首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Siliciclastic sediments on the insular shelf of Puerto Rico are derived from a volcanic arc. The sands are feldspatholithic and subquartzose. They confirm predictions about sandstones of arc derivation in the following ways. The quartz content is low, usually less than 25 %. Feldspar is more abundant than quartz, but less so than lithic fragments. If mud rip-up clasts are excluded from the lithic suite, the ratio V/L (volcanic lithic grains to total unstable lithic grains) assumes values near 0.75. Most of the volcanic lithic grains have textures suggesting intermediate volcanics as source rocks. Ratios of plagioclase to total feldspar are high. Values of the parameter C/Q (stable lithic fragments to total lithic grains) are higher than expected for sandstones of volcanic provenance. Four compositionally and areally distinct assemblages of clay minerals are recognized. Clay suites characterized by major concentrations of both halloysite and smectite are found off the north-west coast. Sediments off the north-central and north-east coasts contain major concentrations of halloysite and lesser amounts of smectite, illite and chlorite. Major concentrations of kaolinite are present off the south-east coast. An assemblage of poorly crystallized smectite with lesser amounts of illite and chlorite occurs off the south-west and south-central coasts. Variation in the mineralogic composition of clays around the perimeter of the island reflects changes in the intensity of chemical weathering and the type of rock exposed in the immediate source area and, in instances, either early diagenetic alteration or, more likely, sorting within the clay fraction by currents on the shelf.  相似文献   

2.
The least-altered, Permian mafic volcanic rocks from the Pang Mayao area, Phrao District, Chiang Mai Province, part of Chiang Rai–Chiang Mai volcanic belt, have been analyzed and are found to be mid-ocean ridge and ocean–island basalts. The mid-ocean ridge basalts occur as lava flows or dike rocks. They are equigranular, fine- to medium-grained and consist largely of plagioclase, clinopyroxene and olivine. These basalt samples are tholeiitic, and have compositions very similar to T-MORB from the region where the Du Toit Fracture Zone intersects the Southwest Indian Ridge. The ocean–island basalt occurs as pillow breccia, and lava flows or dike rocks. They are slightly to moderately porphyritic, with phenocrysts/microphenocrysts of clinopyroxene, olivine, plagioclase and/or Fe–Ti oxide. The groundmass is very fine-grained, and made up largely of felty plagioclase laths with subordinate clinopyroxene. These basalt samples are alkalic, and chemically analogous to those from Haleakala Volcano, Maui, Hawaiian Chain. These mafic volcanic rocks may have been formed in a major ocean basin rather than in a mature back-arc basin.  相似文献   

3.
Small Islands south off Hahajima, the southernmost of the Ogasawara Archipelago, consist of primitive basalts (<12 wt.% MgO) to dacite erupted during the transitional stage immediately following boninite volcanism on the incipient arc to sustained typical oceanic arc. Strombolian to Hawaiian fissure eruptions occurring on independent volcanic centers for the individual islands under a shallow sea produced magnesian basalt to dacite fall-out tephras, hyaloclastite and a small volume of pillow lava, which were intruded by NE-trending dikes. These volcanic strata are correlated to the upper part (<40 Ma) of the Hahajima main island. Volcanic rock samples have slightly lower FeO*/MgO ratios than the present volcanic front lavas, and are divided into three types with high, medium and low La/Yb ratios. Basalt to dacite of high- and medium-La/Yb types show both tholeiitic (TH) and calc-alkaline (CA) differentiation trends. Low-La/Yb type belongs only to TH basalt. The multiple magma types are coexistence on the each island. TH basalts have phenocrysts of olivine, clinopyroxene and plagioclase, while CA basalts are free from plagioclase phenocrysts.  相似文献   

