首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
2.
3.
The Ixtahuacan Sb-W deposits are hosted by upper Pennsylvanian to Permian metasedimentary rocks of the central Cordillera of Guatemala. The deposits consist of gold-bearing arsenopyrite, stibnite and scheelite. Arsenopyrite and scheelite are early in the paragenesis, occurring as disseminations in pyritiferous black shale/sandstone and in argillaceous limestone, respectively. Some stibnite is disseminated, but the bulk of the stibnite occurs as massive stratabound lenses in black shales and in quartz-ankerite veins and breccias, locally containing scheelite.Microthermometric measurements on fluid inclusions in quartz and scheelite point to a low temperature (160–190°C) and low to moderate salinity (5–15 wt% NaCl eq.) aqueous ore fluid. Abundant vapour-rich inclusions suggest that the fluid boiled. Carbon dioxide was produced locally as a result of interaction of the aqueous fluid with the argillaceous limestone. Bulk leaching experiments and SEM-EDS analyses of decrepitated fluid inclusion residues indicate that the ore-bearing solution was NaCl-dominated. The 18O values of quartz, ankerite and scheelite from mineralized veins range from 19.7 to 20.5, 18.1 to 20.0 and 7.0 to 8.4 respectively. The average temperature calculated from quartz-scheelite oxygen isotopic fractionation is 170°C. The oxygen isotopic composition of the fluid, interpreted to have been in equilibrium with these minerals, ranged from 5.7 to 7.6, and is considered to represent an evolved meteoric water. Diagenetic or syngenetic pyrite has a sulphur isotopic composition of 0.5±0.3 which is consistent with bacterial reduction of sulphate. The 34S values of arsenopyrite and stibnite range from –2.8 to 2.0 and –2.7 to –2.3 respectively, and are though to reflect sulphur derived from pyrite.The Ixtahuacan deposits are interpreted to have formed at low temperature (<200°C) and a depth of a few hundred metres from a low fO2 (10–49–10–57), high pH (7–8) fluid. Arsenic was probably transported as arsenious acid, antimony and gold as thio-complexes and tungsten as the complex HWO 4 .A model is proposed in which a meteoric fluid, heated by a felsic intrusion at depth, was focused to shallow levels along faults. The interaction of the fluid with pyritiferous beds caused the deposition of arsenopyrite as a result of sulphidation and/or decreasing fO2; gold probably co-precipitated with As or was adsorbed onto the arsenopyrite. The precipitation of stibnite was caused by boiling. Scheelite deposited in response to the increase in Ca2+ activity which accompanied interaction of the ore fluid with the argillaceous limestones.  相似文献   

4.
5.
The methamorphic history of the Patapedia thermal zone, Gaspé, Quebec, is re-evaluated in the light of results obtained from a study of fluid inclusions contained in quartz phenocrysts of felsic dyke rocks. The thermal zone is characterised by calc-silicate bodies that have outwardly telescoping prograde metamorphic isograds and display extensive retrograde metamorphism with associated copper mineralization. Three distinct fluid inclusion types are recognized: a low to moderate salinity, high density aqueous fluid (Type I); a low density CO2 fluid (Type II); and a high salinity, high density aqueous fluid (Type III). Fluid inclusion Types I and II predominate whereas Type III inclusions form <10% of the fluid inclusion population. All three fluid types are interpreted to have been present during prograde metamorphism. Temperatures and pressures of metamorphism estimated from fluid inclusion microthermometry and isochore calculations are 450°–500° C and 700–1000 bars, respectively. A model is proposed in which the metamorphism at Patapedia was caused by heat transferred from a low to moderate salinity fluid of partly orthomagmatic origin (Type I inclusions). During the early stages, and particularly in the deeper parts of the system, CO2 produced by metamorphism was completely miscible in the aqueous hydrothermal fluid and locally resulted in high XCO2 fluids. On cooling and/or migrating to higher levels these latter fluids exsolved high salinity aqueous fluids represented by the Type III inclusions. Most of the metamorphism, however, took place at temperature-pressure conditions consistent with the immiscibility of CO2 and the hydrothermal fluid and was consequently accompanied by the release of large volumes of CO2 vapour which is represented by Type II inclusions. The final stage of the history of the Patapedia aureole was marked by retrograde metamorphism and copper mineralization of a calcite-free calc-silicate hornfels in the presence of a low XCO2 fluid.  相似文献   

