首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two medium to low volatile bituminous rank coals in the Lower Cretaceous Gates Formation (Mannville equivalent), Inner Foothills of Alberta, were cored as part of a coalbed methane exploration program. The target seams (Seam 4 and Seam 10) were intersected at 652 m and 605 m, respectively. The coals were bright banded, relatively competent and reasonably cleated, with cleat spacing between 5–20 mm. The FMI (Formation Micro-Imaging) log identified two primary fracture directions, corresponding to both face and butt cleats, which were developed almost equally in some coal intervals. The amount of shearing was limited, in spite of the presence of numerous thrust faults and fold structures in the corehole vicinity. Total gas content was high, with an average of 17.7 cm3/g (arb; 568.1 scf/t). An adsorption isotherm of the thick Seam 4 showed gas saturation levels of 90% at in-situ reservoir conditions. Methane content was 92–96% and carbon dioxide levels were less than 2%. Isotopic studies on the methane confirmed the thermogenic origin of the gas, as anticipated based on the coal rank. The coal seams were fracture stimulated using 50/50 nitrogen and fresh water along with 9 to 12 tons of 12/20 mesh sand used as a proppant. It is believed that the coals were not stimulated properly because of the small proppant volume and the complex — and often unpredictable — fracture pattern in coals, particularly in the Inner Foothills region that has high stress anisotropy. An injectivity test showed coal absolute permeability to be less than 1 mD, the skin to be −  2 (indicating a slightly damaged coal) and water saturation in the cleats to be 90%. A four-month production test was conducted; gas rates declined from 930 to 310 m3/d (33 to 11 MCFD) and water rates were low (< 5 BWD). Produced water was saline (TDS was 20,000 mg/L) and high in chloride and bicarbonate ions. Production testing was followed by history matching and numerical simulation, which consisted of numerous vertical and horizontal well development scenarios and other parameters. Simulating multiple parallel horizontal wells in the Gates coals resulted in the highest peak gas production rates, cumulative production and recovery efficiencies, in agreement with public data from the Mannville coals in the deeper part of the Alberta Syncline. The positive effect of constructive interference in depressurizing the coal reservoirs and accelerating gas production over short periods of time was demonstrated. Coal quality data from a nearby underground mine shows that drilling horizontal wellbores in the Gates coals would be challenging because of unfavourable geomechanical properties, such as low cohesion and unconfined compressive strength values, and structural complexity.  相似文献   

2.
Accurate prediction of in-situ stress directions plays a key role in any Coal Bed Methane (CBM) exploration and exploitation project in order to estimate the production potential of the CBM reservoirs. Permeability is one of the most important factors for determination of CBM productivity. The coal seams in Jharia coalfield generally show low permeability in the range of 0.5 md to 3 md. To estimate the in-situ stress direction in the study area, an attempt has been made to undertake the cleat orientation mapping of four regional coal seams of two underground coal mines located at south-eastern part of Jharia coalfield, India. Cleat orientation mapping is critical to determine the maximum principal compressive horizontal stress (SH) direction for CBM exploration and exploitation, which in turn controls the direction of maximum gas or water flow though coal beds. From the field study it is found that the average face and butt cleat azimuths are towards N15°W and N75°E respectively. Average permeability of the four above-mentioned major coal seams has been calculated from well logs of nine CBM wells distributing over an area of 7.5 km2, adjacent to the underground mines. The cleat orientations are congruous with the regional lineament pattern and fits well with the average permeability contour map of the study area to infer the orientation of in-situ maximum horizontal stress. Goodness of fit for the exponential regressions between vertical stress and permeability for individual coal seams varies between 0.6 and 0.84. The cleat orientation is further validated from the previous fracture analysis using FMI well log in Parbatpur area located southern part of the Jharia coalfield. The major coal seams under the study area exhibit directional permeability, with the maximum permeability, oriented parallel to the direction of face cleat orientation.  相似文献   

