首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 1999 Kocaeli earthquake of Turkey (Mw = 7.4) caused great destruction to buildings, bridges and other facilities, and a death tall of about 20,000. During this earthquake, severe damages due to soil liquefaction and associated ground deformations also occurred widespread in the eastern Marmara Region of Turkey. Soil liquefaction was commonly observed along the shorelines. One of these typical sites is Sapanca town founded on the shore of Lake Sapanca. This study was undertaken as quantitative measurement of ground deformations induced by liquefaction along the southern shore of Lake Sapanca. The permanent lateral ground deformation was measured through the aerial photogrammetry technique at several locations both along the shoreline and in the town. In situ soil profiles and material properties at Sapanca area were obtained based on the data from 55 borings and standard penetration tests (SPT), and laboratory tests, respectively. The data and the empirical methods recommended by an NCEER workshop were employed to evaluate the liquefaction resistance of the soils. In addition, simple shaking tests on a limited number of samples were also performed. The permanent ground displacements were estimated from the existing empirical models, sliding block method and residual visco-elastic finite element methods. Then these estimations were compared with the observed ground displacements. The assessments suggested that liquefaction at Sapanca have occurred within Quaternary alluvial fan deposits at depths 1 and 14 m, and the major regions of liquefaction and associated ground deformations were located along the shore and creeks. The evaluations also indicated that for sites with no sand boils but with ground displacement greater than 1 m, thickness of the non-liquefiable layer was large. It is also noted that no liquefaction-induced ground surface disruption is expected at the site when the thickness of the liquefiable and non-liquefiable layers vary between 0.5 and 1.5 m, and 3.5 and 5.5 m, respectively. Except one model, all the empirical models employed in the study over-predicted the observed lateral ground displacements, while sliding block method and residual visco-elastic finite element methods yielded reasonably good results if the known properties of liquefied soils are used.  相似文献   

2.
3.
《Geodinamica Acta》2001,14(1-3):169-175
To the east of the Sea of Marmara, the North Anatolian fault (NAF) branches into two strands, namely the northern and the southern strands. The Adapazarı pull-apart basin is located in the overlapping zone of the Dokurcun and the İzmit–Adapazarı segments of the northern strand. The combined temporal ranges of the arvicolids from the Karapürçek formation (the first unit of the basin fill), deposited in the primary morphology of the Adapazarı pull-apart basin, cover the latest Villanyian (latest Pliocene) and the Biharian (Early Pleistocene) time interval. The Değirmendere fauna collected from the lowermost sediments of this formation suggests that the Adapazarı pull-apart basin started to form in the latest Pliocene. This, in turn, suggests that the dextral movement along the northern strand of the NAF commenced during the latest Pliocene. A new species, Tibericola sakaryaensis is also described.  相似文献   

4.
The course of the active North Anatolian Fault system from Lake Abant to Lake Sapanca was traced by its high micro-earthquake activity. If approaching from the east this section includes a broad south to north overstep (fault offset) of the main fault. Local seismicity has been recorded in this area by a semi-permanent network of 8 stations since 1985 within the frame of the Turkish–German Joint Project for Earthquake Research. The effect of the overstep and its complex fracture kinematics are reflected by the seismicity distribution, the variations of composite fault-plane solutions, and by the spatial coda-Q distribution. Areas of different stress orientation can be distinguished and assigned to different groups of faults. The stresses and the tectonic pattern only in part correspond to a simple model of an extensional overstep and its correlative pull-apart basin. Other types of deformation involved are characterized by normal faulting on faults parallel to the general course of the main strike-slip fault and by synthetic strike-slip faults oriented similar to Riedel shears. Shear deformation by this fault group widely distributed in an area north and east of the main fault line may play an important role in the evolution of the overstep. The development of a pull-apart basin is inhibited along the eastern half of the overstep and compatibility of both strands of the main fault (Bolu–Lake Abant and Lake Sapanca– Izmit–Marmara Sea) seems to be achieved with the aid of the fault systems mentioned. The extension of the missing part of the pull-apart basin seems to be displaced to positions remote from the Lake Abant–Lake Sapanca main fault line, i.e. to the Akyaz?–Düzce basin tract. Highest Q-values (lowest attenuation of seismic waves) were found in the zone of highest seismicity north and west of the overstep which is the zone of strongest horizontal tension. If high coda-Q is an indicator for strong scattering of seismic waves it might be related to extensional opening of fractures.  相似文献   

