首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We may use tectonic structures to confirm the primary age of a paleomagnetic remanence component but only if we know how to undo the natural strain history. It is normally insufficient to untilt fold limbs, as in the original version of Graham's Fold Test. One may need to remove also the bulk or local strain and account for strain heterogeneities, achieved by grain-strain and the more elusive intergranular flow. Most important, one must know the sequence of strains and tilts that occurred through geological history because the order of these noncommutative events critically affects the final orientation of the remanence component.In many non-metamorphic rocks, strain-rotation of a remanence component approximates a simple formula, although the actual rotation mechanism is complex. This simple, passive line approximation is confirmed experimentally for strains up to 45% oblate shortening. The passive line hypothesis has permitted successful paleomagnetic restorations in several natural case studies.Experimental deformation of samples with multicomponent remanences shows that differential stresses above a threshold value near 25 MPa selectively remove components with coercivities <25mT, due to domain wall rearrangements in large multidomain magnetite grains. Higher coercivity components are less reduced so that the net remanence vector spins always toward the high-coercivity component, at rates and along paths not predicted by any structural geological formula. Experimentally deformed samples with very fine hematite in the matrix showed their net remanence spinning away from the high coercivity component. This is due to easier mechanical disorientation of the very fine hematite grains, scattering their magnetic moments more and reducing their contribution to the overall remanence. Thus, muticomponent remanences have their components selected for survival based on rock-magnetic and microstructural criteria. Such stress-rotation by coercivity selection does not depend on the orientations of the principal stresses or strains, a concept that is counterintuitive to conventional structural geology.Syn-tectonic remagnetization is common in deformed sedimentary sequences and laboratory experiments reveal that a only moderate differential stress remagnetization is required to add components parallel to the ambient field, without significant strain. Alternating field demagnetization isolates components smeared along the great circle between the initial remanence direction and the remagnetizing field direction. In this case, the principal directions of the stress and finite strain tensors are irrelevant; remagnetization is triggered by a threshold differential stress. The final remanence direction is controlled by the ambient field direction and the remagnetization path lies along a great circle between the ambient field and the initial remanence direction.  相似文献   

2.
Characteristic magnetizations from Middle Jurassic dacitic to andesitic subaerial volcanics (the Fulstone and Artesia Formations) in the Buckskin Mountain Range, western central Basin and Range Province, are well-grouped, generally display univectorial decays to the origin in demagnetization and have hematite blocking temperatures restricted almost entirely to above 620°C. Petrographic, rock magnetic and electron microprobe investigations confirm that nearly pure hematite is the essential magnetic phase (up to about 10 vol. %) occurring as a replacement of coarse titaniferous magnetite phenocrysts and fine groundmass particles, as a secondary alteration product of ferromagnesian phenocrysts and as a mobilized phase filling cracks and other open spaces. The presence of antipodal directions in each flow unit and in interbedded volcanoclastic units (some having retained magnetite as a major magnetic phase) and magnetite-dominated remanences in time-equivalent intrusives cutting the flows indicates that the volcanics acquired their hematite remanence, a faithful record of the geomagnetic field, in high-temperature, deuteric oxidation during and following their emplacement, not during a later thermal event such as regional metamorphism. The remanence is probably a thermochemical remanent magnetization, although part may be of thermoremanent origin.  相似文献   

3.
A combined geochronologic (K-Ar) and palaeomagnetic study has been conducted on a basalt lava sequence at Yixian Formation in Liaoning Province, northeastern China. The new K-Ar age obtained from thirteen lava flows is 120.93±0.88 Ma. Detailed rock-magnetic investigations were conducted on each lava flow to determine their remanence carriers. The modified version of the Thellier-Thellier palaeointensity method with systematic partial thermoremanent magnetization (pTRM) checks was used for the palaeointensity determination. Virtual dipole moment (VDM) value is (3.66±0.10)x1022 Am2. This low dipole-field intensity value is approximately forty-five percent of the today field VDM. Combined with all of the other published palaeointensity data, possible links between the earth’s interior process and its control on the variation of the earth’s magnetic field during the geological time were tentatively discussed.  相似文献   

