlier results for basalts based on a larger database and over a wider range of scale (0.125 m–2.4 km). Additionally, we analyze ten silicic flows (SiO2: 52–74%) over a similar scale range (10 m–4.5 km). We note that silicic flows tend to exhibit scale-dependent, or non-fractal, behavior. We attribute this breakdown of fractal behavior at increased silica contents to the suppression of small-scale features in the flow margin, due to the higher viscosities and yield strengths of silicic flows. These results suggest we can use the fractal properties of flow margins as a remote-sensing tool to distinguish flow types. Our evaluation of the nonlinear aspects of flow dynamics indicates a tendency toward fractal behavior for basaltic lavas whose flow is controlled by internal fluid dynamic processes. For silicic flows, or basaltic flows whose flow is controlled by steep slopes, our evaluation indicates non-fractal behavior, consistent with our observations.  相似文献   

7.
Traditional analysis methods used to determine hydraulic properties from pumping tests work well in many porous media aquifers, but they often do not work in heterogeneous and fractured‐rock aquifers, producing non‐plausible and erroneous results. The generalized radial flow model developed by Barker (1988) can reveal information about heterogeneity characteristics and aquifer geometry from pumping test data by way of a flow dimension parameter. The physical meaning of non‐integer flow dimensions has long been a subject of debate and research. We focus on understanding and interpreting non‐radial flow through high permeability conduits within fractured aquifers. We develop and simulate flow within idealized non‐radial flow conduits and expand on this concept by simulating pumping in non‐fractal random fields with specific properties that mimic persistent sub‐radial flow responses. Our results demonstrate that non‐integer flow dimensions can arise from non‐fractal geometries within aquifers. We expand on these geometric concepts and successfully simulate pumping in random fields that mimic well‐test responses seen in the Culebra Dolomite above the Waste Isolation Pilot Plant.  相似文献   

8.
A procedure is presented for the analysis of complex stationary time series for which the Fourier power spectra reveals broadband noise or broadened pulses. We first determine the Hurst exponent from which we may know whether the time series under study is mainly random or if the data points present correlations. If the data are correlated, a chaotic analysis will reveal whether they may be interpreted as a low dimensional nonlinear system (defined by a low correlation dimension and a finite and positive Kolmogorov entropy and largest positive Lyapunov exponent) or as a stochastic process. We have studied three kind of temporal series: inter-event time series of infrasonic pulses recorded at Stromboli volcano, and, S-coda waves and microseisms, that have been recorded at the eastern Pyrenees. Results show that microseisms and Coda waves can be modeled as a low dimensional deterministic system, Correlation dimensions 2.3, 3.2, respectively. At the contrary infrasonic has resulted stochastic. This chaotic character can be attributed to the medium properties. Coda waves with scattering through a fractal distribution of scatters or to multiple reflection inside resonators (for example sedimentary basins) and microseisms as a propagation of wave guide of variable cross section which have the same temporal characteristics as a nonlinear forced oscillator.  相似文献   

9.
Influences of Aquifer Properties on Flow Dimensions in Dolomites   总被引:1,自引:0,他引:1  
The paper focuses on analyses and correlations of flow dimensions in different dolomite aquifers in Slovenia. Flow dimensions are obtained through the reinterpretation of 72 pumping tests with the generalized radial flow model, based on the fractional flow dimension. The average value of flow dimensions is 2.16 for all dolomites. A study of flow dimensions in individual aquifers categorized according to their lithological properties shows that higher dimensions occur in massive late-diagenetic Cordevolian and Anisian dolomites compared with bedded Main, Bača, and especially Lower Triassic dolomites, which contain a greater proportion of noncarbonate minerals. Partially penetrating wells have higher flow dimensions than fully penetrating wells. Flow dimensions are poorly correlated with hydraulic conductivities of fractures. When comparing the quantities of major dissolved minerals, obtained by hydrogeochemical inverse modeling, with the values of flow dimensions, the Cordevolian and Anisian dolomites are found to exhibit the highest values of both dissolved dolomite and flow dimensions, indicating that greater dissolution occurs at higher flow dimensions. For other aquifers, data points are more scattered and the correlation is mostly poor. When compared with three-dimensional fractal dimensions of fracture networks, there is no correlation with flow dimensions. However, almost all the values of flow dimensions are lower than the corresponding fractal dimensions in dolomites (average D = 2.77), possibly indicating the channeling of flow within the available space of the fracture networks, consequently reducing the flow dimensions.  相似文献   