3.
广西合山晚二叠世碳酸盐岩型煤系层序地层分析   总被引:21,自引:2,他引:21  
广西合山煤田晚二叠世合山组是在浅水碳酸盐台地背景下形成的典型的碳酸盐岩型含煤岩系 ,其沉积环境有滨外陆棚、生物礁、开阔台地、潮坪和泥炭沼泽等。在包括合山组和大隆组在内的整个晚二叠世地层中 ,可以识别出5个层序界面 ,并可根据这些层序界面将区内上二叠统划分为 4个层序。层序 从合山组底面到合山组下段顶部的四 下 煤层底板硅质岩层之底面 ;层序 包括从四 下 煤底板到四 上 煤底板的一套地层 ;层序 为从四 上 煤层底板到二煤层之下铝土质泥岩底板的序列 ;层序 包括从合山组二煤层之下铝土质泥岩底板到大隆组之顶。其中层序 、层序 和层序 厚度在合山煤田范围内变化较大 ,说明受盆地基底沉降作用控制强烈 ,层序 则表现为多次的煤层-石灰岩旋回性 ,并且在合山煤田甚至桂中地区稳定分布 ,说明可能主要受全球海平面变化控制。与滨海平原靠陆一侧的冲积体系的陆源碎屑岩含煤岩系不同 ,陆表海碳酸盐岩型煤系三级层序中的最大海泛带底部以该层序中向上变薄至最薄的一层煤的底面为代表 ,如研究区三 中 煤层底面即为层序 中的最大海泛带底部 ,其下为三级层序中的海侵体系域 ,其上为高位体系域。三级层序中有包含四 上 、三 下 、三 中 、三 上 等煤层为界的 4个四级层序 ,每个四级层序中发育  相似文献   

4.
Petrographic investigations of serial ply samples from five high- to medium-volatile bituminous coal seams from Australia (4) and Canada (1) reveal substantial in-seam variations in the reflectance and monochromatic microfluorescence intensities of the maceral subgroup telovitrinite. The variations consist of one case of reflectance enhancement and fluorescence suppression, and four cases of reflectance suppression and fluorescence enhancement. The single case of reflectance enhancement and fluorescence suppression is due to the oxidation of the vitrinite nuclei at the sequence boundary between the Bayswater and Upper Wynn seams in New South Wales. The four cases of reflectance suppression and fluorescence enhancement result from the syn- and epigenetic absorption by the vitrinite nuclei of hydrogen donated by, presumably, anaerobic bacteria-generated lipids. Two of the coals are marine-influenced: the Liskeard Seam from the Bowen Basin by combined syngenetic and epigenetic effects, and the Greta Seam from the Sydney Basin mainly by epigenetic contact with sea water. For both coals, the results are strong vitrinite reflectance suppression and fluorescence enhancement. The remaining two coals, the Bulli Seam from the Sydney Basin and a coal seam from the Gates Formation in British Columbia, show moderate epigenetic effects on the optical properties of telovitrinite by fresh-water. In the Bulli Seam which was studied in two adjacent localities, the reflectance suppression and fluorescence enhancement of telovitrinite are stronger under sandstone roof than under shale roof. In some cases, the epigenetic effects are superimposed on syngenetic telovitrinite reflectance and fluorescence variations resulting from the cogeneration and mixing of different telovitrinite precursors, for example, autochthonous roots and hypautochthonous or allochthonous shoots. A measure of the degree of dispersal and mixing is the coefficient of variation of telovitrinite reflectance and/or fluorescence. This coefficient correlates well with detrital minerals and dispersed macerals, e.g., inertodetrinite and, to a lesser extent, sporinite. Some comments are made on slitted so-called pseudovitrinite which is regarded as a telovitrinite that was subjected to very weak post-coalification desiccation and possibly oxidation without losing much of its thermoplastic properties.  相似文献   

5.
Coal mine gas management has evolved from being predominantly dependant on mine ventilation systems to utilising sophisticated surface based directional drilling for pre-drainage of coal seams. However the advent of enhanced gas recovery techniques in the coalbed methane industry has provided an opportunity to address gas management objectives hitherto impractical. Specifically: achieving very low residual gas contents to mitigate against frictional ignitions and fugitive emissions; the means to accelerate gas drainage to accommodate mine schedule changes; and to enable pre-drainage of coal reserves with very low permeability. This article examines a possible enhanced gas recovery field trial at an Australian mine site. Production data from four surface to inseam medium radius gas drainage boreholes was modelled and history matched. The resulting reservoir characteristics were then used to model the performance of the boreholes using an enhanced recovery technique. One of the boreholes is modelled as an (nitrogen) injection well and two flanking wells are modelled as production wells.The model results suggest that accelerated gas flow rates as well as very low residual gas contents are achievable using typical coal mine gas drainage infrastructure and goaf inertisation systems.  相似文献   

