首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Mineral exploration of prospective areas concealed by extensive post-mineralization cover is growing, being very complex and expensive. The projection of rich and giant Paleocene to early Oligocene porphyry-Cu-Mo belts in northernmost Chilean Andes (17.5–19.5°S) has major exploration potential, but only a few minor deposits have been reported to date, due to the fact that the area is largely covered by post-mineral strata. We integrate the Cenozoic stratigraphic, structural and metallogenic evolution of this sector, in order to identify the most promising regions related to lesser post-mineral cover and the projection of different metallogenic belts. The Paleocene to early Eocene metallogenic belt extends along the Precordillera, with ca. 30 km wide, and includes porphyry-Cu prospects and small Cu (±Mo-Au-Ag) vein and breccia-pipe deposits. Geochronological data indicate an age of 55.5 Ma for an intrusion related to one deposit and ages from 69.5 to 54.5 Ma for hydrothermal alteration in one porphyry-Cu prospect and largest known Cu deposits. The middle Eocene to early Oligocene porphyry belt, in the Western Cordillera farther east, is associated with 46–44 Ma intrusions. It is estimated to be 40-km wide, but is largely concealed by thick post-mineral cover. The youngest Miocene to early Pliocene metallogenic belt, also in the Western Cordillera, is well-exposed and includes Au-Ag epithermal and polymetallic veins and manto-type deposits.The Oligocene-Holocene cover consists of a succession of continental sedimentary and volcanic rocks that overall increase in thickness from 0 to 5000 m, from west to east. These strata are subhorizontal in the west and folded-faulted towards the east. Miocene gentle anticlines and monocline flexures extend along strike for 30–60 km in the Precordillera and were generated by propagation of high-angle east-dipping blind reverse faults with at least 300–900 m of Oligocene bedrock offset. The thickness of cover exceeds 2000 m in the eastern Central Depression, whereas it is generally less than 1000 m in the Precordillera along the Paleocene to early Eocene porphyry-Cu belt and it can reach locally up to 5000 m in the Western Cordillera, above the middle Eocene to early Oligocene belt.In the studied Andean segment, the Miocene to early Pliocene metallogenic belt is superimposed on the Paleocene to Oligocene belts in a 40–50 km wide zone. This overlap may be explained by an accentuated migration of the magmatic front, from east to west, since ca. 25 Ma, as a consequence of subduction slab steepening after a period of magmatic lull and flat subduction from ca. 30–35 to 25 Ma. The identified areas of lesser cover thickness are prone to exploration for concealed deposits, especially along the projection of major porphyry-Cu-Mo belts.  相似文献   

2.
New Rb–Sr age determinations using macrocrystal phlogopite are presented for 27 kimberlites from the Ekati property of the Lac de Gras region, Slave Province, Canada. These new data show that kimberlite magmatism at Ekati ranges in age from at least Late Paleocene (61 Ma) to Middle Eocene time (45 Ma). Older, perovskite-bearing kimberlites from Ekati extend this age range to Late Cretaceous time (74 Ma). Within this age range, emplacement episodes at 48, 51–53, 55–56 and 59–61 Ma can be recognized. Middle Eocene kimberlite magmatism of the previously dated Mark kimberlite (47.5 Ma) is shown to include four other pipes from the east-central Ekati property. A single kimberlite (Aaron) may be younger than the 47.5 Ma Mark kimberlite. The economically important Panda kimberlite is precisely dated in this study to be 53.3±0.6 Ma using the phlogopite isochron method, and up to six additional kimberlites from the central Ekati property have Early Eocene ages indistinguishable from that of Panda, including the Koala and Koala North occurrences. Late Paleocene 55–56 Ma kimberlite magmatism, represented by the Diavik kimberlite pipes adjacent to the southeastern Ekati property, is shown to extend onto the southeastern Ekati property and includes three, and possibly four, kimberlites. A precise eight-point phlogopite isochron for the Cobra South kimberlite yields an emplacement age of 59.7±0.4 Ma; eight other kimberlites from across the Ekati property have similar Late Paleocene Rb–Sr model ages. The addition of 27 new emplacement ages for kimberlites from the Ekati property confirms that kimberlite magmatism from the central Slave Province is geologically young, despite ages ranging back to Cambrian time from elsewhere in the Slave Province. With the available geochronologic database, Lac de Gras kimberlites with the highest diamond potential are currently restricted to the 51–53 and 55–56 Ma periods of kimberlite magmatism.  相似文献   