4.
Lunar plagioclase posed an enigma because optical properties indicate slow cooling while structural properties suggest rapid quenching when compared directly to terrestrial plagioclase. If, however, the An-content is inferred from the Al/Si ratio rather than from the Ca/Na ratio, lunar plagioclase corresponds more closely to normal volcanic plagioclase. The differences between An=4(Al/(Al+Si))-1 and An=Ca/(Ca+Na+K) is caused by substitutions which appear so far to be unique to lunar feldspars. A vector representation of chemical composition makes it possible to single out several substitutions which account for the chemical peculiarities of lunar plagioclase. It permits to assign sites in the structure to various minor elements simply from the chemical analysis without having to rely on sophisticated spectroscopic techniques or an X-ray structure determination. 1. The deficiency in Al+Si (up to 0.06 per formula unit) is compensated for by Fe, Mg, and small amounts of Na or Ca occupying tetrahedral sites. The Ca/Na ratio is increased accordingly to balance the electric charge. This substitution accounts for most of the differences. 2. The vacancycoupled substitution Ca+□ → 2 Na (Weill et al., 1970) is another cause for the increased Ca/Na ratio. 3. The amount of alkali evaporation from plagioclase, if it occurred, is probably small. These unusual substitutions are an expression of special conditions on the moon during the crystallization of plagioclase. Crystallization at high temperatures, rapid cooling, and peculiar magma composition seem to be important factors, but experimental work and detailed study of terrestrial volcanic plagioclase are necessary to interpret the chemical composition quantitatively.  相似文献   

5.
Lavas and pyroclastic rocks throughout the volcanic stratigraphy of the Tertiary-Quaternary volcanic complex of Thera in the Aegean island arc display inhomogenous plagioclase populations and phenocryst resorption textures, interpreted as indicative of magma mixing. Plagioclase zoning characteristics studied by Nomarski and laser interferometry techniques establish three main categories of plagioclase: (i) inherited plagioclase (nucleated in endmember prior to initial mixing event) (ii) in situ plagioclase (nucleated in mixed or hybrid magma) and (iii) xenocrystic plagioclase. Nomarski contrast images and linearized compositional zoning profiles reveal striking differences between calcic and sodic plagioclases, depending on the composition of the lava in which they are hosted. These differences reflect the contrasting effects of changes in physical-chemical parameters in basic vis-a-vis more acidic melts during magma mixing and/or influx of new magma into the subvolcanic magma chamber, as well as the influence of magma chamber dynamics on plagioclase equilibration. Variations in bulk major and trace element abundances of Thera volcanic products reflect the dominant overprint of crystal fractionation, but decoupling between major and trace element fractionation models and variations in incompatible trace element distributions are all indicative of magma mixing processes, consistent with compositional and textural zoning in plagioclases.  相似文献   

6.
《Precambrian Research》1987,37(3):217-229
The Rhenosterhoek Formation, composed chiefly of subaerial volcanic rocks, is part of the Dominion Group (∼ 2.8 Ga) which rests unconformably on older continental crust in South Africa. Chemical compositions of volcanic rocks from three drillcores of this formation do not show systematic differences either between or within cores. Major and immobile trace-element contents indicate that the volcanics are basaltic andesites and andesites with calc-alkaline affinities. Incompatible trace-element distributions are similar to those of modern andesites from evolved island arcs or continental-margin arcs.Geochemical modeling indicates that the basaltic andesites and andesites can be produced by open-system fractional crystallization with olivine, clinopyroxene and plagioclase as principal liquidus phases. Up to 10% contamination with continental crust is also allowed by the data. This succession does not appear to have formed in an oceanic or in a continental-margin arc, but may have formed adjacent to a continental-margin arc system in an incipient foreland basin on the Kaapvaal Craton.  相似文献   

7.
The island of St. Paul in the Indian Ocean is located on the axis of the southeastern branch of the Indian Ocean Rise, as is the similar volcano of Amsterdam, 80 km to the north. Both volcanoes and possibly part of the local ridge are formed of a high-alumina plagioclase tholeiite making this a distinctive volcanic province. Lavas with Al2O2 contents of 12 to 22% are directly related by plagioclase fractionation. Residual rocks are a distinctive low silica, low alumina, potassic andesite with andesine and even olligoclase feldspar. Parallel lines of evolution exist in the sea floor plagioclase tholeiites, which differ only in slightly lower tenor of Sr and potassium group elements, and in the Steens Mountain tholeiites of Oregon, which differ in their significantly higher Sr and K group elements  相似文献   