6.
CO2相变致裂是一种高效增渗、增抽和消突的新型煤矿瓦斯治理技术,应用效果显著。该技术的核心是高压动力载荷作用于煤层的强化造缝及其卸压增渗效应。然而,新生裂缝的形貌特征以及破坏成因机制研究薄弱。目前井下厘米—米级尺度裂缝的观察和描述,主要用于揭示煤层的造缝增透机理。更小尺度的微米级显微裂隙研究,可更系统和全面描述裂缝的形貌和发育规律,揭示CO2相变致裂作用下煤的破坏机理。应用自行研制的高压CO2冲击大型物模试验装置系统,对无烟煤试件进行了120 MPa高压CO2冲击,基于场发射扫描电镜(FESEM)的观察,研究了微米级裂隙特征、发育规律及其形成机理。结果表明:(1)致裂后煤样的割理系统充分沟通,形成多尺度的复杂微裂隙网络。(2)煤基质破碎并发育大量微米尺度的新生显微构造,发现了3种典型显微构造是“损伤坑”“三翼型”裂隙和“页理状构造”。(3) CO2的超临界相、气相、或者二者的混合相态冲击破碎近喷孔端煤样,冲击波可能是试件远端破坏造缝的主要力学机制。(4)显微构造的形成和损伤演化...  相似文献   

7.
煤层注水的水气驱替理论研究   总被引:7,自引:0,他引:7  
煤层注水是世界上煤矿矿井防治冲击地压的首选措施。而注水时间、流量、压力等注水工艺参数选择是决定注水防治冲击地压效果的关键。煤层注水过程中水在煤层中渗流的规律是选择注水工艺参数的理论依据。由于煤层孔隙、裂隙中充满气体,煤层注水实际上是水替代气的水驱气的渗流过程。但迄今为止的研究均视为水在煤体中渗流的研究。与实际相距甚远。论文首先分析了煤层注水防治冲击地压的机理,注水使得煤层软化,达到峰值强度后煤体抵抗变形能力随应变降低的幅度减小,即强度后应力-应变曲线变缓。然后根据煤层注水是水驱气过程,将煤层注水视为水气驱替的有动界面的渗流问题研究。将煤层视为各向同性的孔隙介质,分别按照水驱气由钻孔径向周边流动的平面径向流和由钻孔沿煤层平行流动的平面平行流两种情况,建立了水驱气的微分方程,给出了定解条件,并进行求解,得到了不同时间水锋面到达的位置即水注满煤层孔隙的范围。从而可以根据需要注水的范围求出需要提前的注水时间和注水量。为煤层注水预防冲击地压的工艺参数选择提供了科学依据和理论支撑。  相似文献   

8.
煤的孔隙-裂隙结构特征是研究储层渗透性的关键问题。为了定量描述孔隙-裂隙结构的复杂程度,以黄陇侏罗纪煤田永陇矿区郭家河井田原生结构煤和碎裂结构煤为研究对象,基于压汞实验数据和扫描电镜(SEM)图像,采用Menger分形模型和计盒维数方法,分别计算不同煤体结构煤的孔隙-裂隙分形维数;同时采用不同孔径段的孔隙体积比作为权重值,计算得到孔隙综合分形维数,探讨孔隙-裂隙结构分形维数和渗透率之间的关系。研究结果表明,脆性构造变形作用对孔隙整体复杂性,裂隙孔、渗流孔复杂性以及微观裂隙复杂程度均具有积极改造作用,对吸附孔结构复杂性具有均一化作用;微观裂隙分形维数与渗透率具有较高非线性关系,脆性构造作用改造下形成的碎裂煤,其具有的孔隙-裂隙结构优势配比是决定储层高渗透性的关键。因此,建议优先考虑弱脆性变形的碎裂结构煤为主体的断层、向斜和背斜区域进行煤层气抽采。   相似文献   

