首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experimental data are presented in this paper to study the strain-softening behaviour of sand under plane-strain conditions. K 0 consolidated strain path tests were conducted using a new plane-strain apparatus. The stress–strain behaviour of medium dense sand under plane-strain conditions was characterized. The test results show that the occurrence of pre-failure strain softening under plane-strain conditions is affected by the void ratio, the strain increment ratio and the initial effective confining stress. This is consistent with previous findings established under axisymmetric conditions. However, a pre-failure strain-softening behaviour in plane-strain tests conducted under high-confining stresses may consist of three stages, namely, material softening, banding softening, and ultimate state. This observation is different from that in triaxial tests where banding softening does not normally occur.  相似文献   

2.
Experimental results are presented in this paper to study the strain softening behaviour of a marine dredged sand under plane-strain conditions. K0 consolidated drained and undrained tests were conducted using a new plane-strain apparatus to characterize the strain softening behaviour of the sand under plane-strain conditions. For medium dense specimens, strain softening and shear bands were observed to occur under both drained and undrained conditions. For very loose specimens, no shear bands were observed and critical states were reached within the homogeneous deformation region in both drained and undrained tests. Strain softening was observed to occur at small strain for very loose specimens under undrained conditions. Two types of strain softening, the homogenous softening and banding softening, were identified and the conditions for strain softening were established. The results obtained from this study were compared with the studies by Han and Vardoulakis (Géotechnique 41(1):49–78, 1991), Finno et al. (J Geotech Eng ASCE 122(6):462–473, 1996, Géotechnique 47(1):149–165, 1997) and Mokni and Desrues (Mech Cohes-Frict Mat 4:419–441, 1998).  相似文献   

3.
4.
Time-Dependent Behaviour and Static Liquefaction Phenomenon of Sand   总被引:1,自引:0,他引:1  
Recent laboratory and field experiments have confirmed that sand does indeed exhibit time-dependent behaviour. Based on these findings, it was considered necessary to revisit some of the published experimental results on the static liquefaction phenomenon of loose anisotropic Hostun RF sand. Time-dependency might have had a significant influence on the observed undrained response of anisotropic consolidated sand specimens. Specific triaxial tests have been performed and a qualitative analysis is presented in this paper. It is shown that, despite the differences on the anisotropic consolidation path employed, different specimens show qualitatively identical undrained responses if creep periods are performed at identical test stages or if the anisotropic consolidation takes place very slowly. With time, the undrained stiffness and strength are considerably improved and this may explain why the static liquefaction phenomenon is not as common in practice as could be predicted based on an instability line concept. Whereas the original instability line concept was developed independently of time-dependency, in field situations, the liquefaction resistance of the sand can increase with time.  相似文献   

5.
In a number of recent case studies, the liquefaction of silty sands has been reported. To investigate the undrained shear and deformation behaviour of Chlef sand–silt mixtures, a series of monotonic and stress-controlled cyclic triaxial tests were conducted on sand encountered at the site. The aim of this laboratory investigation is to study the influence of silt contents, expressed by means of the equivalent void ratio on undrained residual shear strength of loose, medium dense and dense sand–silt mixtures under monotonic loading and liquefaction potential under cyclic loading. After an earthquake event, the prediction of the post-liquefaction strength is becoming a challenging task in order to ensure the stability of different types of earth structures. Thus, the choice of the appropriate undrained residual shear strength of silty sandy soils that are prone to liquefaction to be used in engineering practice design should be established. To achieve this, a series of undrained triaxial tests were conducted on reconstituted saturated silty sand samples with different fines contents ranging from 0 to 40 %. In all tests, the confining pressure was held constant at 100 kPa. From the experimental results obtained, it is clear that the global void ratio cannot be used as a state parameter and may not characterize the actual behaviour of the soil as well. The equivalent void ratio expressing the fine particles participation in soil strength is then introduced. A linear relationship between the undrained shear residual shear strength and the equivalent void ratio has been obtained for the studied range of the fines contents. Cyclic test results confirm that the increase in the equivalent void ratio and the fines content accelerates the liquefaction phenomenon for the studied stress ratio and the liquefaction resistance decreases with the increase in either the equivalent void ratio or the loading amplitude level. These cyclic tests results confirm the obtained monotonic tests results.  相似文献   