5.
On June 27, 1998, a moderate earthquake measuring 5.9 on the Richter scale struck the alluvial plains of Cukurova in the Adana-Ceyhan region of Turkey. The earthquake resulted in 145 deaths, about a thousand injuries and significant damage to more than ten thousand structures. The coincidence of the projected location of the release of energy along the earthquake fault with a very vulnerable geological surface formation (the thick alluvial deposits of Ceyhan River containing loose sand layers) resulted in liquefied sediments of substantial thickness and extensive areal distribution. Liquefaction associated ground deformations such as lateral spreading, flow failures, ground fissures and subsidence, sand boils, and slope failures were observed. This paper presents and analyses the geotechnical aspects of this earthquake with the main emphasis on the observed liquefaction and associated ground deformations, together with the earthquake characteristics. The observed liquefaction mechanisms provide valuable information on the seismic response of the alluvial soils covering most of the Cukurova plains, an area of industrial and agricultural importance with more than 2 million inhabitants. The observations from this earthquake also provide us with an opportunity to further improve our understanding of the observed phenomena and their effects that can be expected during other future earthquake events around the world.  相似文献   

6.
B.K. Rastogi   《Tectonophysics》2004,390(1-4):85-103
This paper presents a study of the damage due to the Mw 7.6–7.7 intraplate Kutch earthquake of 26 January 2001. It was a powerful earthquake with a high stress drop of about 20 MPa. Aftershocks (up to M 4) have continued for 2.5 years. The distribution of early aftershocks indicates a rupture plane of 20–25 km radius at depths of 10–45 km along an E–W-trending and south-dipping hidden fault situated approximately 25 km north of the Kutch Mainland Fault. The moment tensor solution determined from regional broadband data indicates reverse motion along a south-dipping (by 47°) fault. The earthquake is the largest event in India in the last 50 years and the most destructive in the recorded history in terms of socioeconomic losses with 13,819 deaths (including 14 in Pakistan), collapse/severe damage of over a million houses and US$10 billion economic loss. Surface faulting was not observed. However, intense land deformations have been observed in a 40×20-km meizoseismal area. These include lateral spreading, ground uplifts (about a meter), ground slumping and deep cracks. Liquefaction with ejection of sand and copious water was widespread in the Banni grassland, Rann areas (salt plains), along rivers and also in the coastal areas up to 200 km distance from the epicenter in areas of intensity VII to X+. Stray incidences of liquefaction have occurred up to distances of at least 300 km. For the first time in India, multistory buildings have been destroyed/damaged by an earthquake. The maximum acceleration is inferred to be 700 cm/s2 and intensities are 1–3 units higher in soil-covered areas than expected from the decay rate of acceleration for hard rock.  相似文献   

7.
8.
A 1,460-m-long profile of a Late Glacial subglacial, glacio-fluvial, glacio-limnic and glacio-deltaic sequence exposed at a cliff section on Usedom Island (SW Baltic Sea coast) is described. The sequence is up to 31 m thick and shows sedimentary structures typical of a glacial setting. Soft-sediment deformation is encountered and is associated with changes in lithology. These deformations include liquefaction, slumping, and faulting. As the most plausible cause, earthquake-induced shaking is discussed. The associated neotectonic activity is seen as a consequence of the postglacial isostatic crustal rebound. As the deglaciation earthquake ratio diminishes with time and as the rebound is phasing out, no large earthquakes are anticipated for northern Germany, although in conclusion the lithosphere of the North German Basin has to be regarded as weakened by repeated ice loading and deloading.  相似文献   