3.
Highly elevated and well-preserved peneplains are characteristic geomorphic features of the Tibetan plateau in the northern Lhasa Terrane, north–northwest of Nam Co. The peneplains were carved in granitoids and in their metasedimentary host formations. We use multi-method geochronology (zircon U–Pb and [U–Th]/He dating and apatite fission track and [U–Th]/He dating) to constrain the post-emplacement thermal history of the granitoids and the timing and rate of final exhumation of the peneplain areas. LA-ICP-MS U–Pb geochronology of zircons yields two narrow age groups for the intrusions at around 118 Ma and 85 Ma, and a third group records Paleocene volcanic activity (63–58 Ma) in the Nam Co area. The low-temperature thermochronometers indicate common age groups for the entire Nam Co area: zircon (U–Th)/He ages cluster around 75 Ma, apatite fission track ages around 60 Ma and apatite (U–Th)/He ages around 50 Ma. Modelling of the thermochronological data indicates that exhumation of the basement blocks took place in latest Cretaceous to earliest Paleogene time. By Middle Eocene time the relief was already flat, documented by a thin alluvial sediment sequence covering a part of the planated area. The present-day horst and graben structure of the peneplains is a Late Cenozoic feature triggered by E–W extension of the Tibetan Plateau. The new thermochronological data precisely bracket the age of the planation to Early Eocene, i.e. between ca. 55 and 45 Ma. The erosional base level can be deduced from the presence of Early Cretaceous zircon grains in Eocene strata of Bengal Basin. The sediment generated during exhumation of the Nam Co area was transported by an Early Cenozoic river system into the ocean, suggesting that planation occurred at low elevation.  相似文献   

4.
Distribution of water among the main rock-forming nominally anhydrous minerals of mantle xenoliths of peridotitic and eclogitic parageneses from the Udachnaya kimberlite pipe, Yakutia, has been studied by IR spectroscopy. The spectra of all minerals exhibit vibrations attributed to hydroxyl structural defects. The content of H2O (ppm) in minerals of peridotites is as follows: 23–75 in olivine, 52–317 in orthopyroxene, 29–126 in clinopyroxene, and 0–95 in garnet. In eclogites, garnet contains up to 833 ppm H2O, and clinopyroxene, up to 1898 ppm (~ 0.19 wt.%). The obtained data and the results of previous studies of minerals of mantle xenoliths show wide variations in H2O contents both within different kimberlite provinces and within the Udachnaya kimberlite pipe. Judging from the volume ratios of mineral phases in the studied xenoliths, the water content varies over narrow ranges of values, 38–126 ppm. At the same time, the water content in the studied eclogite xenoliths is much higher and varies widely, 391–1112 ppm.  相似文献   

5.
《Lithos》2007,93(1-2):175-198
The Neoproterozoic (∼ 820 Ma) Aries micaceous kimberlite intrudes the central Kimberley Basin, northern Western Australia, and has yielded a suite of 27 serpentinised ultramafic xenoliths, including spinel-bearing and rare, metasomatised, phlogopite–biotite and rutile-bearing types, along with minor granite xenoliths. Proton-microprobe trace-element analysis of pyrope and chromian spinel grains derived from heavy mineral concentrates from the kimberlite has been used to define a ∼ 35–40 mW/m2 Proterozoic geotherm for the central Kimberley Craton. Lherzolitic chromian pyrope highly depleted in Zr and Y, and Cr-rich magnesiochromite xenocrysts (class 1), probably were derived from depleted garnet peridotite mantle at ∼ 150 km depth. Sampling of shallower levels of the lithospheric mantle by kimberlite magmas in the north and north-extension lobes entrained high-Fe chromite xenocrysts (class 2), and aluminous spinel-bearing xenoliths, where both spinel compositions are anomalously Fe-rich for spinels from mantle xenoliths. This Fe-enrichment may have resulted from Fe–Mg exchange with olivine during slow cooling of the peridotite host rocks. Fine exsolution rods of aluminous spinel in diopside and zircon in rutile grains in spinel- and rutile-bearing serpentinised ultramafic xenoliths, respectively, suggest nearly isobaric cooling of host rocks in the lithospheric mantle, and indicate that at least some aluminous spinel in spinel-facies peridotites formed through exsolution from chromian diopside. Fe–Ti-rich metasomatism in the spinel-facies Kimberley mantle probably produced high-Ti phlogopite–biotite + rutile and Ti, V, Zn, Ni-enriched aluminous spinel ± ilmenite associations in several ultramafic xenoliths. U–Pb SHRIMP 207Pb/206Pb zircon ages for one granite (1851 ± 10 Ma) and two serpentinised ultramafic xenoliths (1845 ± 30 Ma; 1861 ± 31 Ma) indicate that the granitic basement and lower crust beneath the central Kimberley Basin are at least Palaeoproterozoic in age. However, Hf-isotope analyses of the zircons in the ultramafic xenoliths suggest that the underlying lithospheric mantle is at least late Archean in age.  相似文献   