6.
Exploring the undrained induced anisotropy of Hostun RF loose sand   总被引:3,自引:3,他引:0  
The effects of recent history on the undrained behaviour of very loose and saturated Hostun RF clean sand are investigated in this paper. From an initial isotropic stress state in the triaxial plane, recent histories are generated by isotropic consolidation followed by standard drained triaxial preshear in compression, up to a desired value of axial strain or mobilized stress ratio, and unloading to an initial stress ratio. Subsequent undrained behaviour in triaxial compression is analysed in detail. This paper contributes to the traits explaining the progressive transformation of a compressive and unstable behaviour of loose sand into a dilative and stable behaviour of dense-like sand by previous history, while remaining in the same state of loose density. Experiments show a large pseudo-elastic domain induced by recent history in terms of effective stress paths, function of the initially mobilized stress ratio level, a unique initial gradient of the effective stress paths depending on the stress ratio at the beginning of the undrained shearing, a progressive appearance of dilatancy and a surprising evolution the undrained behaviour of loose sand. Experimental results evidence the important role of the recent deviatoric strain history, from any initial isotropic or anisotropic stress state. This paper also offers a comprehensive understanding of the history mechanisms created by simple linear stress paths with fixed direction in the classical triaxial plane.  相似文献   

7.
A modification to the nonlinear Pastor–Zienkiewicz–Chan (PZC) constitutive model without any change in the number of model parameters is introduced in order to simulate stiffness degradation of dense sands at dynamic loading. The PZC model is based on generalized plasticity and was verified by good prediction of liquefaction and undrained behavior of saturated sand. The PZC is a robust model that can predict drained dynamic behavior of sands, especially stiffness increase in loose sand at reloading of dynamic loading. Yet, this model does not show stiffness degradation of dense sand at reloading. The modification is made through modifying the stress memory factor, H DM, which is multiplied by the plastic modulus, H L. This modification does not influence reloading behavior of loose sand. The modified PZC model is verified via results of drained cyclic tests. Two cyclic triaxial tests on loose and dense specimens, along with two cyclic plane strain tests on dense sand are utilized for validation. The model simulation shows that the modified PZC model is able to predict the stiffness degradation of dense sand at reloading well.  相似文献   

8.
The effects of previous deviatoric strain histories on the undrained behaviour of very loose and saturated Hostun RF clean sand are investigated in this paper. From an initial isotropic stress state in the triaxial plane, strain histories are generated by isotropic consolidation followed by standard drained triaxial preshear or presheared cycle, either in compression or in extension, up to a desired value of axial strain or mobilized stress ratio. Deviatoric strain histories are achieved by having nearly the same void ratio at the beginning of the undrained shearing for all tested samples. Subsequent undrained behaviour in triaxial compression and extension is analyzed in detail. Previous deviatoric strain histories can progressively transform the compressive and unstable behaviour of loose sand into a dilative and stable behaviour of dense-like sand, while being loose. Experiments show a common response induced by recent strain histories in terms of effective stress paths, independently of the axial strain attained during the drained presheared cycle, a unique initial gradient of the effective stress paths, a progressive appearance of dilatancy, an evolution the undrained behaviour and a systematic partial static liquefaction associated with softer behaviour when sheared in the opposite direction of the initial presheared direction. This paper offers a comprehensive understanding of the mechanisms of a specialized induced anisotropy created by simple linear stress paths in the classical triaxial plane.  相似文献   

9.
饱和粉砂不稳定性的试验研究   总被引:3,自引:0,他引:3  
符新军  赵仲辉 《岩土力学》2008,29(2):381-385
通过对净砂和级配良好粉砂(含10 %粉土)进行一系列三轴固结不排水试验(CU),研究了粉土、孔隙比和围压对饱和粉砂不稳定性的影响。试验结果表明,净砂与粉砂在不排水剪切条件下均会出现应变软化现象(即不稳定性)。同一围压下脆性指数(IB)随孔隙比增加,但不稳定线的应力比随孔隙比增加而减小。引用等效粒间孔隙比(ege)后,净砂和粉砂在ege-ln p?平面上拥有基本相同的临界状态线。在临界状态理论及等效粒间孔隙比的基础上,提出在同一修正状态参数(?ge)下净砂和级配良好粉砂有相似的不稳定性。  相似文献   

10.
11.
Soil improvement using fibres is widely used in soil stabilisation to prevent sand liquefaction. In order to study the undrained behaviour and liquefaction resistance of sand reinforced with polypropylene fibres, a series of triaxial compressive tests were conducted on unreinforced and reinforced Chlef sand with different contents of polypropylene fibres (0, 0.3, 0.5 and 0.8%). Samples were prepared at 30% and 80% relative densities representing loose and dense states respectively, and triaxial tests were performed at confining pressures of 50, 100 and 200 kPa. Tests results show that fibre inclusion has a significant effect on the shear strength and dilation of sandy soil. The increase in strength is function of fibre content, relative density and confining pressure. The maximum strength improvement for both loose and dense fibre-reinforced sand is more pronounced at higher confining pressure and at higher fibre content.  相似文献   