6.
Quartz veins are developed in a wide range of metasediment types in the upper amphibolite facies rocks of Connemara, and attest to considerable migration of silica. Contrary to common assumptions, there is clear evidence that these veins do not primarily result from movement of fluid to regions of lower P–T down the regional geothermal gradient. Under amphibolite facies conditions, a dilute chloride fluid moving down temperature has the potential to alter 60g of plagioclase to muscovite for each gram of vein quartz precipitated, while cooling over the temperature interval from 650 to 500° C. The absence of significant metasomatic effects in the vein walls effectively precludes a simple origin from such through-flowing, externally derived fluids. The oxygen isotopic composition of matrix quartz shows considerable differences between different rock types (quartzite, pelite and marble), with a range of δ18OSMOW from c.+ 11.5% (quartzite) to + 18.5% (marble). In each rock type, vein quartz compositions closely match those of the matrix quartz. These results demonstrate the importance of local segregation processes in the formation of veins, and suggest that fluid convection cells were not developed during metamorphism on a scale larger than the individual sedimentary formations, if at all. Both oxygen isotope data and the absence of metasomatism indicate that veins form primarily by segregation of quartz from the host lithologies, with only a relatively minor component of through flow of externally derived fluid. Veins are clearly not the major pathways of metamorphic dewatering. It is proposed that abundant veins in the predominantly pelitic Ballynakill Formation formed during peak metamorphic D3 folding because the formation was embrittled by high fluid pressures but was capped by impermeable marble. Hence the pelitic formation fractured repeatedly and the pore fluid drained through the fractures to form veins, while irreversible loss through the rest of the succession was a much less important process. In the central mountains of Connemara, rather pure, unreactive quartzites are cut by widely spaced, laterally extensive quartz veins that are axial planar to D3 folds. These veins may mark pathways whereby metamorphic fluid made its way through the massive impermeable quartzite from lower parts of the nappe pile, but here too, oxygen isotope data indicate considerable segregation of locally derived quartz, reflecting the importance of pumping of fluid between wail rocks and fractures relative to the component of through flow.  相似文献   

7.
水是矿物流体包裹体的重要组成,承载着流体性质和演化信息。提取矿物包裹体中水的方法主要有真空破碎法及爆裂法。为了减少真空破碎法表面积增大引起水的吸附以及爆裂法在高温下发生同位素交换反应,本文自制了一个在线提取装置,以高纯He作为载气,与高温裂解装置—稳定同位素质谱仪(EA/HT-IRMS)相连,进行一系列的条件实验,确认了方解石矿物包裹体中水的氢同位素组成在线测试的关键技术参数。实验证实,当爆裂温度为420℃、爆裂时间为5 min、含水量为0.1~0.3μL时,利用在线提取装置—EA/HT-IRMS对方解石矿物包裹体中水的δD进行测试的精密度优于±1.5‰(1σ)。相对于传统离线分析方法,本方法实现方解石矿物包裹体中水的在线提取及氢同位素组成的在线测试,简化了操作流程,并提高实验测试效率。  相似文献   