6.
Organic-rich mudstones with up to 10 wt% TOC from the upper portion of the Belle Fourche Formation and the lower part of the Second White Specks Formation in the Western Canada Sedimentary Basin were evaluated as source rocks. Both geochemistry and organic petrography indicate an open marine paleoenvironment with deposition of Type II kerogen based on the predominance of marine alginite and amorphous organic matter (OM), limited amounts of terrigenous vitrinite and inertinite macerals, the presence of marine fossils, and the low ratio of TOC to total sulfur (∼1.26). The prevalence of short-chain n-alkanes (n-C13 to n-C19), a predominance of C28 αββ(H)-20S steranes, and small concentrations of oleanane confirm the dominantly algal and planktonic origin of OM. Alternating oxic to anoxic paleoenvironmental sedimentary conditions are proposed based on common bioturbation, abundant inoceramid prisms, and good organic richness. Biomarker distributions are consistent with intermittent anoxia, without unequivocal evidence for water column stratification or hypersalinity. The thermal maturity measured in seven sediment cores by different methods consistently indicates a westward increase in maturity according to vitrinite reflectance, Tmax, and hopane and sterane biomarkers. Two cores are thermally immature (∼0.42 %Ro), one is early mature (∼0.65 %Ro), and four cores are within the oil window (∼0.78 to 0.89 %Ro). All thermally mature cores retain good to very good hydrocarbon potential (248 mg HC/g rock) and are dominantly oil-prone and minor gas-prone based on their maceral compositions. The upper Belle Fourche and lower Second White Specks Formations represent potential targets for unconventional light shale oil production.  相似文献   

7.
Middle to upper Eocene fluvial strata in the island of Bonaire contain detrital components that were tracked to Precambrian to Triassic massifs in northern Colombia and Venezuela. These detrital components confirm previous hypothesis suggesting that Bonaire and the Leeward Antilles were attached to South American basement massifs (SABM). These are composed of different fragmented South American blocks (Paraguana, Falcon, Maracaibo, Guajira, Perija, and Santa Marta) representing an Eocene, right-laterally displaced tectonic piercing point along the southern Caribbean plate margin. U–Pb LA-ICP-MS from the metamorphic boulders of the Soebi Blanco Formation in Bonaire yield Grenvillian peaks ages (1000–1200 Ma), while detrital zircons recovered from the sandy matrix of the conglomerates contain populations with peaks of 1000 Ma–1200 Ma, 750–950 Ma, and 200–300 Ma. These populations match with geochronological data reported for the northern South American massifs. Thermochronological results from the metamorphic clasts yield Paleocene–middle Eocene ages (65–50 Ma) that confirm a regional-scale cooling event in this time. These data imply a land connection between the SABM and the Leeward Antilles in late Eocene times, followed by a significant strike slip right-lateral displacement and transtensional basin opening starting in latest Eocene times. The succession of Eocene tectonic events recorded by the Soebi Blanco Formation and adjacent basins is a major tracer of the oblique convergence of the Caribbean plate against the South American margin.  相似文献   

8.
New zircon U–Pb data, along with the data reported in the literature, reveal five phases of magmatic activity in the Tengchong Terrane since the Early Paleozoic with spatial and temporal variations summarized as Cambrian–Ordovician (500–460 Ma) to the east, minor Triassic (245–206 Ma) in the east and west, abundant Early Cretaceous (131–114 Ma) in the east, extensive Late Cretaceous (77–65 Ma) in the central region, and Paleocene–Eocene (65–49 Ma) in the central and western Tengchong Terrane, in which the Cretaceous–Eocene magmatism migrated from east to west. The increased zircon εHf(t) of the Early Cretaceous granitoids from − 12.3 to − 1.4 at ca. 131–122 Ma to − 4.6 to + 7.1 at ca. 122–114 Ma, identified for the first time in this study, and the magmatic flare-up at ca. 53 Ma in the central and western Tengchong Terrane indicate increased contributions from mantle- or juvenile crust-derived components. The spatial and temporal variations and changing magmatic compositions over time in the Tengchong Terrane closely resemble those of the Lhasa Terrane in southern Tibet. Such similarities, together with the data of stratigraphy and paleobiogeography, enable us to propose that the Tengchong Terrane in SW Yunnan is most likely linked with the Lhasa Terrane in southern Tibet, both of which experienced similar tectonomagmatic histories since the Early Paleozoic.  相似文献   