12.
常剪应力路径下含气砂土的三轴试验   总被引:1,自引:0,他引:1  
孔亮  刘文卓  袁庆盟  董彤 《岩土力学》2019,40(9):3319-3326
天然气水合物完全分解时,产生的气体使得能源土孔隙压力急速增加,有效应力减小,进而引起土体液化破坏。此时深海能源土斜坡的应力状态与静力液化失稳过程可简化为含气土在常剪应力排水(或不排水)应力路径下的破坏问题。以此为背景,提出了制备含气砂土试样的改进充气管法,并开展了含气砂土的常剪应力路径三轴试验。22组试验结果表明:同一孔隙比的含气密砂在不同围压与常剪应力下具有相同的失稳线;含气砂土试样失稳时的应力比和体变均随初始相对密实度的增大而增大;含气密砂在常剪应力路径下饱和度对失稳特征影响的规律性在排水与不排水条件下均不明显,但在不排水条件下含气砂土的孔压(或体变)对变形的敏感性降低;含气密砂在常剪应力路径到达失稳点之后,排水条件下是瞬变的液化鼓胀破坏,不排水条件下是渐变的剪切破坏。  相似文献   

13.
On the undrained strain-induced anisotropy of loose sand   总被引:1,自引:1,他引:0  
An experimental study was carried out to investigate the effects of previous deviatoric strain histories on the undrained behaviour of loose and saturated Toyoura sand and compared with known results of Hostun RF sand. From an initial isotropic stress state, recent deviatoric strain histories in the compression side of the triaxial plane were generated by a standard drained presheared cycle up to a specified mobilized stress ratio. Mainly, the fully liquefied, contractive, unstable and softening behaviour of loose sand was progressively transformed into the non-liquefied, dilative, fully stable and hardening behaviour of dense-like sand, while remaining within a narrow range of loose density. The paper validates and extends the current understanding of strain-induced anisotropy of loose sand. New experimental data support the directional dependency of the instability cone on the stress increment direction, suggest the bifurcation characteristics of loose sand and evidence the important role of past deviatoric strain histories.  相似文献   

14.
We define a flow liquefaction potential for determining flow liquefaction susceptibility during proportional strain triaxial compression. The flow liquefaction potential is a function of inconsistency between the natural dilative tendency of the soil and the imposed dilatancy during proportional strain triaxial compression. It helps us analyze why given the right conditions, a loose soil that contracts during drained triaxial compression and liquefies under undrained triaxial compression may be stable under proportional strain triaxial compression. Conversely, we also use the flow liquefaction potential to analyze why a dense soil that dilates during drained triaxial compression and is stable under undrained triaxial compression may liquefy under proportional strain triaxial compression. The undrained loose case is a special case of proportional strain triaxial compression under which a soil can liquefy. The central objective of this paper was to investigate the origins of flow liquefaction instability. Hence, we also analyze stress evolution during proportional strain triaxial compression and discuss the mechanics of the test leading up to flow liquefaction instability. We arrive at a necessary precursor for instability, which can serve as a warning sign for flow liquefaction instability, while the soil is still stable. The precursor is not a condition of sufficiency and should also not be confused with the onset of instability itself. The same loading must be applied continuously to induce flow liquefaction instability. The current progress is encouraging and facilitates a deeper understanding of origin of flow liquefaction instabilities.  相似文献   

15.
Aspects of sand behaviour by modified constant shear drained tests   总被引:2,自引:2,他引:0  
Constant shear drained tests (CSD) are probably the most suitable to simulate the strength and deformation behaviour of soils in slopes under water infiltration conditions or lateral stress relief. This is significant because soil behaviour following a CSD stress path could differ from that of traditional compression triaxial tests. In this paper, CSD tests on sand following an alternative procedure are presented and discussed. The modified CSD tests were conducted by increasing the pore water pressure at a constant rate from one end of the specimen with water free to drain from the opposite end. Among the results from specimens consolidated at variable initial void ratios and principal stress ratios it was revealed that specimens showed a tendency to dilate even for loose sands; failure was reached at low axial strains; and a pre-failure type of instability could be identified. The modified procedure has the potential to provide new insights into the failure mechanisms of slopes under a water infiltration condition.  相似文献   