8.
9.
Three successive metamorphic stages M1, M2 and M3 have been distinguished in polymetamorphic granulite facies quartz-feldspathic gneisses from the Seiland Igneous Province, Caledonides of northern Norway. An early period of contact metamorphism (M1; 750–950°C, ca. 5 kbar) was followed by cooling, accompanied by strong shearing and recrystallization at intermediate-P granulite facies conditions (M2; 700–750°C, 5–6kbar). High-P granulite facies (M3; ca. 700°C, 7–8 kbar) is related to recrystallization in narrow ductile shear zones and secondary growth on M2 minerals. On the basis of composition, fluid inclusions in cordierite, quartz and garnet can be divided into three major types: (1) CO2 inclusions; (2) mixed CO2–N2 inclusions; (3) N2 inclusions. Fluid chronology and mineral assemblages suggest that the earliest inclusions consist of pure CO2 and were trapped at the M1 contact metamorphic episode. A carbonic fluid was also present during the intermediate-P granulite facies M2 metamorphism. The CO2-rich inclusions in M2 garnet can be divided into two generations, an early lower-density and a late higher-density, with isochores crosscutting the P-T box of M2 and M3, respectively. The nitrogen-rich fluids were introduced at a late stage in the fluid evolution during the high-P M3 event. The mixed CO2–N2 inclusions, with density characteristics compatible with M3 conditions, are probably produced from intersection between pre-existing pure CO2 inclusions and N2 fluids introduced during M3. The fluid inclusion data agree with the P-T evolution established from mineral assemblages and mineral chemistry.  相似文献   

10.
西藏自治区仲巴县布东拉金矿床位于中拉萨地块西段,矿体受北西向的断裂构造控制,呈脉状、透镜状产出.矿石产出类型主要为石英脉型与蚀变岩型,主要矿石矿物为自然金.矿化蚀变过程经历了3个阶段,包括石英-自然金-黄铁矿阶段(S1)、石英-自然金-多金属硫化物阶段(S2)和石英-碳酸盐矿物阶段(S3).文章在野外地质调查的基础上,对不同成矿阶段的石英脉进行了流体包裹体岩相学观测、包裹体显微测温、包裹体显微激光拉曼分析、群包裹体成分分析和群包裹体H-O同位素测试.结果表明,S1阶段流体均一温度为330~350℃,盐度w(NaCleq)为9.0%~11.0%,密度0.82~0.86 g/cm3,压力为(100~140)×105 Pa,深度为1.0~1.4 km;S2阶段流体均一温度为300~309℃,盐度w(NaCleq)为7.0%~9.0%,密度为0.80~0.85 g/cm3,压力为(70~120)×105 Pa,深度为0.7~1.2 km;S3阶段流体均一温度为210~230℃,盐度w(NaCleq)集中为2.0%~3.0%,密度为0.84~0.90 g/cm3,压力为(50~80)×105 Pa,深度为0.5~0.8 km.包裹体成分分析表明,布东拉金矿床的流体包裹体气相成分以H2O为主,含有少量CO2、SO2、N2和CH4;液相中阴阳离子主要为Ca2+、Na+、C1-和SO2-4.各热液脉体石英中流体包裹体的δDH2O值为-101.3‰~-90.7‰,δ18OH2O值为-0.75‰~5.06‰,表明成矿流体主要来源于地下水及少量岩浆水.研究表明,含金成矿流体沿着断裂从深部封闭体系运移到浅部的开放体系时,迅速突破临界状态,减压沸腾导致金属物质的沉淀,形成各种类型的矿脉及矿化.布东拉金矿床的成矿流体为中低温、低盐度、中低密度、含少量CO2、SO2、N2、CH4的NaCl-CaSO4-H2O体系的浅成地下热水,表明其可能属于浅成低温热液型金矿床.  相似文献   