10.
陈棋福  马丽 《中国地震》1994,10(1):47-53
本文从自仿射分形的角度探讨地震兆汾观测资料的分形处理方法。在对自仿射分形的分维量测方法进行对比分析的基础上,给出了处理地震前兆观测资料较为适用的分形方法和满足计算需要的样本点数,从对部分水氡和地电阻率资料进行了处理分析中,得到了有益的启示:地震前兆时序观测资料可用分形方法处理分析,分维值可反映观测资料的结构变化特征,其作为一个无量纲量为综合对比分析各类前兆现象,探讨地震前兆场的复杂性特征提供了有效  相似文献   

11.
Statistical self-similarity in the spatial and temporal variability of rainfall, river networks, and runoff processes has been observed in many empirical studies. To theoretically investigate the relationships between the various time and space scales of variability in rainfall and runoff process we propose a simplified, yet physically based model of a catchment–rainfall interaction. The channel network is presented as a random binary tree, having topological and hydraulic geometry properties typically observed in real river networks. The continuous rainfall model consists of individual storms separated by dry periods. Each given storm is disaggregated in space and time using the random cascade model. The flow routing is modelled by the network of topologically connected nonlinear reservoirs, each representing a link in the channel network. Running the model for many years of synthetic rainfall time series and a continuous water balance model we generate an output, in the form of continuous time series of water discharge in all links in the channel network. The main subject of study is the annual peak flow as a function of catchment area and various characteristics of rainfall. The model enables us to identify different physical processes responsible for the empirically observed scaling properties of peak flows.  相似文献   

12.
R/S analysis of the oxygen isotope curve of Pacific core V28-239 yields a fractal dimension of 1.22. This value is considered to characterize global climatic change over the last 2 million years as expressed by changing O18 ratios and confirms that climatic variations are characterized by long-term persistence. The fractal dimension of 1.22 compares favorably with the approximate fractal dimension of 1.26 for annual precipitation records for nine major cities in the United States. Although the precipitation and oxygen isotope data are measured in different physical units and recorded at different time scales, fractal analysis allows for a mathematical comparison of the two phenomena. Additionally, since the fractal dimensions of the oxygen isotope and precipitation records are similar, it is implied that such fractal dimensions are characteristic of climate change over the spectral range of 10 to 106 years. Given this temperature curves based on fractal parameters of long-term O18 data could be constructed which would allow examination of characteristics of temperature variation over tens and hundreds of years. Such studies may allow the establishment of limits on natural temperature variation and document the persistence of temperature trends through time. If these trends and limits can be resolved, long-range climatic prediction is feasible.  相似文献   

13.
In this article, we are concerned with the statistics of steady unsaturated flow in soils with a fractal hydraulic conductivity distribution. It is assumed that the spatial distribution of log hydraulic conductivity can be described as an isotropic stochastic fractal process. The impact of the fractal dimension of this process, the soil pore-size distribution parameter, and the characteristic length scale on the variances of tension head and the effective conductivity is investigated. Results are obtained for one-dimensional and three-dimensional flows. Our results indicate that the tension head variance is scale-dependent for fractal distribution of hydraulic conductivity. Both tension head variance and effective hydraulic conductivity depend strongly on the fractal dimension. The soil pore-size distribution parameter is important in reducing the variability of the unsaturated hydraulic conductivity and of the fluxes.  相似文献   