9.
We report groundmass perovskite U–Pb (SIMS) ages, perovskite Nd isotopic (LA-ICPMS) composition and bulk-rock geochemical data of the Timmasamudram diamondiferous kimberlite cluster, Wajrakarur kimberlite field, in the Eastern Dharwar craton of southern India. The kimberlite pipes gave similar Mesoproterozoic ages of 1086 ± 19 Ma (TK-1, microcrystic variant) and 1119 ± 12 Ma (TK-3). However, a perovskite population sampled from the macrocrystic variant of TK-1 gave a much younger Late Cretaceous age of ca. 90 Ma. This macrocrystic kimberlite phase intrudes the Mesoproterozoic microcrystic phase and has a distinct bulk-rock geochemistry. The Nd-isotope composition of the ~ 1100 Ma perovskites in the cluster show depleted εNd(T) values of 2.1 ± 0.6 to 6.7 ± 0.3 whereas the ~ 90 Ma perovskites have enriched εNd(T) values of − 6.3 ± 1.3. The depleted-mantle (DM) model age of the Cretaceous perovskites is 1.2 Ga, whereas the DM model age of the Proterozoic perovskites is 1.2 to 1.5 Ga. Bulk-rock incompatible trace element ratios (La/Sm, Gd/Lu, La/Nb and Th/Nb) of all Timmasamudram kimberlites show strong affinity with those from the Cretaceous Group II kimberlites from the Bastar craton (India) and Kaapvaal craton (southern Africa). As the Late Cretaceous age of the younger perovskites from the TK-1 kimberlite is indistinguishable from that of the Marion hotspot-linked extrusive and intrusive igneous rocks from Madagascar and India, we infer that all may be part of a single Madagascar Large Igneous Province. Our finding constitutes the first report of Cretaceous kimberlite activity from southern India and has significant implications for its sub-continental lithospheric mantle evolution and diamond exploration programs.  相似文献   

10.
The Sylhet Basin of Bangladesh is a sub-basin of the Bengal Basin. It contains a very thick (up to 22 km) Tertiary stratigraphic succession consisting mainly of sandstones and mudstones. The Sylhet succession is divided into the Jaintia (Paleocene–late Eocene), Barail (late Eocene–early Miocene), Surma (middle–late Miocene), Tipam (late Miocene–Pliocene) and Dupitila Groups (Pliocene–Pleistocene), in ascending order. The origin of the organic matter (OM) and paleoenvironment of deposition have been evaluated on the basis of C, N, S elemental analysis, Rock-Eval pyrolysis and gas chromatography–mass spectrometry (GC–MS) analysis of 60 mudstone samples collected from drill core and surface outcrops. Total organic carbon (TOC) content ranges from 0.11% to 1.56%. Sulfur content is low in most samples. TOC content in the Sylhet succession varies systematically with sedimentation rate, with low TOC caused by clastic dilution produced by high sedimentation rates arising from rapid uplift and erosion of the Himalaya.The OM in the succession is characterized by systematic variations in pristane/phytane (Pr/Ph), oleanane/C30 hopane, n-C29/n-C19 alkane, Tm/Ts [17α(H)-22,29,30-trisnorhopane/18α(H)-22,29,30-trisnorhopane] and sterane C29/(C27 + C28 + C29) ratios during the middle Eocene to Pleistocene. Based on biomarker proxies, the depositional environment of the Sylhet succession can be divided into three phases. In the first (middle Eocene to early Miocene), deposition occurred completely in seawater-dominated oxic conditions, with abundant input of terrestrial higher plants, including angiosperms. The second phase (middle to late Miocene) consisted of mainly freshwater anoxic conditions along with a small seawater influence according to eustasic sea level change, with diluted OM derived from phytoplankton and a lesser influence from terrestrial higher plants. Oxygen-poor freshwater conditions prevailed in the third phase (post-late Miocene). Planktonic OM was relatively abundant in this stage, while a high angiosperm influx prevailed at times. Tmax values of ca. 450 °C, vitrinite reflectance (Ro) of ca. 0.66% and methylphenanthrene index (MPI 3) of ca. 1 indicate the OM to be mature. The lower part (middle Eocene to early Miocene) of the succession with moderate TOC content and predominantly terrestrial OM could have generated some condensates and oils in and around the study area.  相似文献   