11.
Aqueous fluids in sedimentary basins often contain dissolved methane, particularly in petroleum environments. PVTX (Pressure-Volume-Temperature-Composition) reconstructions performed using fluid inclusion data are largely based on the assumption that inclusions do not change from the time of trapping until the present. Many authors, however, consider that fluid inclusions can re-equilibrate, particularly in fragile minerals like calcite. In order to understand this re-equilibration phenomenon in the metamorphic domain, previous experiments have been performed under high PT conditions, but few have been performed at low to medium PT conditions such as those associated with sedimentary burial diagenesis, and no previous studies have examined CH4-bearing aqueous inclusions in calcite.An experimental study of the preservation/modification of CH4-rich synthetic fluid inclusions in calcite during isothermal decompression was conducted. An autoclave was used for accurate PTX control allowing equilibrium between liquid and vapour in the CH4-H2O system. PTX conditions were maintained at four stages of decreasing pressure, with each stage held for 7 days to simulate an isothermal pressure drop. In order of decreasing pressure, the pressure-temperature conditions monitored were 276 ± 10 bar at 180 ± 7 °C, 176 ± 10 bar at 180 ± 7 °C, 76 ± 10 bar at 180 ± 7 °C and 10 ± 3 bar at 180 ± 15 °C. At the end of the experiment, the calcite was recovered and analyzed by microthermometry and Raman microspectroscopy for PTX reconstruction. A careful procedure was adopted to limit re-equilibration of inclusions during analytical procedures. Four types of inclusion shapes and four types of strain patterns were differentiated. Classification of the petrographic strain patterns was carried out. These strain patterns were associated with inclusion stretching and/or leakage regarding CH4, Th and Ph compared to experimental conditions. Factors controlling the preservation or acquisition of strain patterns included the initial shape and size of the inclusion, and the pressure differential (ΔP) between the confining pressure (Pcf) and the internal pressure (Pi) within the inclusion. Most fluid inclusions seemed to be trapped during the first 7 days of the experiment, although few (4%) of these preserved the initial PT conditions of 276 ± 10 bar, whereas 8% preserved the second and third run of PT conditions. Overall, the majority of inclusions (88%) did not reflect accurately the PTX trapping conditions. A petrographic guide to the inclusions is presented here that allows strain identification for PVT reconstructions. Re-equilibration patterns and evidence for preferential methane leakage from aqueous inclusions in calcite are important findings revealed by this study, and may be useful for the reconstruction of post-trapping events in investigations of natural samples, and in other experiments using synthetic inclusions in calcite.  相似文献   

12.
渌井矿床是广西西大明山地区内一个典型的脉状铅锌矿床,矿体赋存于寒武纪地层中,主要受断裂构造控制。本文在详细野外调查的基础上,通过对其流体包裹体、硫化物矿物化学和硫同位素的系统测定和分析,探讨了成矿流体性质和矿质来源。流体包裹体研究表明,渌井矿床主成矿阶段流体包裹体类型以富液相的气液两相包裹体和纯液相包裹体为主,主成矿期包裹体均一温度为237~281℃(平均值为256℃),对应盐度为3.54%~12.69%(均值为8.39%)。硫化物电子探针分析结果显示,闪锌矿以富集Fe、Cd、In而贫Mn、Ga、Ge等元素为特征,多属于形成温度偏高的含铁闪锌矿类型。硫化物硫同位素研究显示,δ34S值总体变化范围为-1.9‰~4.4‰,呈塔式分布,均值为1.7‰,位于零值附近,暗示渌井矿床硫化物的硫主要来源于岩浆。综合矿床地质、流体包裹体、硫化物矿物化学及硫同位素特征可知,渌井矿床应归属于热液脉型铅锌矿床范畴,在成因上与本区深部的隐伏岩体具有密切的联系,成矿时代可能为燕山晚期。  相似文献   

13.
山西中条山地区是我国重要的铜成矿带,发育铜矿峪斑岩型铜矿和“胡(家峪) 篦(子沟)”型铜矿。本文对铜矿峪铜矿的黄铁矿和黄铜矿、胡家峪铜矿的黄铁矿开展了流体包裹体中的He、Ar同位素组成研究。铜矿峪黄铁矿、黄铜矿流体包裹体中的 4 He含量为46. 23×10 -8 ~1195. 75×10 -8 cm 3 STP/g, 3 He/ 4 He比值为0. 01~0. 06Ra, 40 Ar含量为1. 69×10 -8 ~74. 11×10 -8 cm 3 STP/g; 40 Ar/ 36 Ar为407~2327. 8。胡家峪黄铁矿流体包裹体中 4 He含量为314. 06×10 -8 ~3815. 87×10 -8 cm 3 STP/g; 3 He/ 4 He为0. 003~0. 014Ra , 40 Ar含量为25. 62×10 -8 ~761. 51×10 -8 cm 3 STP/g; 40 Ar/ 36 Ar 值为936. 1~4108. 6。中条山地区铜矿床 3 He/ 4 He值明显指示壳源He特征,铜矿峪、胡家峪样品中幔源He的含量介于0~0. 56%之间,幔源He对成矿的贡献可忽略不计。在成矿流体的 40 Ar/ 36 Ar- 3 He/ 4 He和 40 Ar*/ 4 He 3 He/ 4 He关系图解中所有样品均投点于壳源流体区域,显示Ar为地壳来源。因此,中条山地区大规模成矿作用以壳源流体成矿为主,并未发现幔源流体参与成矿的踪迹。  相似文献   