8.
大理点苍山正片麻岩初步研究   总被引:5,自引:0,他引:5  
沙绍礼  刘宇淳 《云南地质》2001,20(3):260-269
点苍山正片麻岩分为两类:斜长片麻岩和花岗片麻岩。前者属岛孤火山岩,形成于中晚元古代。二者主要化学组分具相关性,花岗片麻岩是由早形成的斜长片麻岩、斜片角闪岩经深熔作用而成。  相似文献   

9.
The sources of volcanic temper sands in prehistoric pottery found on low-lying raised-coral islands of Tonga have long been uncertain. The paucity of noncalcareous sand on most inhabited Tongan islands has led to the suggestion that temper was imported from the active magmatic are to the west, or even that most pottery was imported to Tonga from Fiji. The simple mineralogy of the tempers, which are composed almost exclusively of pyroxene and plagioclase mineral grains, volcanic rock fragments, and opaque ferro-magnesian oxide grains, is compatible with derivation from Tongan volcanics, but island volcanoes of Tonga lack deposits of rounded and well-sorted sands that are similar texturally to the tempers. Discovery of local placer deposits composed of volcanic sand on beaches otherwise composed of calcareous reef detritus within the Ha'apai Group of central Tonga provides a satisfactory local source for temper on the shorelines of several inhabited islands. The beach placer sands were apparently derived from reworking of thick tephra deposits that mantle the islands. Detailed compositional analysis of temper sands in numerous ancient Lapitoid potsherds from all the constituent island groups of Tonga implies that pottery making was once a widespread industry making use of locally available raw materials. Stylistically diagnostic protohistoric Fijian potsherds, found in small numbers on several islands in Tonga, can be distinguished from the older indigenous Lapitoid wares by their anomalous tempers, which contrast sharply with the Tongan volcanic temper sands. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
冀东早太古代变质岩系的主体是一套呈层分布的,各种成分麻粒岩及其某些退变质产物——斜长角闪岩类。在其上部发育变质含铁建造,而在其下部常夹有变质的镁铁质和超镁铁质岩(如变闪辉岩、变辉石岩和蛇纹石化橄榄岩等)薄层或透镜体。 麻粒岩的矿物组合是斜方辉石+单斜辉石+斜长石(常常为反条纹长石)+石英+磁铁矿±角闪石±黑云母。在变质含铁建造中局部出现包括铝硅酸盐的矿物组合(蓝晶石-石榴石-黑云母-斜长石-石英)。变质铁硅质岩可以分为两类:辉石磁铁石英岩和英榴易熔岩(张儒瑗,从柏林,1981)。  相似文献   

11.
Granodiorite from the Gęsiniec Intrusion, Strzelin Crystalline Massif, SW Poland contains complexly zoned plagioclases. Five chemically and structurally distinct zones can be correlated among crystals: ‘cores’ (25–35% An), inner mantles (40–45% An), outer mantles (40–25% An), resorption zones (35–50% An) and rims (35–30% An). Good structural and chemical (major and trace elements) correlation of zones between crystals indicates that zonation was produced by changes in conditions of crystallization on a magma chamber scale. Plagioclase, being the liquidus phase, records a time span from the beginning of crystallization to emplacement and rapid cooling of granodiorite as thin dykes.

Crystallization began with the formation of inner mantles. The paucity and different sizes of inner mantles suggests slow crystallization in high temperature magma. Normally zoned inner mantles were formed under increasing undercooling. Compositional trends in mantles suggest closed system crystallization.