9.
土石坝拟静力抗震稳定性分析与坝坡地震滑移量估算   总被引:7,自引:3,他引:4  
栾茂田  李湛  范庆来 《岩土力学》2007,28(2):224-230
单独采用拟静力抗震稳定性安全系数,并不能准确地评价土石坝的动力稳定性, Newmark等采用刚塑体滑移量或永久变形评价土石坝地震稳定性的建议得到了逐步认同,但土石坝地震永久变形或滑移量的估算尚缺乏合理方法。为此,将土石坝地震动力响应分析和拟静力极限平衡分析相结合,提出了合理地估算坝坡上潜在滑坡体地震滑移量的数值计算方法。首先,根据土石坝地震动力响应分析,针对圆弧滑动面和非圆弧光滑渐变曲面形式滑动面,分别采用简化Bishop法及改进的简化Bishop法计算坝坡上潜在滑动体的各个时刻拟静力安全系数。随后,对其中安全系数小于1的瞬时超载阶段,通过时间积分确定潜在滑动体的滑移量。最后,结合算例并通过具体数值计算与分析探讨了竖向地震动分量、滑坡体竖向地震响应、振动孔隙水压力等各种因素对土石坝地震位移及抗震性能的影响。  相似文献   

10.
Co-seismic phenomena along the south coastline included liquefaction, subsidenceand tsunami. Construction on areas composed of fluvial and alluvial sediments aswell as unconsolidated fill increased the risk by creating potential for amplificationof seismic waves. Cyclic mobility liquefaction was common along the coastline, andlevel-ground liquefaction was observed. Flow liquefaction is held forth as a possibilityin the Deirmendere submarine landslide. Damage to structures was markedly more in areas of unconsolidated sediments. One or more tsunami struck immediately after the event; the uniformity of tsunami impact indicating a wave coming from 310° suggests that submarine faulting was the major source of tsunami. Over 800,000 m2 of subsidence resulted from sediment slumping, fault controlled subsidence, and possibly post-liquefaction sediment compaction. After a brief period of post-event abandonment, reclamation and use of coastal areas is well underway. This creates a tension between human desires pushing for quick and inexpensive re-inhabitation of the coastal areas, and the needs for zoning and building codes for risk reduction. In this high-risk area suchcontrary cultural mandates cannot yield ideal results. It is suggested that an alternativemodel of immediate post-event creation of parks and natural areas that would yield benefit is preferable in coastal areas rather than the enforcement approach currently favored.  相似文献   

11.
Prabhas Pande 《Natural Hazards》2013,65(2):1045-1062
Of the intraplate seismic events, the January 26, 2001 Bhuj earthquake (Mw 7.7) would be remembered as one of the deadliest, in which 13,805 human lives were lost, 0.177 million injured and a total of 1,205,198 houses were fully or partly damaged in 16 districts of Gujarat state with an estimated overall loss of Rs. 284, 23 million. The brunt of the calamity was borne by five districts, namely Kachchh, Ahmadabad, Rajkot, Jamnagar and Surendranagar, where 99?% of the total casualties and damage occurred. In the neighbouring parts of Sindhh Province of Pakistan, 40 human casualties were reported, and some buildings cracked in the Karachi city as well. In the Kachchh district of Gujarat state, the telecommunication links and power supply were totally disrupted, road and rail links partially impaired and water supply snapped at many places. The Bhuj airbase had to be closed for some time due to damage to the infrastructure. The macroseismic survey carried out by the Geological Survey of India in an area as large as 1.2 million?sq?km indicated an epicentral intensity as high as X on the MSK scale in an area of 780?sq?km in the central part of Kachchh rift basin. Apart from damages to civil structures, the January 26 earthquake induced conspicuous terrain deformation in the form of liquefaction features, structural ground deformation and low-order slope failures that were mainly prevalent within the higher intensity isoseists. Liquefaction occurred in an area of about 50,000?sq?km. The extensive plains of Rann of Kachchh, the marshy tracts of the Little Rann and the shallow groundwater table zones of Banni Land provided the most conducive geotechnical environments for the development of seismites. The liquefaction activity was profuse in seismic intensity zones X and IX, widespread in intensity VIII, subdued in intensity VII and stray in intensity VI. The common forms of liquefaction were sand blows/boils, ground fissures, craters, lateral spreading and slumping. Ground deformation of tectonic origin was witnessed in the epicentral tract. Such features, though much less subdued in comparison with the 1819 large earthquake (Mw 7.8) in region, occurred along the Kachchh Mainland fault (KMF) and along a transverse lineament, referred to as Manfara?CKharoi fault. The manifestations were in the form of fractures, displacement of strata, linear subsidence, upheaval, formation of micro-basins/micro-ridges, ripping off of rock surface, and at places violent forms of liquefaction. The localities where coseismic deformations were observed include Bodhormora, Sikra, Vondh, Chobari, Manfara and Kharoi. The 2001 event has demonstrated the role of local geology in influencing the ground motion characteristics and, therefore, the hazard estimation.  相似文献   