14.
In this paper the first fluid-inclusion data are presented from Late Archaean Scourian granulites of the Lewisian complex of mainland northwest Scotland. Pure CO2 or CO2-dominated fluid inclusions are moderately abundant in pristine granulites. These inclusions show homogenization temperatures ranging from − 54 to + 10 °C with a very prominent histogram peak at − 16 to − 32 °C. Isochores corresponding to this main histogram peak agree with P-T estimates for granulite-facies recrystallization during the Badcallian (750–800 °C, 7–8 kbar) as well as with Inverian P-T conditions (550–600 °C, 5 kbar). The maximum densities encountered could correspond to fluids trapped during an early, higher P-T phase of the Badcallian metamorphism (900–1000 °C, 11–12 kbar). Homogenization temperatures substantially higher than the main histogram peak may represent Laxfordian reworking (≤ 500 °C, < 4 kbar). In the pristine granulites, aqueous fluid inclusions are of very subordinate importance and occur only along late secondary healed fractures. In rocks which have been retrograded to amphibolite facies from Inverian and/or Laxfordian shear zones, CO2 inclusions are conspicuously absent; only secondary aqueous inclusions are present, presumably related to post-granulite hydration processes. These data illustrate the importance of CO2-rich fluids for the petrogenesis of Late Archaean granulites, and demonstrate that early fluid inclusions may survive subsequent metamorphic processes as long as no new fluid is introduced into the system.  相似文献   

15.
Fluid inclusion salinities from quartz veins in the Otago Schist, New Zealand, range from 1.0 to 7.3 wt% NaCl eq. in the Torlesse terrane, and from 0.4 to 3.1 wt% NaCl eq. in the Caples terrane. Homogenization temperatures from these inclusions range from 124 to 350  °C, with modal values for individual samples ranging from 163 to 229  °C, but coexisting, low-salinity inclusions exhibiting metastable ice melting show a narrower range of T  h from 86 to 170  °C with modes from 116 to 141  °C. These data have been used in conjunction with chlorite chemistry to suggest trapping conditions of ≈350–400  °C and 4.1–6.0  kbar for inclusions showing metastable melting from lower greenschist facies rocks, with the densities of many other inclusions reset at lower pressures during exhumation of the schist. The fluid inclusion salinities and Br/Cl ratios from veins from the Torlesse terrane are comparable to those of modern sea-water, and this suggests direct derivation of the vein fluid from the original sedimentary pore fluid. Some modification of the fluid may have taken place as a result of interaction with halogen-bearing minerals and dehydration and hydration reactions. The salinity of fluids in the Caples terrane is uniformly lower than that of modern sea-water, and this is interpreted as a result of the dilution of the pore fluid by dehydration of clays and zeolites. The contrast between the two terranes may be a result of the original sedimentary provenance, as the Torlesse terrane consists mainly of quartzofeldspathic sediments, whilst the Caples terrane consists of andesitic volcanogenic sediments and metabasites which are more prone to hydration during diagenesis, and hence may provide more fluid via dehydration at higher grades.  相似文献   