The major resorption zones were caused by injection of less evolved magma as indicated by the strontium increase in plagioclase. The injection triggered a rapid rise of magma and plagioclase crystals facilitating mixing but also inducing fast, kinetically controlled growth of complex multiple, oscillatory zonation within resorption zones. The ascent of magma caused decompression melting of plagioclase and produced melt inclusions within inner mantles—the ‘cores’. The decompression range is estimated at a minimum of 2 kbar. Emplacement of granodiorite as thin dykes allow rapid cooling and preservation of magmatic zonation in plagioclases. Melt inclusions crystallized completely during post-magmatic cooling.

The zonation styles of plutonic plagioclase differ markedly from volcanic ones suggesting different magma evolution. Zones in plutonic plagioclase are well correlated indicating crystallization in quiescent magma where crystals accumulation and compositional magma stratification may occur. Crystals probably did not travel between different regimes. Resorption occurred but as single albeit complex episodes. Good correlation of zones in plutonic plagioclases allows a distinction between the main processes controlling zonation and superimposed kinetic effects.  相似文献   


12.
The northeast (NE) Honshu arc was formed by three major volcano-tectonic events resulting from Late Cenozoic orogenic movement: continental margin volcanism (before 21?Ma), seafloor basaltic lava flows and subsequent bimodal volcanism accompanied by back-arc rifting (21 to 14?Ma), and felsic volcanism related to island arc uplift (12 to 2?Ma). Eight petrotectonic domains, parallel to the NE Honshu arc, were formed as a result of the eastward migration of volcanic activity with time. Major Kuroko volcanogenic massive sulfide (VMS) deposits are located within the eastern marginal rift zone (Kuroko rift) that formed in the final period of back-arc rifting (16 to 14?Ma). Volcanic activity in the NE Honshu arc is divided into six volcanic stages. The eruption volumes of volcanic rocks have gradually decreased from 4,600?km3 (per 1?my for a 200-km-long section along the arc) of basaltic lava flows in the back-arc spreading stage to 1,000?C2,000?km3 of bimodal hyaloclastites in the back-arc rift stage, and about 200?km3 of felsic pumice eruptions in the island arc stage. The Kuroko VMS deposits were formed at the time of abrupt decrease in the eruption volume and change in the mode of occurrence of the volcanic rocks during the final period of back-arc rifting. In the area of the Kuroko rift, felsic volcanism changed from aphyric or weakly plagioclase phyric (before 14?Ma), to quartz and plagioclase phyric with minor clinopyroxene (12 to 8?Ma), to hornblende phyric (after 8?Ma), and hornblende and biotite phyric (after 4?Ma). The Kuroko VMS deposits are closely related to the aphyric rhyolitic activity before 14?Ma. The rhyolite was generated at a relatively high temperature from a highly differentiated part of felsic magma seated at a relatively great depth and contains higher Nb, Ce, and Y contents than the post-Kuroko felsic volcanism. The Kuroko VMS deposits were formed within a specific tectonic setting, at a specific period, and associated with a particular volcanism of the arc evolution process. Therefore, detailed study of the evolutional process from rift opening to island arc tectonics is very important for the exploration of Kuroko-type VMS deposits.  相似文献   

13.
The Kuril islands constitute a volcanic island arc-trench system,stretching from eastern Hokkaido(Japan)to Kamchatka(Russia) along the northwestern Pacific subduction system.The current arc consists of several volcanic islands mainly with Neogene basement and capped by several,predominantly andesitic,active subduction stratovolcanoes.Kunashir Island is the southwestern-most island of the arc,just off the Hokkaido coast and represents the study area in this paper.The island is composed of a Lower Complex of mainly late Miocene to Pliocene volcanic rocks,covered by an Upper Complex of younger(basaltic)andesitic lava flows and tuffs on which currently four active volcanic edifices are built.In the Lower Complex sub-volcanic and deeper-seated intrusives of the so-called Prasolov and Dokuchaev magmatic complexes are found.More differentiated,tonalitic-granodioritic rocks were collected from these small intrusive bodies.An early Oligocene zircon LA-ICP-MS U/Pb age of 31 Ma for the Prasolov Complex was obtained,showing that the basement of Kunashir Island is older than previously thought.Thermochronometry(apatite fission-track and U-Th-Sm/He and zircon U-Th/He analyses) further shows that the magmatic basement of the island was rapidly exhumed in the Pleistocene to present levels in a differential pattern,with He-ages ranging from 1.9 to 0.8 Ma.It is shown that the northern section of the island was hereby exhumed more intensely.  相似文献   