14.
A singularly complete record exists for the eruptive activity of Etna volcano. The time series of occurrence of flank eruptions in the period 1600–1980, in which the record is presumably complete, is found to follow a stationary Poisson process. A revision of the available data shows that eruption durations are rather well correlated with the estimates of the volume of lava flows. This implies that the magnitude of an eruption can be defined directly by its duration. Extreme value statistics are then applied to the time series, using duration as a dependent variable. The probability of occurrence of a very long (300 days) eruption is greater than 50% only in time intervals of the order of 50 years. The correlation found between duration and total output also allows estimation of the probability of occurrence of a major event which exceeds a given duration and total flow of lava. The composite probabilities do not differ considerably from the pure ones. Paralleling a well established application to seismic events, extreme value theory can be profitably used in volcanic risk estimates, provided that appropriate account is also taken of all other variables.  相似文献   

15.
Abstract

The scale invariance of rainfall series in the Tunis area, Tunisia (semi-arid Mediterranean climate) is studied in a mono-fractal framework by applying the box counting method to four series of observations, each about 2.5 years in length, based on a time resolution of 5 min. In addition, a single series of daily rainfall records for the period 1873–2009 was analysed. Three self-similar structures were identified: micro-scale (5 min to 2 d) with fractal dimension 0.44, meso-scale (2 d to one week) and synoptic-scale (one week to eight months) with fractal dimension 0.9. Interpretation of these findings suggests that only the micro-scale and transition to saturation are consistent, while the high fractal dimension relating to the synoptic scale might be affected by the tendency to saturation. A sensitivity analysis of the estimated fractal dimension was performed using daily rainfall data by varying the series length, as well as the intensity threshold for the detection of rain.

Editor Z.W. Kundzewicz; Associate editor S. Grimaldi

Citation Ghanmi, H., Bargaoui, Z., and Mallet, C., 2013. Investigation of the fractal dimension of rainfall occurrence in a semi-arid Mediterranean climate. Hydrological Sciences Journal, 58 (3), 483–497.  相似文献   

16.
The annual timing of river flows might indicate changes that are climate related. In this study, trends in timing of low flows for the Reference Hydrometric Basin Network were investigated under three different hypotheses namely: independence, short‐term persistence (STP) and long‐term persistence (LTP). Both summer and winter time series were characterized with scaling behaviour providing strong evidence of LTP. The Mann–Kendall trend test was modified to account for STP and LTP, and used to detect trends in timing of low flows. It was found that considering STP and LTP resulted in a significant decrease in the number of detected trends. Numerical analysis showed that the timing of summer 7‐day low flows exhibited significant trends in 16, 9 and 7% of stations under independence, STP and LTP assumptions, respectively. Timing of summer low flow shifted toward later dates in western Canada, whereas the majority of stations in the east half of the country (except Atlantic Provinces) experienced a shift toward earlier dates. Timing of winter low flow experienced significant trends in 20, 12, and 6% of stations under independence, STP and LTP assumptions, respectively. Shift in timing of winter low flow toward earlier dates was dominant all over the country where it shifted toward earlier dates in up to 3/4 of time series with significant trends. There are local patterns of upward significant/insignificant trends in southeast, southwest and northern Canada. This study shows that timing of low flows in Canada is time dependent; however, addressing the full complexity of memory properties (i.e. short term vs long term) of a natural process is beyond the scope of this study. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Periods of summertime low flows are often critical for fish. This study quantified the impacts of forest clear‐cutting on summertime low flows and fish habitat and how they evolved through time in two snowmelt‐dominant headwater catchments in the southern interior of British Columbia, Canada. A paired‐catchment analysis was applied to July–September water yield, the number of days each year with flow less than 10% of mean annual discharge, and daily streamflow for each calendar day. The postharvest time series were divided into treatment periods of approximately 6–10 years, which were analysed independently to evaluate how the effects of forestry changed through time. An instream flow assessment using a physical habitat simulation‐style approach was used to relate streamflow to the availability of physical habitat for resident rainbow trout. About two decades after the onset of logging and as the extent of logging increased to approximately 50% of the catchments, reductions in daily summertime low flows became more significant for the July–September yield (43%) and for the analysis by calendar day (11–68%). Reductions in summertime low flows were most pronounced in the catchment with the longest postharvest time series. On the basis of the temporal patterns of response, we hypothesize that the delayed reductions in late‐summer flow represent the combined effects of a persistent advance in snowmelt timing in combination with at least a partial recovery of transpiration and interception loss from the regenerating forests. These results indicate that asymptotic hydrological recovery as time progresses following logging is not suitable for understanding the impacts of forest harvesting on summertime low flows. Additionally, these reductions in streamflow corresponded to persistent decreases in modelled fish habitat availability that typically ranged from 20% to 50% during the summer low‐flow period in one of the catchments, suggesting that forest harvest may have substantial delayed effects on rearing salmonids in headwater streams.  相似文献   