4.
To further evaluate the potential of magnetic anisotropy techniques for determining the origin of the natural remanent magnetization (NRM) in sedimentary rocks, several new remanence anisotropy measurement techniques were explored. An accurate separation of the remanence anisotropy of magnetite and hematite in the same sedimentary rock sample was the goal.In one technique, Tertiary red and grey sedimentary rock samples from the Orera section (Spain) were exposed to 13 T fields in 9 different orientations. In each orientation, alternating field (af) demagnetization was used to separate the magnetite and hematite contributions of the high field isothermal remanent magnetization (IRM). Tensor subtraction was used to calculate the magnetite and hematite anisotropy tensors. Geologically interpretable fabrics did not result, probably because of the presence of goethite which contributes to the IRM. In the second technique, also applied to samples from Orera, an anisotropy of anhysteretic remanence (AAR) was applied in af fields up to 240 mT to directly measure the fabric of the magnetite in the sample. IRMs applied in 2 T fields followed by 240 mT af demagnetization, and thermal demagnetization at 90°C to remove the goethite contribution, were used to independently measure the hematite fabric in the same samples. This approach gave geologically interpretable results with minimum principal axes perpendicular to bedding, suggesting that the hematite and magnetite grains in the Orera samples both carry a depositional remanent magnetization (DRM). In a third experiment, IRMs applied in 13 T fields were used to measure the magnetic fabric of samples from the Dome de Barrot area (France). These samples had been demonstrated to have hematite as their only magnetic mineral. The fabrics that resulted were geologically interpretable, showing a strong NW-SE horizontal lineation consistent with AMS fabrics measured in the same samples. These fabrics suggest that the rock's remanence may have been affected by strain and could have originated as a DRM or a CRM.Our work shows that it is important to account for the presence of goethite when using high field IRMs to measure the remanence anisotropy of hematite-bearing sedimentary rocks. It also shows that very high magnetic fields (>10 T) may be used to measure the magnetic fabric of sedimentary rocks with highly coercive magnetic minerals without complete demagnetization between each position, provided that the field magnetically saturates the rock.  相似文献   

5.
We report normalized AF demagnetization curves of anhysteretic remanences (ARM's) produced by 1-, 10- and 40-Oe steady fields and of saturation isothermal remanence (IRMs) in a suite of dispersed, unannealed magnetite powders with median sizes of 2, 4, 6, 10 and 14 μm (pseudo-single-domain or PSD size range) and 100 μm (multidomain or MD size). Interpreted in the light of the domain structure test first proposed by Lowrie and Fuller [12], the relative stability trend of curves for the 2 μm sample is of single-domain (SD) type, the 1-Oe ARM being most resistant to demagnetization followed by the 10-Oe and 40-Oe ARM's and IRMs. For the 100-μm sample, the trend is exactly reversed and is of MD-type. In the 4–14 μm samples, hitherto undescribed transitional trends between SD-type and MD-type occur. At 6 μm, 1-Oe, 10-Oe and 40-Oe ARM's preserve an SD-type trend but for all AF's > 75 Oe, IRMs is more resistant than any of these remanences. At 10 μm, this trend is unmistakable, and only at 14 μm do the 1-Oe, 10-Oe and 40-Oe ARM curves merge. We conclude (1) that the Lowrie-Fuller test distinguishes between small MD grains enhanced by PSD remanence and large MD grains lacking PSD remanence, rather than between SD and MD structures per se, and (2) that in the PSD transition region from 6 to 14 μm in magnetite, IRMs changes over to MD-type relative stability around 6 μm, whereas 10-Oe and 40-Oe ARM's achieve an MD-type trend around 14 μm, in accord with the predicted field dependence of the PSD threshold size.Our theoretical interpretation assumes that the intrinsic (internal field) coercive force spectra of weak-field and strong-field remanences are identical but that the observed (external field) spectrum is shifted to lower fields as a result of the internal demagnetizing field — NJr of the remanence Jr. The effect is slight for weak-field Jr's but substantial for IRMs. Since all coercivities, high as well as low, are shifted, the result of the Lowrie-Fuller test is determined simply by the shape of the intrinsic coercivity spectrum or the corresponding AF demagnetization curve. Depending on the model of self-demagnetization used, either subexponential or sublinear AF decay curves of weak-field remanence will automatically lead to an MD-type trend, whereas by either model the decay curves that characterize SD and PSD remanences (decaying slowly initially and then more rapidly) will always produce and SD-type trend.  相似文献   