14.
Melt inclusions were examined in phenocrysts in basalt, andesite, dacite, and rhyodacite from the Karymskii volcanic center in Kamchatka and dacite form Golovnina volcano in Kunashir Island, Kuriles. The inclusions were examined by homogenization and by analyzing glasses in more than 80 inclusions on an electron microscope and ion microprobe. The SiO2 concentrations in the melt inclusions in plagioclase phenocrysts from basalts from the Karymskii volcanic center vary from 47.4 to 57.1 wt %, these values for inclusions in plagioclase phenocrysts from andesites are 55.7–67.1 wt %, in plagioclase phenocrysts from the dacites and rhyodacites are 65.9–73.1 wt %, and those in quartz in the rhyodacites are 72.2–75.7 wt %. The SiO2 concentrations in melt inclusions in quartz from dacites from Golovnina volcano range from 70.2 to 77.0 wt %. The basaltic melts are characterized by usual concentrations of major components (wt %): TiO2 = 0.7–1.3, FeO = 6.8–11.4, MgO = 2.3–6.1, CaO = 6.7–10.8, and K2O = 0.4–1.7; but these rocks are notably enriched in Na2O (2.9–7.4 wt % at an average of 5.1 wt %, with the highest Na2O concentration detected in the most basic melts: SiO2 = 47.4–52.0 wt %. The concentrations of volatiles in the basic melts are 1.6 wt % for H2O, 0.14 wt % for S, 0.09 wt % for Cl, and 50 ppm for F. The andesite melts are characterized by high concentrations (wt %) of FeO (6.5 on average), CaO (5.2), and Cl (0.26) at usual concentrations of Na2O (4.5), K2O (2.1), and S (0.07). High water concentrations were determined in the dacite and rhyodacite melts: from 0.9 to 7.3 wt % (average of 15 analyses equals 4.5 wt %). The Cl concentration in these melts is 0.15 wt %, and those of F and S are 0.06 and 0.01 wt %, respectively. Melt inclusions in quartz from the dacites of Golovnina volcano are also rich in water: they contain from 5.0 to 6.7 wt % (average 5.6 wt %). The comparison of melt compositions from the Karymskii volcanic center and previously studied melts from Bezymyannyi and Shiveluch volcanoes revealed their significant differences. The former are more basic, are enriched in Ti, Fe, Mg, Ca, Na, and P but significantly depleted in K. The melts of the Karymskii volcanic center are most probably less differentiated than the melts of Bezymyannyi and Shiveluch volcanoes. The concentrations of water and 20 trace elements were measured in the glasses of 22 melt inclusions in plagioclase and quartz from our samples. Unusually high values were obtained for Li concentrations (along with high Na concentrations) in the basaltic melts from the Karymskii volcanic center: from 118 to 1750 ppm, whereas the dacite and rhyolite melts contain 25 ppm Li on average. The rhyolite melts of Golovnina volcano are much poorer in Li: 1.4 ppm on average. The melts of the Karymskii volcanic center are characterized by relative minima at Nb and Ti and maxima at B and K, as is typical of arc magmas.  相似文献   

15.
大别山超高压变质带表壳岩地球化学特征及启示   总被引:2,自引:0,他引:2  
大别山南部出露较多的变质表壳岩,主要由片麻岩、片岩、长英质粒状岩石、大理岩、斜长角闪岩类等组成,经历了超高压、高压变质作用。通过岩石学、岩石化学、地球化学的研究,对其形成时代、原岩建造、构造背景等作了较深入的分析,认为其成岩时代可能属于早中元古代,原岩为一套碎屑岩,碳酸盐岩夹火山岩建造,构造背景应为与大陆岛弧有关的活动大陆边缘环境。这些研究成果为探讨大别造山带的形成环境、演化、榴辉岩等超高压变质带的形成、折返机制等提供了较充分的地质依据。  相似文献   