16.
沂南矽卡岩型金铜铁矿床产于燕山期中酸性侵入岩与新太古界—寒武系地层接触带附近。氢、氧同位素研究表明,早期干矽卡岩阶段(Ⅰ)和湿矽卡岩-磁铁矿阶段(Ⅱ)的成矿流体主要为岩浆水,晚期石英-硫化物阶段(Ⅲ)和碳酸盐阶段(Ⅳ)的成矿流体则显示有大气降水混入的岩浆水特点。流体包裹体研究表明,成矿各阶段热液矿物中的包裹体类型丰富,以气液两相盐水包裹体、含子晶多相包裹体和CO2-H2O包裹体为主,次为纯液相水包裹体和纯气相水包裹体,偶见晶质熔融包裹体。由Ⅰ→Ⅱ→Ⅲ→Ⅳ阶段,气液水包裹体均一温度(520~430℃→430~340℃→250~190℃→190~130℃)呈现逐渐降低的趋势。在Ⅰ、Ⅱ阶段的石榴子石和绿帘石中,晶质熔融包裹体与同期次捕获的具不同气相分数的气液水包裹体及含子晶的多相包裹体共生,表明它们被捕获时是一种熔体与流体共存的不混溶状态。在Ⅲ阶段的石英(少量Ⅱ阶段的绿帘石)中,常见气相充填度变化很大的气液水包裹体与同期次捕获的纯液相水包裹体、纯气相水包裹体、含子晶的多相包裹体以及CO2-H2O包裹体共生,且共生的不同类型包裹体均一温度相近,表明此阶段成矿流体曾发生过广泛的沸腾(不混溶)。因而认为,在沂南矿床由岩浆...  相似文献   

17.
陕西旬阳盆地南缘是南秦岭中部重要的铅锌成矿带,带内发育一大批赋存在志留系中的铅锌矿床。为了进一步厘清区域内铅锌成矿的物质来源和成因机制,文章选取区内典型的关子沟铅锌矿床开展流体包裹体和H-O-S-Pb同位素研究。关子沟铅锌矿体主要以层状、似层状赋存于双河镇组二段和三段千枚岩地层中,根据矿物组构和穿插关系,将成矿过程划分为3个阶段:石英-黄铁矿阶段(Ⅰ阶段)、石英-多金属硫化物阶段(Ⅱ阶段)和石英-碳酸盐(Ⅲ阶段)。其中,Ⅱ阶段原生流体包裹体均一温度为215~393℃,盐度w(NaCleq)为2.2‰~10.1‰; Ⅲ阶段均一温度为124~255℃,盐度w(NaCleq)为1.8‰~6.6‰,具有中高温、中低盐度的成矿流体特征。石英H-O同位素结果(δ18OH2O值为6‰~10.9‰,δD值为-82.9‰~-73.6‰)显示成矿流体主要为海水和有机水,伴有大气降水的混合。原位S同位素显示硫化物δ34S值变化范围为4.63‰~8.73‰,暗示主要硫化物的S源于海相硫酸盐的热化学还原,志留系黑色岩系中的有机质提供了还原剂。矿石硫化物的206Pb/204Pb为17.8254~17.9470,207Pb/204Pb为15.6233~15.6396,208Pb/204Pb为38.1706~38.3143,指示Pb主要源于沉积盖层。综合矿床地质特征、流体包裹体及H、O、S、Pb同位素特征,认为关子沟矿床为热水沉积成因,志留系裂陷盆地内热水沉积作用控制着铅锌成矿过程。  相似文献   