11.
The Sebahat (Middle Miocene to Early Pliocene) and Ganduman (Early Pliocene to Late Pliocene) Formations comprise part of the Dent Group. The onshore Sebahat and Ganduman Formations form part of the sedimentary sequence within the Sandakan sub-basin which continues offshore in the southern portion of the Sulu Sea off Eastern Sabah. The Ganduman Formation lies conformably on the Sebahat Formation. The shaly Sebahat Formation represents a distal holomarine facies while the sandy Ganduman Formation represents the proximal unit of a fluvial–deltaic system.Based on organic geochemical and petrological analyses, both formations posses very variable TOC content in the range of 0.7–48 wt% for Sebahat Formation and 1–57 wt% for Ganduman Formation. Both formations are dominated by Type III kerogen, and are thus considered to be gas-prone based on HI vs. Tmax plots. Although the HI–Tmax diagram indicates a Type III kerogen, petrographic observations indicate a significant amount of oil-prone liptinite macerals. Petrographically, it was observed that significant amounts (1–17% by volume) of liptinite macerals are present in the Ganduman Formation with lesser amounts in the Sebahat Formation.Both formations are thermally immature with vitrinite reflectance values in the range of 0.20–0.35%Ro for Ganduman Formation and 0.25–0.44%Ro for Sebahat Formation. Although these onshore sediments are thermally immature for petroleum generation, the stratigraphic equivalent of these sediments offshore are known to have been buried to deeper depth and could therefore act as potential source rocks for gas with minor amounts of oil.  相似文献   

12.
We provide a synopsis of ~ 60 million years of life history in Neotropical lowlands, based on a comprehensive survey of the Cenozoic deposits along the Quebrada Cachiyacu near Contamana in Peruvian Amazonia. The 34 fossil-bearing localities identified have yielded a diversity of fossil remains, including vertebrates, mollusks, arthropods, plant fossils, and microorganisms, ranging from the early Paleocene to the late Miocene–?Pliocene (> 20 successive levels). This Cenozoic series includes the base of the Huchpayacu Formation (Fm.; early Paleocene; lacustrine/fluvial environments; charophyte-dominated assemblage), the Pozo Fm. (middle + ?late Eocene; marine then freshwater environments; most diversified biomes), and complete sections for the Chambira Fm. (late Oligocene–late early Miocene; freshwater environments; vertebrate-dominated faunas), the Pebas Fm. (late early to early late Miocene; freshwater environments with an increasing marine influence; excellent fossil record), and Ipururo Fm. (late Miocene–?Pliocene; fully fluvial environments; virtually no fossils preserved). At least 485 fossil species are recognized in the Contamana area (~ 250 ‘plants’, ~ 212 animals, and 23 foraminifera). Based on taxonomic lists from each stratigraphic interval, high-level taxonomic diversity remained fairly constant throughout the middle Eocene–Miocene interval (8-12 classes), ordinal diversity fluctuated to a greater degree, and family/species diversity generally declined, with a drastic drop in the early Miocene. The Paleocene–?Pliocene fossil assemblages from Contamana attest at least to four biogeographic histories inherited from (i) Mesozoic Gondwanan times, (ii) the Panamerican realm prior to (iii) the time of South America’s Cenozoic “splendid isolation”, and (iv) Neotropical ecosystems in the Americas. No direct evidence of any North American terrestrial immigrant has yet been recognized in the Miocene record at Contamana.  相似文献   

13.
Oxygen isotope signatures of ruby and sapphire megacrysts, combined with trace-element analysis, from the Mbuji-Mayi kimberlite, Democratic Republic of Congo, and the Changle alkali basalt, China, provide clues to specify their origin in the deep Earth. At Mbuji-Mayi, pink sapphires have δ18O values in the range 4.3 to 5.4‰ (N = 10) with a mean of 4.9 ± 0.4‰, and rubies from 5.5 to 5.6‰ (N = 3). The Ga/Mg ratio of pink sapphires is between 1.9 and 3.9, and in rubies, between 0.6 and 2.6. The blue or yellow sapphires from Changle have δ18O values from 4.6 to 5.2 ‰, with a mean of 4.9 ± 0.2‰ (N = 9). The Ga/Mg ratio is between 5.7 and 11.3. The homogenous isotopic composition of ruby suggests a derivation from upper mantle xenoliths (garnet lherzolite, pyroxenite) or metagabbros and/or lower crustal garnet clinopyroxenite eclogite-type xenoliths included in kimberlites. Data from the pink sapphires from Mbuji-Mayi suggest a mantle origin, but different probable protoliths: either subducted oceanic protolith transformed into eclogite with δ18O values buffered to the mantle value, or clinopyroxenite protoliths in peridotite. The Changle sapphires have a mantle O-isotope signature. They probably formed in syenitic magmas produced by low degree partial melting of a spinel lherzolite source. The kimberlite and the alkali basalt acted as gem conveyors from the upper mantle up to the surface.  相似文献   