16.
为了探讨横贯南极山脉休斯陡崖花岗质岩体的岩石成因,对其开展了岩相学和岩石化学分析。结果表明,休斯陡崖岩体主体岩石为二长花岗岩,后期被细粒二长花岗岩岩脉侵入。二者都具有高硅、富碱和高钾特征,里特曼指数小于3,岩石铝饱和指数(A/CNK)值小于1;微量元素原始地幔标准化分布型式具有Rb、Th、U和K元素富集,Nb、Ta、Nd和Ti等元素亏损特征;稀土元素总量偏低,轻稀土富集。主期二长花岗岩的稀土元素球粒陨石标准化分布型式具有轻微的负Eu异常,而岩脉具有正的Eu异常。休斯陡崖岩体的岩石类型为钙碱性准铝质I型花岗岩,源区为下陆壳,并伴有幔源物质的混入。在源区,岩浆发生了不同程度的斜长石、钛铁矿、金红石和磷灰石的分离结晶作用,其形成的构造环境为与俯冲作用有关的火山岛弧环境。   相似文献   

17.
The Lower Unit of the ophiolitic sequence of Northern Argolis comprises turbiditic sediments and olistostromes, both containing ophiolitic clasts, mainly crystal fragments (clinopyroxene, plagioclase, Cr-spinel, amphibole) in the turbidites and cumulitic intrusives (quartz noritic amphibole-bearing gabbros), subvolcanic rocks (dolerites) and various effusive lithologies (mainly Si-rich basalts to basaltic andesites) in the olistostromes. The volcanic rocks belong to three groups. In rare cases the lavas are mineralogically and chemically comparable with MORB; most of them, and the subvolcanic rocks, contain primary quartz and amphibole, orthopyroxene, Ca-rich plagioclase and clinopyroxene±Cr-spinels. All rocks are Si- and Mg-rich and have high concentrations of ‘compatible’ and very low concentrations of ‘incompatible’ elements. The REE profiles are characteristically U-shaped. Many of the observed features are comparable with those of subduction-related lavas and, in particular, with present day boninites and ophiolitic boninitic rocks. The gabbroic rocks have mineralogical and chemical analogies with the dolerites and lavas, thus it may be argued that the gabbros represent the intrusive counterparts of the ‘boninitic’ volcanic clasts. The mineral clasts occurring in the turbidites are chemically comparable with those analysed in the ophiolitic clasts of the overlying olistostrome. It may be concluded that the ophiolitic clasts of both olistostromes and turbidites were derived from a subduction-related sequence. An island arc–back-arc system might explain the occurrence of both boninitic and MORB-type lithologies in the olistostrome of Angelokastron. This may support the hypothesis of the onset of compressive tectonics along the Pindos Ocean during the Jurassic. © 1996 John Wiley & Sons, Ltd.  相似文献   

18.
The Kermanshah ophiolite is a highly dismembered ophiolite complex that is located in western Iran and belongs to the Zagros orogenic system. The igneous rocks of this complex consist of both mantle and crustal suites and include peridotites (dunite and harzburgite), cumulate gabbros, diorites, and a volcanic sequence that exhibits a wide range in composition from subalkaline basalts to alkaline basalts to trachytes. The associated sedimentary rocks include a variety of Upper Triassic to Lower Cretaceous deep- and shallow-water sedimentary rocks (e.g., dolomite, limestone, and pelagic sediments, including umber). Also present are extensive units of radiolarian chert. The geochemical data clearly identifies some of the volcanic rocks to have formed from two distinct types of basaltic melts: (i) those of the subalkaline suite, which formed from an initial melt with a light rare earth elements (LREE) enriched signature and incompatible trace element patterns that suggest an island arc affinity; and (ii) those of the alkaline suite with LREE-enriched signature and incompatible trace element patterns that are virtually identical to typical oceanic island basalt (OIB) pattern. The data also suggests that the trachytes were derived from the alkaline source, with fractionation controlled by extensive removal of plagioclase and to a lesser extent clinopyroxene. The presence of compositionally diverse volcanics together with the occurrence of a variety of Triassic–Cretaceous sedimentary rocks and radiolarian chert indicate that the studied volcanic rocks from the Kermanshah ophiolite represent off-axis volcanic units that were formed in intraplate oceanic island and island arc environments in an oceanic basin. They were located on the eastern and northern flanks of one of the spreading centers of a ridge-transform fault system that connected Troodos to Oman prior to its subduction under the Eurasian plate.  相似文献   