6.
This paper reports low-temperature cycling (LTC) through the Verwey transition of anhysteretic remanence (ARM), partial ARMs and partially demagnetised saturation isothermal remanence (SIRM) induced at room temperature in pseudo-single-domain and multidomain (MD) magnetite. The remanences were cooled in zero field to 50 K and then heated back to room temperature. By inducing partial ARMs over different field ranges and by partially alternating field demagnetising SIRMs, it was possible to isolate both low-coercive-force and high-coercive-force fractions of remanence. On cooling through the Verwey transition, a sharp increase in the remanence was observed. The relative size of the jump increased as the high-coercive-force fraction was increasingly isolated. This behaviour is interpreted as being due to both an increase in the single-domain/multidomain threshold size on cooling through the Verwey transition and to the reduction or elimination of closure domains in the low-temperature phase. In addition, the memory ratio, i.e. the fraction of remanence remaining after LTC divided by the initial remanence, was found to be higher for the high-coercive-force fraction than the low-coercive-force fraction. In our interpretation, the high-coercivity fraction behaviour is associated with reversible domain re-organisation effects, whilst the low-coercive force fraction’s behaviour is associated with irreversible domain re-organisation and (de-)nucleation processes. Due to the decrease in magnetocrystalline anisotropy on cooling to the Verwey transition, the high-coercive-force fraction is likely to be magnetoelastically controlled. Thus, a rock displaying high-coercive-force behaviour is likely to carry a palaeomagnetically meaningful remanence with high unblocking temperatures. In addition, LTC analysis can be used to identify the domain state dominating the natural remanence in magnetite-bearing rocks.  相似文献   

7.
本文报道利用岩石剩磁组构对华北下三叠统红层进行磁倾角浅化效应的进一步识别与校正研究结果.首先,采用45°等温剩磁各向异性方法,即通过沿与样品原始水平面(即层面)呈45°夹角方向施加磁化场获得等温剩磁,并进行逐步热退磁,获得平行于层面和垂直于层面的等温剩磁分量随外加磁场和热退磁温度的变化趋势,计算获得浅化因子f=0.70...  相似文献   

8.
The knowledge about past secular variations of the geomagnetic field is achieved on the basis of archaeomagnetic researches of which the Bulgarian studies form an extended data set. In Part I (Kovacheva and Toshkov, 1994), the methodology used in the Sofia palaeomagnetic laboratory was described and the secular variation curves for the last 2000 years were shown. In Part II (this paper), the basic characteristics of the prehistoric materials used in the archaeomagnetic studies are emphasised, particularly in the context of the rock magnetic studies used in connection with palaeointensity determinations. The results of magnetic anisotropy studies of the prehistoric ovens and other fired structures are summarised, including the anisotropy correction of the palaeointensity results for prehistoric materials, different from bricks and pottery. Curves of the direction and intensity of the geomagnetic field during the last 8000 years in Bulgaria are given. The available directional and intensity values have been used to calculate the variation curve of the virtual dipole moment (VDM) for the last 8000 years based on different time interval averages. The path of virtual geomagnetic pole (VGP) positions is discussed.  相似文献   

