首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 351 毫秒
1.
2.
3.
4.
Although Type Ia supernovae(SNe Ia) play an important role in the study of cosmology, their progenitors are still poorly understood. Thermonuclear explosions from the helium double-detonation sub-Chandrasekhar mass model have been considered as an alternative method for producing SNe Ia. By adopting the assumption that a double detonation occurs when a He layer with a critical ignition mass accumulates on the surface of a carbon–oxygen white dwarf(CO WD), we perform detailed binary evolution calculations for the He double-detonation model, in which a He layer from a He star accumulates on a CO WD. According to these calculations, we obtain the initial parameter spaces for SNe Ia in the orbital period and secondary mass plane for various initial WD masses. We implement these results into a detailed binary population synthesis approach to calculate SN Ia birthrates and delay times. From this model,the SN Ia birthrate in our Galaxy is ~0.4- 1.6 × 10-3yr-1. This indicates that the double-detonation model only produces part of the SNe Ia. The delay times from this model are ~ 70- 710 Myr, which contribute to the young population of SNe Ia in the observations. We found that the CO WD + sdB star system CD-30 11223 could produce an SN Ia via the double-detonation model in its future evolution.  相似文献   

5.
6.
Supernova 2002ic was an atypical Type Ia supernova (SN Ia) with evidence for substantial amounts of hydrogen associated with the system. Contrary to previous claims, we show that its unusual properties can be understood within the framework of one of the most favoured progenitor models, the so-called supersoft channel. This requires that the donor star was initially relatively massive  (∼3 M)  and that the system experienced a delayed dynamical instability, leading to a large amount of mass-loss from the system in the last few 104 yr before the explosion. This can produce the inferred hydrogen-rich circumstellar environment, most likely with a disc-like geometry. However, in order for this model to be feasible, it requires a larger accretion efficiency on to the white dwarf than is assumed in present parametrizations. If this is confirmed, it would most likely increase estimates for the frequency of the single-degenerate channel. Based on population synthesis simulations we estimate that not more than 1 in 100 SNe Ia should belong to this subgroup of SNe Ia.  相似文献   

7.
On the basis of the current observational evidence, we put forward the case that the merger of two CO white dwarfs produces both a Type Ia supernova explosion and a stellar remnant, the latter in the form of a magnetar. The estimated occurrence rates raise the possibility that many, if not most, Type Ia supernovae might result from white dwarf mergers.  相似文献   

8.
By assuming an aspherical stellar wind with an equatorial disc from a red giant, we investigate the production of Type Ia supernovae (SNe Ia) via a symbiotic channel. We estimate that the Galactic birthrate of SNe Ia via the symbiotic channel is between  1.03 × 10−3  and  2.27 × 10−5 yr−1  , while the delay time of SNe Ia has a wide range from ∼0.07 to 5 Gyr. The results are greatly affected by the outflow velocity and mass-loss rate of the equatorial disc. Using our model, we discuss the progenitors of SN 2002ic and SN 2006X.  相似文献   

9.
Supersoft X‐ray sources have been proposed as one of the major channels to produce Type Ia supernovae (SNe Ia). However, the true nature of the progenitors has remained an unsolved problem. In this review I summarize the present status of our understanding of SN Ia progenitors, the main classes of progenitor models and recent observational constraints. At present, neither the single‐degenerate nor the double‐degenerate model can be ruled out, and indeed more than one channel may be required to explain the observed SN Ia diversity. Finally, I discuss the origin of the lightcurve peak – lightcurve width relation (the ‘Phillips relation’) and show that it is expected to depend on metallicity; this needs to be taken into account in high‐precision cosmological applications (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
11.
We present Hubble Space Telescope ( HST )/Wide Field Planetary Camera 2 (WFPC2), Galaxy Evolution Explorer ( GALEX ) and Chandra observations of the position of the Type Ia supernova 2007sr in the Antennae galaxy, taken before the explosion. No source is found in any of the observations, allowing us to put interesting constraints on the progenitor luminosity. In total there is about 450 ks of Chandra data, spread over seven different observations. Limiting magnitudes of far-ultraviolet (FUV) (23.7 AB mag), near-ultraviolet (NUV) (23.8 AB mag), F555W (26.5 Vega mag) and F814W (24.5–25 Vega mag) are derived. The distance to the Antennae galaxy is surprisingly poorly known, with almost a factor of 2 difference between the latest distance based on the tip of the red giant branch (13.3 Mpc) and the distance derived from the 2007sr light curve (25 Mpc). Using these distances we derive limits on absolute optical and UV magnitudes of any progenitor but these are still above the brightest (symbiotic) proposed progenitors. From the Chandra data a 3σ upper limit to the X-ray luminosity of  0.5–8.0 × 1037 erg s−1  in the 0.3–1 keV range is found. This is below the X-ray luminosity of the potential progenitor of the Type Ia supernova 2007on that we recently discovered and for which we report a corrected X-ray luminosity. If that progenitor is confirmed it suggests the two supernovae have different progenitors. The X-ray limit is comparable to the brightest supersoft X-ray sources in the Galaxy, the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC) and significantly below the luminosities of the brightest supersoft and quasi-soft X-ray sources found in nearby galaxies, ruling out such sources as progenitors of this Type Ia supernova.  相似文献   