9.
煤层流变及其与煤矿瓦斯突出的关系—以淮北海孜煤矿为例   总被引:16,自引:0,他引:16  
琚宜文  王桂梁 《地质论评》2002,48(1):96-105
复杂地质条件下煤层受层间滑动作用容易发生流变。本文以淮北海孜煤矿为例,详细分析了煤层流变所引起的煤层形变宏观、微观及构造煤特征,总结了煤层流变构造发育的规律。煤层流变引起煤层形态、煤厚及煤体结构的变化,并形成各种构造煤。利用煤镜质组光率体各向异性进行了应力、有限应变分析,探讨了煤层流变机制是以剪切为主,伴有挤压的后期构造作用。海孜煤矿构造活动具有多期性,但煤层受力的主要方向始终为NW-SE向,这与煤层发生流变形成总体NE-SW向增厚变薄带的展布方向是一致的。已采区的煤层流变有:韧性流变、脆性流变及韧脆性流变。煤层流变引起的厚度变化和煤体结构的破坏是造成煤矿瓦斯突出的主要因素。  相似文献   

10.
The Gunnedah Basin, NSW, Australia, contains more than 500 Gt of coal, and has been the subject of recent coalbed methane exploration. Large areas of the basin contain igneous intrusions and large areas of coal have been heat-affected as a consequence. A detailed study has been undertaken of coal seams intersected in a cored coalbed methane exploration drillhole in which two sill-form igneous intrusions are present. Comparisons are made between coals that are unaltered and coals that have been heat-affected, using petrographic and chemical data, coal seam gas desorption data, and gas chemical analysis data.Results demonstrate that the two igneous intrusions have had a very positive effect on coalbed methane development. The gas content in a number of heat-affected coal seams within thermal aureoles above and below the sills is substantially higher than in adjacent unaffected coal seams. In addition, the intrusions have had little effect on gas quality. The coals in the heat-affected zone were found to contain gas with approximately 95% methane. The coals in the thermal aureoles were found, under the microscope, to contain characteristic micropores and slits, which collectively may serve to enhance gas adsorption capacity, permeability, and gas desorption. Gas contents below each of the sills is substantially higher than above the sill, confirming earlier results that the sills appear to have acted as a reservoir seal, during and for some time after intrusion. The background coal rank in ACM Yannergee DDH 1 is in the high-volatile bituminous range. The igneous intrusions have resulted in an increase in rank such that large areas of coal have moved into the optimal thermogenic gas generation window. This rank increase has affected a major part of the coal-bearing sequence.  相似文献   

11.
针对黄陇侏罗纪煤田中硬煤层渗透性差、瓦斯抽采浓度及流量衰减速度快等问题,利用自主研发的水力压裂成套工艺设备,提出煤层定向长钻孔水力压裂瓦斯高效抽采技术,并在黄陇煤田黄陵二号煤矿进行工程应用试验。现场共完成5个定向长钻孔钻探施工,单孔孔深240~285 m,总进尺1 320 m;采用整体压裂工艺对5个本煤层钻孔进行压裂施工,累计压裂液用量1 557.5 m3,单孔最大泵注压力19 MPa;压裂后单孔瓦斯抽采浓度及百米抽采纯量分别提升0.7~20.5倍、1.7~9.8倍;相比于普通钻孔,压裂孔瓦斯初始涌出强度提升2.1倍,钻孔瓦斯流量衰减系数降低39.6%。试验结果表明:采取水力压裂增透措施后,瓦斯抽采效果得到显著提升,煤层瓦斯可抽采性增加,为类似矿区低渗煤层瓦斯高效抽采提供了技术支撑。   相似文献   