9.
Oolitic hematite-bearing ironstones of the Silurian Red Mountain Formation of Alabama are shown to carry a single-component remanence stable enough to have survived major folding (of probable Permian age). Nevertheless, the remanence direction (ten sites yielding a paleopole at 38.0°N, 132.4°E with dm = 3.6°, dp = 1.9°), its reverse polarity and a negative intraformational conglomerate test show that the remanence was very likely acquired during the Pennsylvanian—some 130 Ma after deposition. This remanence is likely a chemical remanent magnetization (CRM) acquired during diagenesis induced by heating due to deep burial under a Pennsylvanian clastic wedge. Two possible mechanisms for acquisition of CRM during deep-burial diagenesis are considered. In hypothesis I, the oolitic hematite transformed from original geothite when heated to about 80°C, acquiring CRM. In hypothesis II, the oolitic hematite originated from ferrihydrite and was too fine-grained to acquire stable CRM until heat raised the solubility of hematite allowing grain growth. Hypothesis I explains the timing of remanence acquisition better, but there is some evidence that oolitic goethites may be stable to considerably more than 80°C. Hypothesis II has some difficulty explaining preliminary paleomagnetic results from oolitic hematite-bearing ironstones of the Silurian Clinton Group, New York State. We prefer hypothesis I but both hypotheses remain plausible. Both hypotheses warn that continental red beds may also acquire CRM during diagenesis induced by deep-burial heating, long after deposition but before folding.  相似文献   

10.
Iron ore and host rocks have been sampled (90 oriented samples from 19 sites) from the Las Truchas mine, western Mexico. A broad range of magnetic parameters have been studied to characterize the samples: saturation magnetization, Curie temperature, density, susceptibility, remanence intensity, Koenigsberger ratio, and hysteresis parameters. Magnetic properties are controlled by variations in titanomagnetite content, deuteric oxidation, and hydrothermal alteration. Las Truchas deposit formed by contact metasomatism in a Mesozoic volcano-sedimentary sequence intruded by a batholith, and titanomagnetites underwent intermediate degrees of deuteric oxidation. Post-mineralization hydrothermal alteration, evidenced by pyrite, epidote, sericite, and kaolin, seems to be the major event that affected the minerals and magnetic properties. Magnetite grain sizes in iron ores range from 5 to >200 μm, which suggest dominance of multidomain (MD) states. Curie temperatures are 580±5°C, characteristic of magnetite. Hysteresis parameters indicate that most samples have MD magnetite, some samples pseudo-single domain (PSD), and just a few single domain (SD) particles. AF demagnetization and IRM acquisition indicate that NRM and laboratory remanences are carried by MD magnetite in iron ores and PSD–SD magnetite in host rocks. The Koenigsberger ratio falls in a narrow range between 0.1 and 10, indicating the significance of MD and PSD magnetites.  相似文献   

11.
Drying remanent magnetization is shown to be a physical phenomenon which is dependent on water content and magnetic grain shape. Anhysteretic remanent magnetization (ARM) acquisition studies show that no significant chemical changes occur on drying. There is a critical water content below which grain motion ceases. In a clay matrix, this water content is about 75% for single-domain needles and below 70% for single-domain euhedral grains. The rotation of grains during drying causes the magnetic moment to rotate toward the plane perpendicular to drying compression, and toward the external magnetic field. The rotation for euhedral grains is not restricted by shape anisotropy, while that for acicular grains is. Drying remanence cannot be completely removed once a sample has dried below its critical water content; however, most natural samples may be near or below their critical water content when cored.  相似文献   

12.
To identify the stable remanence carrier in rock samples, we conducted magnetic microscopic observations combined with conventional stepwise demagnetization experiments. The instrument, which employs an amorphous wire-based magneto-impedance sensor (30 μm diameter, 5 mm length), can document magnetic anomalies (vertical component) of the millimeter to sub-millimeter-thick rock samples with a resolution of 500 μm. Our new technique allows identification of the sources of both stable and unstable remanence components in meteorite and shocked granite samples. However, stray magnetic fields from the sensor magnetize the magnetic minerals in the sample and makes serious artifacts on the magnetic images. Although the artifacts of the induced magnetization should be solved, this new corroborative technique leads to a microscopic discrimination of stable paleomagnetic records from terrestrial and extraterrestrial materials.  相似文献   