14.
The Paleocene (66–56 Ma) was a critical time interval for understanding recovery from mass extinction in high palaeolatitudes when global climate was warmer than today. A unique sedimentary succession from Seymour Island (Antarctic Peninsula) provides key reference material from this important phase of the early Cenozoic. Dinoflagellate cyst data from a 376 m thick stratigraphical section, including the Cretaceous–Paleogene boundary, is correlated with biozones from New Zealand, the East Tasman Plateau and southeastern Australia. A detailed age model is suggested for the López de Bertodano (LDBF) and Sobral (SF) formations based on dinoflagellate cyst biostratigraphy and U–Pb dating of zircons, supported by correlated magnetostratigraphy and strontium isotope values from macrofossils. The top of the LDBF is confirmed as latest Maastrichtian to earliest Danian (~ 66.2–65.65 Ma) in age. The overlying SF is mostly Danian in age, with an inferred hiatus near the top overlain by sediments dated as ?late Thanetian. Rare Apectodinium homomorphum first appear in the uppermost SF; the earliest in situ record from Antarctica. The distribution of marine and terrestrial fossils from uppermost Cretaceous to Eocene sediments in Patagonia, Antarctica, New Zealand and Australia required both sea and land connections between these fragments of Gondwana. Fossil evidence and reconstructions of Antarctic palaeogeography and palaeotopography reveal evidence for persistent embayments in the proto-Weddell and Ross Sea regions at this time. We conclude that a coastal dispersal route along the palaeo-Pacific margin of Gondwana could explain the fossil distribution without requiring a transAntarctic strait or closely spaced archipelago. A region in the West to East Antarctic boundary zone, elevated until the early Paleogene, perhaps acted as a site for high elevation ice caps. This supports fossil, geochemical and sedimentological evidence for cold climate intervals and significant sea level falls during the Maastrichtian and Paleocene.  相似文献   

15.
With the aim of better understanding the history of ocean closure and suturing between India and Asia, we conducted a geologic investigation of a siliciclastic matrix tectonic mélange within the western Yarlung suture zone of southern Tibet (Lopu Range region, ~ 50 km northwest of Saga). The siliciclastic matrix mélange includes abundant blocks of ocean plate stratigraphy and sparse blocks of sandstone. Metapelite and metabasite blocks in the mélange exhibit lower greenschist facies mineral assemblages, indicating that they were not deeply subducted. We obtained detrital zircon U-Pb geochronologic and sandstone petrographic data from sandstone blocks in the mélange and sandstone beds from Tethyan Himalayan strata exposed to the south of the suture. The sandstones from both units are all similar in U-Pb detrital zircon age spectra and petrography to the nearby Tethyan Cretaceous–Paleocene Sangdanlin section, which records the earliest appearance (at ~ 59 Ma) of arc-affinity strata deposited conformably on Indian-affinity strata. Two Paleocene sandstones, one of which is a schistose block incorporated in the siliciclastic matrix mélange, yielded indistinguishable maximum depositional ages of ~ 59 Ma. Mesozoic Asian-affinity sandstone blocks previously documented in the siliciclastic matrix mélange 200–500 km along strike to the east are notably absent in the Lopu Range region. We documented a gradational transition in structural style from the block-in-matrix mélange in the northeast to the south-vergent Tethyan thrust belt in the southwest. Blocks of Tethyan Himalayan strata increase in size and the volumetric proportion of matrix decreases from northeast to southwest. We conclude that no arc-affinity sandstone blocks were incorporated into the subduction complex until India-Asia collision at ~ 59 Ma when the Xigaze forearc basin became overfilled and Tethyan Himalayan strata entered the trench. As collision progressed, there was a gradual transition in structural style from block-in-matrix mélange formation to imbricate-style thrust belt formation.  相似文献   