12.
Six samples of Carboniferous (Mississippian–Pennsylvanian) coal (Seam 9-3) and 11 samples of Permian coal (Seam 2) from the Xingtai Coalfield were studied by petrological and organic geochemical methods. Both seams show different petrological and geochemical compositions. In Seam 9-3 of the Carboniferous age, the predominant maceral is vitrinite (83%) whereas in Seam 2 of Permian age, inertinite predominates (45%). “Barkinite” was found with an average content 1% only in Seam 2. Sixty-four different aromatic compounds were identified by gas chromatography (GC)/mass spectrometry (MS) analysis of solvent extracts (Extr) of both seams. Abundant polyaromatic sulfur hydrocarbons (PASH) were determined in coal samples from Seam 9-3, while they are very low in samples from Seam 2. 1,2,5-Trimethylnaphthalene and 1,2,5,6-tetramethylnaphthalene contents are much higher in Seam 2, while 2-methylfluorene contents are higher in Seam 9-3. Cadalene was found in Seam 2 with a high content of 94 mg/kg coal but was not detected in samples from Seam 9-3. This might indicate a different floral contribution to the sedimentary organic matter. All petrologic and geochemical results indicate that Seam 2 formed in a more oxidized environment compared with Seam 9-3.  相似文献   

13.
韩城矿区碎软煤层发育,煤层透气性差,本煤层钻孔钻进困难,瓦斯抽采效果差。顶板梳状孔水力压裂技术结合了水力压裂技术和定向钻进技术二者的优势,是解决碎软低渗煤层瓦斯抽采难题的有效技术途径。在韩城矿区王峰煤矿3号煤层顶板粉砂岩中施工长钻孔并向煤层开分支,采用套管+封隔器座封的整体压裂方式进行水力压裂工程试验。钻孔总长度344 m,有效压裂长度284 m,累计注水量874.79 m3,最大泵注压力9.4 MPa。试验结束后对钻孔瓦斯抽采相关参数连续监测86 d,钻孔瓦斯抽采体积分数27%~51%,平均42.11%,钻孔瓦斯抽采纯量8.25~21.41 m3/min,平均17.02 m3/min,钻孔累计抽采瓦斯量约210万m3。与常规的穿层钻孔水力冲孔技术相比,该技术百米钻孔瓦斯抽采量提高了11.48倍,初步证明了该技术在碎软煤层瓦斯强化抽采领域的适用性。   相似文献   

14.
芦岭煤矿地面煤层气开发选区评价研究   总被引:2,自引:0,他引:2  
芦岭煤矿是我国典型的高瓦斯突出矿井,煤层变形复杂,含气量高,渗透率低,煤层气丰度高,抽采难度大,有利区块优选对于煤与煤层气协调开发至关重要。在深刻剖析构造、煤厚、气含量等储层地质特征、研究影响主采煤层煤层气运移富集地质因素的基础上,运用层次分析法计算出各影响因素的权重,通过综合定量评价.提出煤矿北部C区是地面煤层气开发的最有利块段。  相似文献   

15.
以榆神矿区区域地质资料为依据,总结了该区煤层与含(隔)水层空间组合类型; 采用三维数值模拟方法,根据塑性条件、破坏准则及应力判别,模拟首采煤层与含(隔)水层空间组合类型下导水裂隙带高度; 通过对比钻孔探测法与数值模拟法,发现数值模拟法具有可行性; 利用模拟结果,绘制矿区导水裂隙带高度空间分布图,总结矿区导水裂隙带高度的整体分布规律; 对比导水裂隙带高度与其首采煤层上覆岩层厚度,总结矿区采煤失水危险性,并进行采煤失水危险性分区; 通过控制采煤失水危险区域的采厚可以达到“保水采煤”的效果。本研究对榆神矿区后期安全生产具有重要的理论意义与实际价值。  相似文献   