13.
The magnetic fabric of rocks and sediments is most commonly characterized in terms of the anisotropy of low-field magnetic susceptibility (AMS). However, alternative methods based on remanent magnetization (measured in the absence of a magnetic field) rather than induced magnetization (measured in the applied field) have distinct advantages for certain geological applications. This is particularly true for; (1) adjunct studies in paleomagnetism, in order to assess the fidelity with which a natural remanence records the paleofield orientation; (2) studies of weakly magnetic or weakly deformed rocks, for which susceptibility anisotropy is very difficult to measure precisely; and (3) quantitative applications such as strain estimation. The fundamental differences between susceptibility and remanence (and their respective anisotropies) are due to several factors: (1) susceptibility arises from all of the minerals present in a sample, whereas remanence is carried exclusively by a relatively small number of ferromagnetic minerals; (2) ferromagnetic minerals are generally more anisotropic than para- and diamagnetic minerals; (3) for ferromagnetic minerals, remanence is inevitably more anisotropic than susceptibility; and (4) a number of common minerals, including single-domain magnetites, possess an inverse anisotropy of susceptibility, i.e., they tend to have minimum susceptibility parallel to the long axis of an individual particle; remanence is immune to this phenomenon. As a consequence of all these factors, remanence anisotropy may generally provide a better quantitative estimate of the actual distribution of particle orientations in a rock sample.Contribution number 9102 of the Institute for Rock Magnetism, University of Minnesota.  相似文献   

14.
A wide range of rock magnetic properties have been determined from two collections of mid-Cretaceous basalts; one from Israel, the other from the Rajmahal traps in northeast India. Deuteric oxidation is rare in both collections, with titanium-rich titanomagnetite being the principal remanence carrier in most cases. There are a number of differences in rock magnetic properties between the two groups. Some of these seem to be primary, whereas others appear to be caused by hydrothermal alteration and weathering, which are more prevalent in the Indian rocks. These rocks are being used in palaeointensity experiments, from which it is hoped to determine the strength of the Earth's magnetic field during the long period of normal polarity in the mid-Cretaceous. Thellier palaeointensity experiments have been performed on two samples from each site. The degree of agreement between the two results is highly variable. The low blocking temperatures and the presence of secondary viscous components in many samples make Thellier palaeointensity experiments very difficult. A further problem is that of thermal alteration, two main types of which are observed. The first manifests itself as a large and sudden increase in partial thermoremanent magnetization (pTRM) capacity, and the second as a steady decrease in the size of pTRM with increasing temperature.  相似文献   

15.
Grain sizes in the range (10−4 to 10−1 mm) are common in some rocks. Because thermal and/or chemical remanent magnetization of hematite in this range approaches intensities of single domain (SD) magnetite, careful exploration of this transition, may serve to develop new applications in rock magnetism that relate to magnetic anomaly source identification, and various paleomagnetic and grain size-dependent investigations.Grain size-dependent magnetic behavior of hematite reveals a SD–multidomain (MD) transition at 0.1 mm. This transition is recognized by variation in magnetic coercivity and susceptibility and is related to an anomaly in remanence recovery when cycling through the Morin transition. The coercivity decrease with increasing grain size occurs much more gradually above 0.1 mm than below this value. Magnetic susceptibility of the grains smaller than 0.1 mm has negligible dependence on the amplitude of the applied alternating magnetic field. For the larger grains a new amplitude-dependent susceptibility component is observed. The grain size of 0.1 mm is also associated with loss of most of the remanence when cycling through the Morin transition. This behavior is ascribed to a transition from the metastable SD to the MD magnetic state. The increase in magnetized volume causes the demagnetizing energy to destabilize the SD state, resulting in a transition where the demagnetizing energy is reduced by nucleation of the domain wall for grains larger than 0.1 mm. The 0.1 mm transition has no significant effect on shape of the temperature-dependent coercivity and saturation magnetization.  相似文献   

16.
Magnetic properties related to thermal treatment of pyrite   总被引:5,自引:0,他引:5  
Detailed rock magnetic experiments were conducted on high-purity natural crystalline pyrite and its products of thermal treatments in both argon and air atmospheres. In argon atmosphere (reducing environment), the pyrite is altered by heating to magnetite and pyrrhotite; the latter is stable in argon atmosphere, and has coercive force and coercivity of remanence of ~20 and ~30 mT, respectively. Whereas in air, the pyrite is ultimately oxidized to hematite. First order reversal curve (FORC) diagram of the end product shows that the remanence coercivity of hematite is up to ~1400 mT. The corresponding thermal transformation process of pyrite in air can be simply summarized as pyrite→ pyrrhotite→magnetite→hematite. These results are helpful for understanding of sedimentary magnetism, secondary chemical remanence and meteorolite magnetic properties.  相似文献   