19.
南海新生代碱性玄武岩中斜长石矿物的化学成分及意义   总被引:1,自引:0,他引:1  
南海新生代碱性玄武岩中存在两种不同粒径的斜长石矿物.其一为斜长石斑晶,常见熔蚀麻点,是岩浆上升、压力降低时发生熔蚀作用并在骤冷条件下形成的;其二斜长石微晶,半定向或杂乱分布于火山玻璃中,其中空骸晶结构表明斜长石微晶是在淬冷条件下迅速结晶形成的.斜长石斑晶具弱成分环带,斑晶边部的An值稍高或接近于斜长石微晶.微晶斜长石An值与岩浆喷出后的水深以及喷发位置距离岩浆主通道的远近存在一定联系.本区的斜长石斑晶形成温度明显低于冲绳海槽地区,而类似于东海陆架地区;斜长石微晶的结晶温度类似于冲绳海槽,表明两地区在岩浆喷出海底后淬火结晶的物理化学条件相似.结合同样品中橄榄石斑晶研究结果以及已有的地球物理学和岩石学方面的资料,可能反映了地幔柱快速上涌使早期部分熔融及结晶分异作用较弱,岩浆本身温度高提供了早期结晶形成的斑晶与寄主岩浆进一步充分反应的热量.计算的斜长石斑晶温度不能反映源区温度特征,后者应高于本文所计算的斜长石斑晶的结晶温度.  相似文献   

20.
Petrology of the Western Reykjanes Peninsula, Iceland   总被引:3,自引:3,他引:3  
The active tholeiitic volcanic zone of the Reykjanes Peninsulaconsists of five volcanic fissure swarms, the two westernmostof which are the subject of this petrological study. The recent(less than 12,000 years) extrusives of the swarms group morphologicallyand petrographically into small picrite basalt lava shields,large olivine tholeiite lava shields and tholeiite fissure lavas;formed in that chronological succession. The picrite basalts exhibit a primitive mineralogy with chromite,olivine (Fo 89) and plagioclase (An 90) as phenocrysts and mayrepresent a primary liquid from the mantle. Simultaneous crystallizationof olivine, plagioclase and augite to form glomerocrysts inthe fissure lavas indicate low pressure cotectic crystallizationconditions. Twenty-eight new major element chemical analyses of the lavasare presented. They are generally characterized by a low contentof alkalies and high CaO. The lavas constitute two main suites,a lava shield suite and a fissure lava suite. There is a positivecorrelation between the volume of individual lavas and the contentof incompatible elements of the lavas within each group. Likewisethere is an overall chemical trend through time demonstrated,for example, by a rise in K2O from about 0.02 per cent to 0.24per cent during the last, approximately, 12,000 years. There is an apparent chemical zoning within each volcanic swarmsuch that the most evolved and youngest lavas are found in thecentral axial area of the swarm. This central area is also characterizedby graben subsidence, high magnetic anomalies and high temperaturethermal areas, all indicative of shallow magma reservoir(s).In spite of indications of fractional crystallization in theevolution of the olivine tholeiites and tholeiites, some otherprocesses must be sought to explain the volume chemistry relations.Cyclic volcanic activity is tentatively suggested to explainthe observed regular temporal variations within the swarm, eachcycle starting with the formation of picrite basalts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号