16.
Because of the short supply of high-quality coking coals in certain areas of the world, many methods of improving the coking characteristics of poorly coking or noncoking coals have been examined as alternatives to importing more expensive, better quality coals. Co-carbonization, or the addition of coal-derived or petroleum-derived materials to the coal charge prior to carbonization, has been used on a commercial basis in the Japanese coking industry. These additives have been used in both solid and liquid form as binders in coal briquettes or as direct additions to the coal blend.In this study three different coal lithotypes were sampled from each of three United States bituminous coal seams: (1) a marginally coking high-volatile B-rank Illinois No. 6 Seam; (2) a highly fluid, good coking quality, high-volatile A-rank Pittsburgh Seam; and (3) a strongly coking low-volatile Blue Creek Seam. Each lithotype sample was carbonized in small-scale (50 g) charges with each of three additives at 0, 2, 5, and 10% additive by weight. The additives included ASP, an asphalt pitch; KRP, a petroleum residue pitch; and SRC, a solvent-refined coal product. The different lithotypes were sampled to examine the effects of coal type as well as rank. A micro-tumbler test was used to give at least a relative coke-strength value for the cokes produced. In addition, all the cokes produced were examined microscopically to determine the effects of co-carbonization on the coke structure.The Illinois No. 6, Pittsburgh, and Blue Creek Seam coals all showed substantial strength increases when co-carbonized with 2, 5, and 10% of each of the three additives, particularly at the 5 and 10% levels. The SRC appears to be the best additive overall for the three ranks of coal, as judged by its ability to combine with the coal to make a higher strength coke. There appear to be no conclusive coke-strength differences among lithotype samples for any of the three coals, probably because of the small scale of the tests and the relatively small differences in inert maceral content among the lithotypes. Five percent by weight of additive appears to be sufficient, if properly blended with the coal charge, to produce higher strength cokes. This is also probably the maximum economically viable level, particularly in the United States coking industry. Two percent is probably the minimum additive level for adequate mixing on a commercial scale.  相似文献   

17.
通过对焦坪矿区下石节煤矿JPC-01井煤储层基本参数进行分析,认为本区为地温正常区欠压储层,煤层吸附能力为低~中等,含气饱和度偏低,煤层处于欠饱和状态,含气量较小;由于煤体结构主体为原生结构煤,渗透性相对较好。虽然煤的变质程度较低(不粘煤),但矿区构造简单,主要煤层厚度大,排水采气地面抽采试验显示,该井创造了我国在侏罗纪低煤级低含气量煤层中日产气超过1 000m3的记录,煤层气资源潜力较大。建议进一步开展煤层气地面抽采试验工作,为矿区瓦斯治理,探索地面瓦斯预抽采开辟新的途径。  相似文献   

18.
韩城矿区为我国煤层气勘查的重要区块,WL1井组位于象山煤矿西侧,区内煤层厚度大、发育稳定。根据WL1井组获得的煤储层参数可知,该区的煤层煤化程度R0为1.85%~2.05%,煤储层压力2.39~2.65MPa,渗透率为0.22~3.50mD,3号、5号、11号煤层含气量分别为8.38、8.46和6.63m3/t。区内构造简单,含煤地层富水性弱-中等。综合区内地质条件分析认为,韩城WL1井组是具有煤层气开发、生产潜力的区块之一。  相似文献   

19.
陕北浅埋煤层开采引起了一系列的生态环境问题,保水采煤成为陕北乃至整个西北地区煤炭资源科学开采的关键。以神南矿区为例,研究了黄土、红土隔水层的隔水性及采煤对其隔水性的影响。神南矿区砂土基型煤层的保水开采的关键隔水层为上覆粘土层,室内、外试验显示:粘土层失稳后流量猛增形成裂隙流,不利于保水采煤;黄土受地面张裂隙发育的剪切作用处于破碎状态,采动后渗透系数表现为数个数量级的变化;红土处于整体下沉带,受附加应力影响表现出较大的塑性变形,采动后渗透性减小,有利于保水采煤。为实现保水采煤,保证粘土层整体不失稳,宜采用回填采空区技术对地面沉降以及土体围压进行控制,当地面沉降量减小时黄土层可保持不失稳,当侧限应力存在时粘土层的稳定性亦可以保持。  相似文献   

20.
煤层割理的形成机理及在煤层气勘探开发评价中的意义   总被引:14,自引:0,他引:14  
在系统研究鄂尔多斯东缘晚古生代煤层割理的基础上,结合煤化作用和油气生成研究新成果,对煤层割理的形成机理进行了探讨。认为割理是煤化作用过程中,煤因生成水、烃及其它气体而产生收缩内应力和高孔隙流体压力,当其超过煤的力学强度时,致使煤发生张性破裂而形成。割理的原始走向受割理形成时期的古地应力场控制。进而指出中变质光亮煤和半亮煤中割理最发育,因此这些煤层分布区是煤层气勘探开发的优选靶区。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号