16.
The paper presents new petrographic, major element and Fourier transform infrared (FTIR) spectroscopy data and PT-estimates of whole-rock samples and minerals of a collection of 19 relatively fresh peridotite xenoliths from the Udachnaya kimberlite pipe, which were recovered from its deeper levels. The xenoliths are non-deformed (granular), medium-deformed and highly deformed (porphyroclastic, mosaic-porphyroclastic, mylonitic) lherzolites, harzburgite and dunite. The lherzolites yielded equilibration temperatures (T) and pressures (P) ranging from 913 to 1324 °C and from 4.6 to 6.3 GPa, respectively. The non-deformed and medium-deformed peridotites match the 35 mW/m2 conductive continental geotherm, whereas the highly deformed varieties match the 45 mW/m2 geotherm. The content of water spans 2 ± 1–95 ± 52 ppm in olivine, 1 ± 0.5–61 ± 9 ppm in orthopyroxene, and 7 ± 2–71 ± 30 ppm in clinopyroxene. The amount of water in garnets is negligible. Based on the modal proportions of mineral phases in the xenoliths, the water contents in peridotites were estimated to vary over a wide range from < 1 to 64 ppm. The amount of water in the mantle xenoliths is well correlated with the deformation degree: highly deformed peridotites show highest water contents (64 ppm) and those medium-deformed and non-deformed contain ca. 1 ppm of H2O. The high water contents in the deformed peridotites could be linked to metasomatism of relatively dry diamondiferous cratonic roots by hydrous and carbonatitic agents (fluids/melts), which may cause hydration and carbonation of peridotite and oxidation and dissolution of diamonds. The heterogeneous distribution of water in the cratonic mantle beneath the Udachnaya pipe is consistent with the models of mantle plume or veined mantle structures proposed based on a trace element study of similar xenolithic suits. Mantle metasomatism beneath the Siberian Craton and its triggered kimberlite magmatism could be induced by mantle enrichment in volatiles (H2O, CO2) supplied by numerous subduction zones which surrounded the Siberian continent in Neoproterozoic-Cambrian time.  相似文献   

17.
New thermochronological analyses of granites from the Malay Peninsula record the region’s thermal history during the Late Mesozoic and Cenozoic. 40Ar/39Ar and (U–Th–Sm)/He analyses are combined with existing fission track data to provide a comprehensive set of temperature and time data. Fully and partially reset K-feldspar and biotite mica 40Ar/39Ar analyses indicate a significant period of thermal perturbation between ∼100 and ∼90 Ma, and a second lesser perturbation between ∼51 and ∼43 Ma. Zircon (U–Th–Sm)/He analyses and existing fission track data indicate exhumation of the Malay Peninsula in the Cretaceous, and renewed, localised exhumation in the early Paleogene. Apatite (U–Th–Sm)/He and fission track data indicate rapid exhumation of the region in the Late Eocene and Oligocene. Late Cretaceous tectonism is linked to the reversal of a regional dynamic topographic low following the cessation of subduction along the Sundaland margin in the Late Cretaceous, causing regional uplift and exhumation and the addition of significant heat into the crust via mantle upwelling. Early Paleogene exhumation may reflect the continuation of Cretaceous tectonism or a discrete phase of Paleocene exhumation linked to localised transpressional tectonics. Eocene tectonism is coincident with major subsidence offshore of the Malay Peninsula, interpreted to reflect regional block faulting in response to north–south compression driven by the resumption of subduction along the southern margin of Sundaland in the Eocene.  相似文献   

18.
The formation of the eastern Pontides orogenic belt has been widely assigned to a northward subduction of the Neotethyan oceanic slab during the late Mesozoic–Cenozoic. Here we provide an alternate model based on new geological, geochemical and isotopic data. The magmatic activity in the far south of the belt started in the early Campanian with shoshonitic trachyandesites and associated pyroclastics. This sequence is covered by the late Campanian–early Maastrichtian reefal limestones and another stage of high-K volcanism represented by analcimized leucite-rich ultrapotassic rocks of the Maastrichtian–early Paleocene (?) ages. The shoshonitic and ultrapotassic rocks, with K2O contents ranging from 0.26 to 6.95 wt.%, display broadly similar rare earth and multi-element distribution patterns. Both rock types are enriched in LILE and LREE and depleted in HFSE (Nb, Ta and Ti), suggesting a subduction-enriched mantle source for the magma generation. Subsequently, during the late Paleocene, a stage of acidic magmatism (SiO2 of 53.25–73.61 wt.%) that shows adakitic geochemical characteristics including high Sr/Y (46–416) and La/Yb (11–51) and low Y (2.6–12.2 ppm), is documented characterized by melting of a mafic source such as the MORB crust with garnet in the residue. The adakitic magmatism began at ~ 56 Ma and migrated toward the north through time, culminating with porphyritic andesites (~ 47 Ma) that were emplaced in the Gumushane–Bayburt line and its vicinity. North of this line, coeval magmas show typical calc-alkaline nature and continued to develop toward further north until the middle to late Eocene. Based on the spatial and temporal variations in the magmas generated in the eastern Pontides orogenic belt, we propose a new geodynamic model to explain the tectonomagmatic evolution of these rocks and correlate the adakitic magmatism to ridge subduction and slab window process within a south-dipping subduction zone. Our model is in contrast to the previous proposals which envisage partial melting or delamination of thickened lower continental crust due to the collision in the south during the Paleocene–Eocene.  相似文献   