16.
For numerical studies of geotechnical structures under earthquake loading, aiming to examine a possible failure due to liquefaction, using a sophisticated constitutive model for the soil is indispensable. Such a model must adequately describe the material response to a cyclic loading under constant volume (undrained) conditions, amongst others the relaxation of effective stress (pore pressure accumulation) or the effective stress loops repeatedly passed through after a sufficiently large number of cycles (cyclic mobility, stress attractors). The soil behaviour under undrained cyclic loading is manifold, depending on the initial conditions (e.g. density, fabric, effective mean pressure, stress ratio) and the load characteristics (e.g. amplitude of the cycles, application of stress or strain cycles). In order to develop, calibrate and verify a constitutive model with focus to undrained cyclic loading, the data from high-quality laboratory tests comprising a variety of initial conditions and load characteristics are necessary. The purpose of these two companion papers was to provide such database collected for a fine sand. The database consists of numerous undrained cyclic triaxial tests with stress or strain cycles applied to samples consolidated isotropically or anisotropically. Monotonic triaxial tests with drained or undrained conditions have also been performed. Furthermore, drained triaxial, oedometric or isotropic compression tests with several un- and reloading cycles are presented. Part I concentrates on the triaxial tests with monotonic loading or stress cycles. All test data presented herein will be available from the homepage of the first author. As an example of the examination of an existing constitutive model, the experimental data are compared to element test simulations using hypoplasticity with intergranular strain.  相似文献   

17.
Stress history is recognised to play a major role in determining stress–strain behaviour of soil in undrained shearing. Most experimental studies on the effects of stress history on undrained behaviour are mainly limited to clean sand. In this paper, an experimental study carried out to investigate the effect of stress history on the undrained behaviour of loose sand with a small amount of fines is presented. Four series of triaxial compression tests, with different types of drained stress histories to near-failure prior to commencement of undrained shearing, were conducted. The experimental results indicate that drained pre-shearing to near-failure affects significantly the undrained behaviour of loose sand. In general, the drained pre-shearing improves the subsequent undrained behaviour of loose sand to the extent that liquefaction may not occur. It is shown that the effect of drained pre-shearing cannot be explained by the reduction in void ratio induced by drained pre-shearing. However, for specimens subjected to drained pre-shearing, $ p_{{{\text{d}}0}}^{\prime } $ / $ p_{{{\text{u}}0}}^{\prime } $ can be used as a parameter for analysing the effects of preloading history. It is also shown that for different preloading histories that brought the same change in void ratio or state parameter, drained pre-shearing to near-failure is the most effective, whereas pre-compression alone is the least effective in improving subsequent undrained behaviour of loose sand.  相似文献   

18.
基于应变空间硅藻质软岩的软化本构模型   总被引:1,自引:0,他引:1  
廖红建  蒲武川  卿伟宸 《岩土力学》2006,27(11):1861-1866
三轴试验结果表明,软岩具有显著的应变软化特征。正常固结软岩表现为峰值后较缓的软化特征,而超固结软岩峰值强度后的应力-应变曲线呈陡降软化特征。应变空间表述的弹塑性理论在解决大应变和软化问题时比应力空间表述的弹塑性理论更具有优越性。基于应变空间的基本的弹塑性本构方程式,采用Mises剪切屈服准则及相关联流动法则,导出固结不排水三轴条件下的应力-应变本构关系式,并采用不同的硬化函数表达式对软岩在不同围压下的应力-应变曲线进行数值模拟。结果表明,应变空间的弹塑性理论能较好地模拟软岩应变软化特征,其中硬化函数的确定是关键问题之一。通过研究,提出了用于固结不排水状态下正常固结软岩的硬化函数形式。  相似文献   

19.
The mathematical properties of diffuse and localized failure modes in fluid‐saturated sands are investigated. The granular medium is modeled as an elastoplastic solid, and a recently proposed set of scalar indices, here referred to as moduli of instability, is used to identify the onset of potential bifurcations of the incremental response. First, the analytical properties of these moduli are discussed, stressing their dependence on the kinematic constraints associated with the imposed deformation modes. Then, by using an elastoplastic model for sands, drained and undrained loading paths are simulated under axisymmetric, plane‐strain and simple shear conditions. For each deformation mode, the instability moduli are computed and monitored throughout the simulations, with the purpose of elucidating the consequences of changes in control conditions. In addition, it is illustrated that suitable linear transformations allow the same strategy to be used to perform drained or undrained shear band analyses and predict the interval of possible band inclinations. The final comparison against literature experiments on loose Hostun sand shows that the instability moduli are indicators of the loss of resistance against specific modes of deformation. As a result, they can be used to identify and explain a number of failure mechanisms that can be commonly observed in experiments. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The paper presents a comparison between the behavior of slurry-consolidated Kaolin specimens tested under axisymmetric Conventional Triaxial Compression (CTC) and Plane Strain (PS) loading conditions. The PS experiments were conducted on an instrumented apparatus capable of capturing the onset of shear bands. The specimens were consolidated and then sheared under undrained condition. The PS specimens failed via a well-defined shear band that began to develop during the hardening stress regime whereas CTC specimens failed through a diffuse bulging mode. The undrained shear strength (S u) of CTC experiments is smaller than the S u of PS experiments. However, the normalized S u of CTC experiments is very close to PS1, which was consolidated under similar K o condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号