12.
During the 2011 Great East Japan Earthquake, severe liquefaction occurred in reclaimed ground in Urayasu city, Chiba prefecture. This liquefaction provided important lessons for us to re-recognize the liquefaction mechanism. A distinct feature of the liquefaction in this earthquake is that severe liquefaction happened not only in the main shock but also in an aftershock with a maximum acceleration of 25 gal. In some areas, liquefaction happened in the aftershock is even more serious than that happened in the main shock. In this paper, focus is placed on the characteristic features in the occurrence of liquefaction and consequent ground settlement. Based on the observed data, a series of dynamic–static analyses, considering not only the earthquake loading but also static loading during the consolidation after the earthquake shocks, are conducted in a sequential way just the same as the scenario in the earthquake. The calculation is conducted with 3D soil–water coupling finite element–finite difference analyses based on a cyclic elasto-plastic constitutive model. From the results of analyses, it is recognized that small sequential earthquakes, which cannot cause liquefaction of a ground in an independent earthquake vibration, cannot be neglected when the ground has already experienced liquefaction after a major vibration. In addition, the aftershock has great influence on the long-term settlement of low permeability soil layer. The observed and predicted liquefaction and settlements are compared and discussed carefully. It is confirmed that the numerical method used in this study can describe the ground behavior correctly under repeated earthquake shocks.  相似文献   

13.
In this paper, the ground motion at Guwahati city for an 8.1 magnitude earthquake on Oldham fault in the Shillong plateau has been estimated by stochastic finite-fault simulation method. The corresponding acceleration time histories on rock level at several sites in the epicentral region have been computed. These results are validated by comparing them with the estimates obtained from Medvedev–Sponheuer–Karnik (MSK) intensity observations of 1897 Shillong earthquake. Using the local soil parameters, the simulated rock level acceleration time history at Guwahati city is further amplified up to the ground surface by nonlinear site response analysis. The results obtained are presented in the form of peak ground acceleration (PGA) contour map. The maximum amplification for PGA over Guwahati city is as high as 2.5. Based on the simulated PGA, the liquefaction susceptibility at several locations in the city has been estimated. The results are presented in the form of contours of factor of safety against liquefaction at different depths below the ground surface. It is observed that over a large part of the Guwahati city, the factor of safety against liquefaction is less than one, indicating that the city is highly vulnerable to liquefaction in the event of this earthquake. The contour maps obtained can be used in identifying vulnerable areas and disaster mitigation.  相似文献   