18.
Fluid inclusions in quartz veins within Proterozoic metamorphic rocks in the Black Hills, South Dakota, were examined by microthermometry and Raman spectroscopy to assess the evolution of fluid compositions during regional metamorphism of organic-rich shales and late-orogenic magmatism, both of which were related to the collision of the Wyoming and Superior crustal blocks. Fluid inclusions occur in veins that began to be generated before or during regional compression and metamorphism that reached at least garnet-grade conditions, and in veins within the aureole of the Harney Peak Granite (HPG), where temperatures reached second-sillimanite grade conditions. Early veins in the schists have undergone recrystallization during heating and deformation that modified the composition of early CH4 or CO2 and N2-dominated inclusions. These fluids were apparently trapped under conditions of immiscibility with a saline aqueous fluid phase. They are interpreted to represent components generated during maturation of organic matter and dehydration of phyllosilicates during incipient metamorphism at reducing fO2 conditions. Most inclusions in the quartz veins are, however, secondary CO2-bearing. They imply a transition to higher fO2 conditions with increasing temperature of regional metamorphism. The fO2 conditions may have been controlled by the mineral assemblage in the host metapelites. The prevalence of bimodal distributions of trapped CO2-N2 and aqueous endmembers in the biotite and garnet zones also suggests that two immiscible fluid phases existed during the regional metamorphism.In the aureole of the HPG, graphite was evidently consumed by influx of magmatic fluids. CO2-H2O fluid inclusions dominate, but they have significantly less N2 than inclusions at lower metamorphic grades. All inclusions define secondary trails in mostly unstrained quartz. The bimodality of inclusion compositions is not as well defined as at lower grades, with many inclusions containing intermediate CO2-H2O compositions. This suggests that a single fluid phase existed at the high temperatures in the granite aureole, but then unmixed during cooling. A set of late quartz veins with graphitized and tourmalinized selvages in the granite aureole contains CH4-bearing inclusions with little N2. The existence of CH4 in these inclusions is attributed to complexing of magmatic B with hydroxyl anions taken from the CO2-H2O fluid phase, effectively causing reduction in fO2 and promoting precipitation of graphite.  相似文献   

19.
The Jurassic Notch Peak granitic stock, western Utah, discordantly intrudes Cambrian interbedded pure limestones and calcareous argillites. Contact metamorphosed argillite and limestone samples, collected along traverses away from the intrusion, were analyzed for 18O, 13C, and D. The 13C and 18O values for the limestones remain constant at about 0.5 (PDB) and 20 (SMOW), respectively, with increasing metamorphic grade. The whole rock 18O values of the argillites systematically decrease from 19 to as low as 8.1, and the 13C values of the carbonate fraction from 0.5 to –11.8. The change in 13C values can be explained by Rayleigh decarbonation during calcsilicate reactions, where calculated is about 4.5 permil for the high-grade samples and less for medium and low-grade samples suggesting a range in temperatures at which most decarbonation occurred. However, the amount of CO2 released was not anough to decrease the whole rock 18O to the values observed in the argillites. The low 18O values close to the intrusion suggest interaction with magmatic water that had a 18O value of 8.5. The extreme lowering of 13C by fractional devolatilization and the lowering of 18O in argillites close to the intrusion indicates oxgen-equivalent fluid/rock ratios in excess of 1.0 and X(CO2)F of the fluid less than 0.2. Mineral assemblages in conjunction with the isotopic data indicate a strong influence of water infiltration on the reaction relations in the argillites and separate fluid and thermal fronts moving thru the argillites. The different stable isotope relations in limestones and argillites attest to the importance of decarbonation in the enhancement of permeability. The flow of fluids was confined to the argillite beds (argillite aquifers) whereas the limestones prevented vertical fluid flow and convective cooling of the stock.  相似文献   

20.
Field evidence and fluid inclusion studies on South Indian incipient charnockites suggest that charnockite formation occurred during a decompressional brittle regime following the ‘peak’ of metamorphism and regional deformation. The most abundant type of inclusions in quartz and garnet grains in these charnockites contain high-density carbonic fluids, although lower-density fluids occur in younger arrays of inclusions. Discrete fluid inclusion generations optically are observed to decrepitate over well-defined temperature intervals, and quantitative measurements of CO2 abundance released from these inclusions by stepped thermal decrepitation show up to a four-fold increase (by volume) in the incipient charnockites relative to the adjacent gneisses from which they are derived. Studies based on optical thermometry, visual decrepitation and stepped-heating inclusion release together indicate that entrapment of carbonic fluids coincided with charnockite formation. We confirm that an influx of carbon dioxide-rich fluids is associated with the amphibolite-granulite transition, as recorded by the incipient charnockites, the remnants of which are commonly preserved as the earliest generation of high-density fluid inclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号