19.
This study examines the major element composition of mantle-derived garnets recovered from heavy mineral concentrates of several Proterozoic kimberlites of the diamondiferous Wajrakarur Kimberlite Field (WKF) and the almost barren Narayanpet Kimberlite Field (NKF) in the Eastern Dharwar Craton of southern India. Concentrate garnets are abundant in the WKF kimberlites, and notably rare in the NKF kimberlites. Chemical characteristics of the pyropes indicate that the lithology of the sub-continental lithospheric mantle (SCLM) beneath both the kimberlite fields was mainly lherzolitic at the time of kimberlite eruption. A subset of green pyropes from the WKF is marked by high CaO and Cr2O3 contents, which imply contribution from a wehrlitic source. The lithological information on SCLM, when studied alongside geobarometry of lherzolite and harzburgite xenoliths, indicates that there are thin layers of harzburgite within a dominantly lherzolitic mantle in the depth interval of 115–190 km beneath the WKF. In addition, wehrlite and olivine clinopyroxenite occur locally in the depth range of 120–130 km. Mantle geotherm derived from xenoliths constrains the depth of graphite–diamond transition to 155 km beneath the kimberlite fields. Diamond in the WKF thus could have been derived from both lherzolitic and harzburgitic lithologies below this depth. The rarity of diamond and garnet xenocrysts in the NKF strongly suggest sampling of shallower (<155 km depth) mantle, and possibly a shallower source of kimberlite magma than at the WKF.  相似文献   

20.
《Sedimentary Geology》2006,183(1-2):51-69
The Chicxulub Sedimentary Basin of the northwestern Yucatan Peninsula, Mexico, which was formed because of the largest identified Phanerozoic bolide impact on Earth, became a site of deposition of dominantly marine carbonate sediments during most of the Cenozoic Era. This is a study of the filling and diagenetic history of this basin and surrounding areas. The study makes use of lithologic, biostratigraphic, petrographic, and geochemical data obtained on core samples from boreholes drilled throughout the northwestern Yucatan Peninsula.The core sample data indicate that: 1) The Chicxulub Sedimentary Basin concentrated the deposition of pelagic and outer-platform sediments during the Paleocene and Eocene, and, in places, during the Early Oligocene, as well, and filled during the Middle Miocene, 2) deeper-water limestone also is present within the Paleocene and Lower Eocene of the proposed Santa Elena Depression, which is located immediately south of the Basin, 3) shallow-water deposits are relatively more abundant outside the Basin and Depression than inside, 4) the autigenic and allogenic silicates from the Paleogene formations are the most abundant inside the Depression, 5) sediment deposition and diagenesis within the Basin also were controlled by impact crater topography, 6) the abundance of the possible features of subaerial exposure increases upward and outward from the center of the Basin, and 7) the formation of replacive low-magnesium calcite and dolomite, dedolomitization, dissolution, and precipitation of vug-filling calcite and dolomite cement have been more common outside the Basin than inside.δ18O in whole-rock (excluding vug-filling) calcite from core samples ranges from − 7.14‰ to + 0.85‰ PDB. δ13C varies from − 6.92‰ to + 3.30‰ PDB. Both stable isotopes correlate inversely with the abundance of subaerial exposure features indicating that freshwater diagenesis has been extensive especially outside and at the edge of the Chicxulub Sedimentary Basin.δ18O and δ13C in whole-rock (excluding vug-filling) dolomite ranges from − 5.54‰ to + 0.87‰ PDB and − 4.63‰ to + 3.38‰ PDB, respectively. Most dolomite samples have negative δ18O and positive δ13C suggesting that replacive dolomitization involved the presence of a fluid dominated by freshwater and/or an anomalously high geothermal gradient.Most dolomite XRD-determined mole percent CaCO3 varies between 51 and 56. Replacive dolomite is larger, more euhedral, and less stoichiometric inside the Chicxulub Sedimentary Basin than outside.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号