14.
This paper presents a numerical study of mitigation for liquefaction during earthquake loading. Analyses are carried out using an effective stress based, fully coupled, hybrid, finite element-finite differences approach. The sandy soil behavior is described by means of a cyclic elastoplastic constitutive model, which was developed within the framework of a nonlinear kinematic hardening rule. In theory, the philosophies of mitigation for liquefaction can be summarized as two main concepts, i.e. prevention of excess pore water pressure generation and reduction of liquefaction-induced deformations. This paper is primarily concerned with the latter approach to liquefaction mitigation. Firstly, the numerical method and the analytical procedure are briefly outlined. Subsequently, a case-history study, which includes a liquefaction mitigation technique of cement grouting for ground improvement of a sluice gate, is conducted to illustrate the effectiveness of liquefaction countermeasures. Special emphasis is given to the computed results of excess pore water pressures, displacements, and accelerations during the seismic excitation. Generally, the distinctive patterns of seismic response are accurately reproduced by the numerical simulation. The proposed numerical method is thus considered to capture the fundamental aspects of the problems investigated, and yields results for design purposes. From the results in the case, excess pore water pressures eventually reach fully liquefied state under the input earthquake loading and this cannot be prevented. However, liquefaction-induced lateral spreading of the foundation soils can be effectively reduced by the liquefaction mitigation techniques. An erratum to this article can be found at  相似文献   

15.
Earthquake-induced ground failures in Italy   总被引:8,自引:0,他引:8  
The National Catalog of Ground Failures Induced by Strong Earthquakes in Italy (CEDIT), is described. The catalog holds data on ground failures triggered by the earthquakes that occurred in Italy in the last millennium and which had a nominal epicentral intensity equal to or greater than VIII in the Mercalli–Cancani–Sieberg (MCS) intensity scale. The ground effects reported in the catalog are the following: landslides, fractures, liquefaction, surface faulting, and topographic changes of the ground level (subsidence, settlements, tilting, and so on). Each effect is described in terms of seismological parameters of the triggering earthquake, site coordinates and administrative code, lithology and kinematic type of the ground failure. The catalog represents a tool to assess the susceptibility of geologic materials to ground shaking, and to validate predictive models of seismically induced ground displacements (scenarios of earthquake-induced geologic risks). In the context of this study, a simple statistical analysis of the database yielded useful relations between the parameters of the triggering earthquakes and the related effects.  相似文献   

16.
This paper highlights the seismic microzonation carried out for a nuclear power plant site. Nuclear power plants are considered to be one of the most important and critical structures designed to withstand all natural disasters. Seismic microzonation is a process of demarcating a region into individual areas having different levels of various seismic hazards. This will help in identifying regions having high seismic hazard which is vital for engineering design and land-use planning. The main objective of this paper is to carry out the seismic microzonation of a nuclear power plant site situated in the east coast of South India, based on the spatial distribution of the hazard index value. The hazard index represents the consolidated effect of all major earthquake hazards and hazard influencing parameters. The present work will provide new directions for assessing the seismic hazards of new power plant sites in the country. Major seismic hazards considered for the evaluation of the hazard index are (1) intensity of ground shaking at bedrock, (2) site amplification, (3) liquefaction potential and (4) the predominant frequency of the earthquake motion at the surface. The intensity of ground shaking in terms of peak horizontal acceleration (PHA) was estimated for the study area using both deterministic and probabilistic approaches with logic tree methodology. The site characterization of the study area has been carried out using the multichannel analysis of surface waves test and available borehole data. One-dimensional ground response analysis was carried out at major locations within the study area for evaluating PHA and spectral accelerations at the ground surface. Based on the standard penetration test data, deterministic as well as probabilistic liquefaction hazard analysis has been carried out for the entire study area. Finally, all the major earthquake hazards estimated above, and other significant parameters representing local geology were integrated using the analytic hierarchy process and hazard index map for the study area was prepared. Maps showing the spatial variation of seismic hazards (intensity of ground shaking, liquefaction potential and predominant frequency) and hazard index are presented in this work.  相似文献   