12.
The amount of 56Ni produced in Type Ia supernova (SN Ia) explosion is probably the most important physical parameter underlying the observed correlation of SN Ia lumi-nosities with their light curves. Based on an empirical relation between the 56Ni mass and the light curve parameter △m15, we obtained rough estimates of the 56Ni mass for a large sample of nearby SNe Ia with the aim of exploring the diversity in SN Ia. We found that the derived 56Ni masses for different SNe Ia could vary by a factor of ten (e.g., MNi = 0.1 - 1.3 M⊙),which cannot be explained in terms of the standard Chandraseldaar-mass model (with a 56Ni mass production of 0.4 - 0.8 M⊙). Different explosion and/or progenitor models are clearly required for various SNe Ia, in particular, for those extremely nickel-poor and nickel-rich producers. The nickel-rich (with MNi 0.8 M⊙) SNe Ia are very luminous and may have massive progenitors exceeding the Chandrasekhar-mass limit since extra progenitor fuel is required to produce more 56Ni to power the light curve. This is also consistent with the find-ing that the intrinsically bright SNe Ia prefer to occur in stellar environments of young and massive stars. For example, 75% SNe Ia in spirals have △m15 < 1.2 while this ratio is only 18% in E/S0 galaxies. The nickel-poor SNe Ia (with MNi < 0.2 M⊙) may invoke the sub-Chandrasekhar model, as most of them were found in early-type E/S0 galaxies dominated by the older and low-mass stellar populations. This indicates that SNe Ia in spiral and E/S0 galaxies have progenitors of different properties.  相似文献   

13.
Type Ia supernovae(SNe Ia)play an important role in the study of cosmic evolution,especially in cosmology.There are several progenitor models for SNe Ia proposed in the past years.By considering the effect of accretion disk instability on the evolution of white dwarf(WD)binaries,we performed detailed binary evolution calculations for the WD+red-giant(RG)channel of SNe Ia,in which a carbon-oxygen WD accretes material from a RG star to increase its mass to the Chandrasekhar mass limit.According to these calcu...  相似文献   

14.
Thanks to a stellar evolution code that is able to compute through the C flash we link the binary population synthesis of single degenerate progenitors of Type Ia supernovae (SNe Ia) to their physical condition at the time of ignition. We show that there is a large range of possible ignition densities and we detail how their probability distribution depends on the accretion properties. The low-density peak of this distribution qualitatively reminds of the clustering of the luminosities of Branch-normal SNe Ia. We tighten the possible range of initial physical conditions for explosion models: they form a one-parameter family, independent of the metallicity. We discuss how these results may be modified if we were to relax our hypothesis of a permanent Hachisu wind or if we were to include electron captures.  相似文献   

15.
The white dwarf stars WD 1614+136 and WD 1353+409 are not sufficiently massive to have formed through single-star evolution. However, observations to date have not yet found any evidence for binarity. It has therefore been suggested that these stars are the result of a merger. In this paper we place an upper limit of ≈ 50 km s−1 on the projected rotational velocities of both stars. This suggests that, if these stars are the results of a merger, efficient angular momentum loss with accompanying mass loss must have occurred. If the same process occurs following the merging of more massive white dwarf stars, the predicted rate of Type Ia supernovae due to merging white dwarfs may have been greatly overestimated. Further observations to determine binarity in WD 1614+136 and WD 1353+409 are therefore encouraged.  相似文献   

16.
It has been suggested that Type Ia supernovae(SNe Ia) could be produced in the conditions of the violent merger scenario of the double-degenerate model, in which a thermonuclear explosion could be produced when a double carbon-oxygen white dwarf(CO WD) merges. It has been recently found that the nucleus of the bipolar planetary nebula Henize 2–428 consists of a double CO WD system that has a total mass of^1.76 M⊙, a mass ratio of^1 and an orbital period of^4.2 h, which is the first and only discovered progenitor candidate for an SN Ia predicted by the violent merger scenario. In this work, we aim to reproduce the evolutionary history of the central double CO WD of Henize 2–428. We find that the planetary nebula Henize 2–428 may originate from a primordial binary that has a^5.4 M⊙primary and a^2.7 M⊙secondary with an initial orbital period of^15.9 d. The double CO WD was formed after the primordial binary experienced two Roche-lobe overflows and two common-envelope ejection processes.According to our calculations, it takes about^840 Myr for the double CO WD to merge and form an SN Ia driven by gravitational wave radiation after their birth. To produce the current status of Henize 2–428,a large common-envelope parameter is needed. We also estimate that the rate of SNe Ia from the violent merger scenario is at most 2.9 × 10-4 yr-1, and that the delay time is in the range of^90 Myr to the Hubble time.  相似文献   

17.
Using Eggleton's stellar evolution code, we carry out 150 runs of Population I binary evolution calculations with the initial primary mass between 1 and 8 M, the initial mass ratio     between 1.1 and 4, and the onset of Roche lobe overflow (RLOF) at an early, middle or late Hertzsprung-gap stage. We assume that RLOF is conservative in the calculations, and find that the remnant mass of the primary may change by more than 40 per cent over the range of initial mass ratio or orbital period, for a given primary mass. This is contrary to the often-held belief that the remnant mass depends only on the progenitor mass if mass transfer begins in the Hertzsprung gap. We fit a formula, with an error less than 3.6 per cent, for the remnant (white dwarf) mass as a function of the initial mass M 1i of the primary, the initial mass ratio q i and the radius of the primary at the onset of RLOF. We also find that a carbon–oxygen white dwarf with mass as low as 0.33 M may be formed if the initial mass of the primary is around 2.5 M.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号