17.
A suite of synthetic titanomagnetites of composition Fe2.4?δAlδTi0.6O4 and Fe2.6?δAlδTi0.4O4 (δ = 0, 0.1 and 0.2 in both cases) have been prepared by a method of partial self-buffering and pulverized in a ball mill to particle size of about 200–500 Å. Magnetic hysteresis parameters-saturation and remanent magnetizations and coercive force were measured between room temperature and the Curie temperatures and other parameters-X-ray cell edge, initial susceptibility and coercive force of remanence were determined at room temperature. The intrinsic magnetic “hardness” increases with increasing content of Al3+ and Ti4+, both probably corresponding to an increase in the concentration of Fe2+ ions on the tetrahedral sites of the spinel structure. The room-temperature hysteresis properties were compared with those resulting from monodomain models for the work done to magnetically saturate an assemblage of grains and the approach to saturation, and the separate contributions from coexisting anisotropies of cubic and uniaxial symmetries (assumed present) inferred. The cubic anisotropy energy constants so derived are larger than those determined from multidomain single crystals. The derived cubic constants are also larger than the derived uniaxial anisotropy constants. The latter, however, dominate the behaviour (e.g., coercive force) because of the lower symmetry. The materials appear to be entirely in the stable monodomain state at room temperature.  相似文献   

18.
We present new Thellier-Thellier palaeointensity results from three cooling units (32 samples) of Inner Mongolia lava flows (91.7 Ma) emplaced during the Cretaceous Normal Superchron (CNS). Based on rock-magnetic and microscopy observations the magneto-mineralogy of all samples is determined to be primary and unaltered high-Ti titanomagnetite. Accepted palaeointensity determinations, obtained in the 80-200 °C temperature interval, are of good technical quality with positive standard partial thermoremanent magnetisation (pTRM) checks and pTRM-tail checks. Obtained palaeointensity estimates range from 14.7 to 28.0 μT, with virtual axial dipole moments (VADM) of 2.4 to 4.6 (× 1022 Am2). The data agree well with recently published results from the same region and, combining the two datasets, we obtain independent estimates from six different cooling units yielding a time-averaged VADM of 3.2 ± 1.6 (× 1022 Am2). These data suggest a relatively low dipole moment towards the end of the Cretaceous Normal Superchron.  相似文献   

19.
利用一件采自河北汉诺坝周坝地区变泥质岩包体样品,结合系统的低温和高温磁性测量结果,探讨了应用热磁实验鉴别样品中所含原生磁性矿物的多解性问题. 结果表明, 饱和等温剩余磁化强度(SIRM)在室温~250℃以及280℃~380℃的降低分别由高钛钛磁铁矿的剩磁解阻过程(一种物理过程)以及由磁赤铁矿转换成赤铁矿(一种矿物相变)引起.样品在500℃以后磁化率的升高则是由磁铁矿从钛磁赤铁矿中出溶所致.因此,κ T(即磁化率随温度变化)曲线中呈现约580℃居里点是由加热过程中次生的磁铁矿引起,而并非代表原始(即加热前)样品中的磁铁矿成分.  相似文献   

20.
A 290 m sequence of Maastrichtian and Danian limestones from Limhamn, southern Sweden, has been investigated magnetically. The observed mean natural remanent magnetization is 24 μ A m−1. The remanent magnetization is carried by pseudo-single-domain or single-domain magnetite particles, and was observed by various rock magnetic methods. Though influenced by diamagnetism, the anisotropy was determined. Paleomagnetically, polarity changes could be determined in several samples in spite of the low remanences measured. The results are in agreement with the magnetostratigraphy based upon ocean floor anomalies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号