17.
On 25 December 1884, an earthquake of epicentral intensityI 0 = IX in the MSK scale caused great damage in a large area in the provinces of Granada and Málaga, in the south of Spain. The reports of the Spanish, Italian and French Commissions that studied the earthquake described ground phenomena in seven different sites which can be identified as soil liquefaction.By means of dynamic penetration tests carried out in the above sites, the corresponding soil profiles (based on SPT data and water table depth) were established, and the occurrence of liquefaction was proved in five out of seven of these sites. Also, the intensities at such locations and the magnitude of the earthquake were estimated.From the geotechnical data and the cyclic stress ratio induced by the earthquake, liquefaction conditions were confirmed in all the five sites which presumably liquefied. Then, possible values of the minimum ground surface accelerations necessary for the onset of liquefaction at each location were calculated. The results obtained were completed with data reported in six liquefaction case studies from Japan and the United States, from which design charts relating soil acceleration with normalized SPT values for different intensity levels were drawn.Finally, by using standard attenuation curves, the above data were translated into epicentral distances, and good agreement with the known epicentral area was found. As a result, a consistent approach for liquefaction hazard and source location problems has been developed. The proposed method combines in its formulation historical evidence and earthquake engineering techniques.  相似文献   

18.
The components of deformation related to endogenic (tectonic) and exogenic (glaciotectonic, gravitational sliding) factors are considered in the sedimentary platform cover by a study of Andoma dislocations in the Upper Devonian sedimentary rocks of the Lake Onega district. These structures are localized in the eponymous segment of the southeastern margin of the Fennoscandian (Baltic) Shield; indications of high tectonic activity are noted along this margin. As has been shown by a structural study, the development of the Andoma structure is caused by long-term (Late Devonian–Quaternary) multistage deformations related to tectonic factors and, to a lesser degree, glaciotectonics. The consecutive stages of synsedimentation normal faulting and landsliding, bedding-plane gliding, various forms of shear flow in a regime of transpression, glaciotectonic thrusting, and neotectonic transpression are recognized in the deformation history.  相似文献   

19.
Soil liquefaction studies at Mumbai city   总被引:1,自引:0,他引:1  
Mumbai city is the economical capital of India and is situated about midway on the western coast of stable continental region of Peninsular India. Major part of the city being of reclaimed land, the soil type is of alluvium, sand, and recent conglomerate. There are some bigger water bodies within the city range. In this study, an attempt has been made to study the susceptibility of soil liquefaction using simplified empirical procedure based on number of blow counts (N values) of the soil layers from standard penetration test. The liquefaction susceptibility is quantified in terms of factor of safety along the borehole depths at available borehole locations using earthquake-induced cyclic stress on the soil and the cyclic resistance of the soil to withstand the load. The factor of safety against liquefaction is evaluated at different sites for two peak ground acceleration (PGA) levels pertaining to 10 and 2?% probability of exceedance in 50?years corresponding to uniform hazard response spectra for Mumbai city with 475- and 2,475-year return period, respectively. Contour maps are prepared that display the factor of safety at different depths for earthquake magnitude of M w 6.5. These contour maps show the liquefaction vulnerability at different sites in the city.  相似文献   

20.
Lake Sapanca is located on a strand of the Northern Anatolian Fault Zone (NAFZ, Turkey), where a series of strong earthquakes (Ms >6.0) have occurred over the past hundred years. Identifying prehistoric earthquakes in and around Lake Sapanca is key to a better understanding of plate movements along the NAFZ. This study contributes to the development of palaeolimnological tools to identify past earthquakes in Lake Sapanca. To this end several promising proxies were investigated, specifically lithology, magnetic susceptibility, grain size (thin-section and laser analysis), geochemistry, pollen concentration, diatom assemblages, 137Cs and 210Pb. Sedimentological indicators provided evidence for reworked, turbidite-like or homogeneous facies (event layers) in several short cores (<45 cm). Other indicators of sediment input and the historical chronicles available for the area suggest that three of these event layers likely originated from the AD 1957, 1967 and 1999 earthquakes. Recent changes in sediment deposition and nutrient levels have also been identified, but are probably not related to earthquakes. This study demonstrates that a combination of indicators can be used to recognize earthquake-related event layers in cores that encompass a longer period of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号