18.
利用板块构造、活断层分布、地壳运动这三个方面的最新资料将台湾地区划分为东、西两个地震区和六个地震带。对各地震带11a来的地震目录计算了广义维数Dq和多标度分形谱f(α),然后绘制成Dq—q曲线和多标度分形谱f(α)—α以及分维时程曲线。综合分析后发现:(1)地震活动的时间结构是多分形而非单一分形结构;(2)台湾地区在大震前后的1~2a内,大震所在的地震带内地震时间结构的Dq—q曲线和多标度分形谱f(α)—α大都出现异常形态;(3)功时程曲线分析可以为强震的时间预报提供有效的客观依据。  相似文献   

19.
ResearchofpatterndynamicsparametersofcrustaldeformationfieldinseismogenicprocessShuo-YuZHOU(周硕愚),YunWU(吴云),Ruo-BoWANG(王若柏)and...  相似文献   

20.
The fractal dimension of an individual floc is a measure of the complexity of its external shape. Fractal dimensions can also be used to characterize floc populations, in which case the fractal dimension indicates how the shape of the smaller flocs relates to that of the larger flocs. The objective of this study is to compare the fractal dimensions of floc populations with those of individual flocs, and to evaluate how well both indicate contributions of sediment sources and reflect the nature and extent of flocculation in streams. Suspended solids were collected prior to and during snowmelt at upstream and downstream sites in two southern Ontario streams with contrasting riparian zones. An image analysis system was used to determine area, longest axis and perimeter of flocs. The area–perimeter relationship was used to calculate the fractal dimension, D, that characterizes the floc population. For each sample, the fractal dimension, Di , of the 28 to 30 largest individual flocs was determined from the perimeter–step‐length relationship. Prior to snowmelt, the mean value of Di ranged from 1·19 (Cedar Creek, downstream) to 1·22 (Strawberry Creek, upstream and downstream). A comparison of the means using t‐tests indicates that most samples on this day had comparable mean values of Di . During snowmelt, there was no significant change in the mean value of Di at the Cedar Creek sites. In contrast, for Strawberry Creek the mean value of Di at both sites increased significantly, from 1·22 prior to snowmelt to 1·34 during snowmelt. This increase reflects the contribution of sediment‐laden overland flow to the sediment load. At three of the sampling sites, the increase in fractal dimensions was accompanied by a decreases in effective particle size, which can be explained by an increase in bed shear stress. A comparison of fractal dimensions of individual flocs in a sample with the fractal dimensions of the floc populations indicates that both fractal dimensions provide similar information about the temporal changes in sediment source contributions, about the contrasting effectiveness of the riparian buffer zones in the two basins, and about the hydraulic conditions in the streams. Nevertheless, determining the individual fractal dimensions of a set of large flocs in a sample is very time consuming. Using fractal dimensions of floc populations is therefore the preferred method to characterize suspended matter. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号