首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different models were developed for evaluating the probabilistic three-dimensional (3-D) stability analysis of earth slopes and embankments under earthquake loading using both the safety factor and the displacement criteria of slope failure.The probabilistic models evaluate the probability of failure under seismic loading considering the different sources of uncertainties involved in the problem. The models also take into consideration the spatial variabilities and correlations of soil properties. The developed models are incorporated in a computer program PTDDSSA.These analysis/design procedures are incorporated within a code named SARETL developed in this study for stability analysis and remediation of earthquake triggered landslides. In addition to the dynamic inertia forces, the system takes into consideration local site effects.The code is capable of assessing the landslide hazard affecting major transportation routes in the event of earthquakes and preparing earthquake induced landslide hazard maps (i.e., maps showing expected displacements and probability of slope/embankments failure) for different earthquake magnitudes and environmental conditions. It can also beused for proposing a mitigation strategy against landslides.  相似文献   

2.
A. Golara 《Natural Hazards》2014,73(2):567-577
Seismic hazard maps are widely used for engineering design, land-use planning, and disaster mitigation. The development of the new seismic hazard map of Iran with regard to the specification of Iranian high-pressure gas network is based on probabilistic seismic hazard analysis using the historical and new earthquakes data, geology, tectonics, fault activity, and seismic zone models in Iran. The map displays the probabilistic estimates of peak ground acceleration for the return period of 2,475 year (2 % probability in 50 years). The results presented in this study will provide the basis for the preparation of risk map, the estimation of insurance premiums, finding best paths for future pipelines, planning, and relocating lifeline facilities especially for interconnected infrastructures.  相似文献   

3.
Northeast India is one of the most highly seismically active regions in the world with more than seven earthquakes on an average per year of magnitude 5.0 and above. Reliable seismic hazard assessment could provide the necessary design inputs for earthquake resistant design of structures in this region. In this study, deterministic as well as probabilistic methods have been attempted for seismic hazard assessment of Tripura and Mizoram states at bedrock level condition. An updated earthquake catalogue was collected from various national and international seismological agencies for the period from 1731 to 2011. The homogenization, declustering and data completeness analysis of events have been carried out before hazard evaluation. Seismicity parameters have been estimated using G–R relationship for each source zone. Based on the seismicity, tectonic features and fault rupture mechanism, this region was divided into six major subzones. Region specific correlations were used for magnitude conversion for homogenization of earthquake size. Ground motion equations (Atkinson and Boore 2003; Gupta 2010) were validated with the observed PGA (peak ground acceleration) values before use in the hazard evaluation. In this study, the hazard is estimated using linear sources, identified in and around the study area. Results are presented in the form of PGA using both DSHA (deterministic seismic hazard analysis) and PSHA (probabilistic seismic hazard analysis) with 2 and 10% probability of exceedance in 50 years, and spectral acceleration (T = 0. 2 s, 1.0 s) for both the states (2% probability of exceedance in 50 years). The results are important to provide inputs for planning risk reduction strategies, for developing risk acceptance criteria and financial analysis for possible damages in the study area with a comprehensive analysis and higher resolution hazard mapping.  相似文献   

4.
In conventional seismic hazard analysis, uniform distribution over area and magnitude range is assumed for the evaluation of source seismicity which is not able to capture peculiar characteristic of near-fault ground motion well. For near-field hazard analysis, two important factors need to be considered: (1) rupture directivity effects and (2) occurrence of scenario characteristic ruptures in the nearby sources. This study proposed a simple framework to consider these two effects by modifying the predictions from the conventional ground motion model based on pulse occurrence probability and adjustment of the magnitude frequency distribution to account for the rupture characteristic of the fault. The results of proposed approach are compared with those of deterministic and probabilistic seismic hazard analyses. The results indicate that characteristic earthquake and directivity consideration both have significant effects on seismic hazard analysis estimates. The implemented approach leads to results close to deterministic seismic hazard analysis in the short period ranges (T < 1.0 s) and follows probabilistic seismic hazard analysis results in the long period ranges (T > 1.0 s). Finally, seismic hazard maps based on the proposed method could be developed and compared with other methods.  相似文献   

5.
Different models were developed for evaluating the probabilistic three-dimensional (3-D) stability analysis of earth slopes and embankments under earthquake loading. The 3-D slope stability model assumed is that of a simple cylindrical failure surface. The probabilistic models evaluate the probability of failure under seismic loading considering the randomness of earthquake occurrence, and earthquake induced acceleration and uncertainties stemming from the discrepancies between laboratory-measured and in-situ values of shear strength parameters. The models also takes into consideration the spatial variabilities and correlations of soil properties. The probabilistic analysis and design approach is capable of obtaining the 2-D and 3-D static and dynamic safety factors, the probability of slope failure, the earthquake induced acceleration coefficient, the yield acceleration coefficient, the earthquake induced displacement, and the probability of allowable displacement exceedance taking into account the local site effect. The approach is applied to a well known landslide case: Congress Street Landslide in Chicago. A sensitivity analysis was conducted on the different parameters involved in the models by applying those models to the Congress Street landslide considering different levels of seismic hazard. Also, a sensitivity analysis was carried out to study the sensitivity of computed results to input parameters of undrained shear strength, and corrective factors. A comparison was made between the different models of failure. The parametric study revealed that the hypocentral distance and earthquake magnitude have major influence on the earthquake induced displacement, probability of failure and dynamic 2-D and 3-D safety factors.  相似文献   

6.
 Different models were developed for evaluating the probabilistic three-dimensional (3-D) stability analysis of earth slopes and embankments under earthquake loading using both the safety factor and the displacement criteria of slope failure. In the 3-D analysis, the critical and total slope widths become two new and important parameters. The probabilistic models evaluate the probability of failure under seismic loading and consider the different sources of uncertainties involved in the problem, i.e. uncertainties stemming from the discrepancies between laboratory-measured and in situ values of shear strength parameters, randomness of earthquake occurrence, and earthquake-induced acceleration. The models also take into consideration the spatial variabilities and correlations of soil properties. The developed models are incorporated in a computer program, PTDDSSA (probabilistic three-dimensional dynamic slope stability analysis). These developed analysis/design procedures are incorporated within a code named SARETL (stability analysis and remediation of earthquake-triggered landslides) that was developed in this study for stability analysis and remediation of earthquake-triggered landslides. In addition to the dynamic inertia forces; the developed system takes into consideration the local site effects. The code is capable of: 1. Prediction of permanent deformations that result from landslides under seismic loading using both probabilistic and deterministic approaches. 2. The assessment of landslide hazard that affects major transportation routes in the event of earthquakes, and the preparation of earthquake-induced landslide hazard maps (i.e. maps that show expected displacements and probability of slope/embankments failure) for different earthquakes magnitudes and environmental conditions. 3. Proposing a mitigation strategy against landslides and suggesting guidelines for remedial measures. The developed expert system is applied to a major highway case study. Design maps are developed for the highway under seismic loading. Received: 18 March 1999 · Accepted: 11 October 1999  相似文献   

7.
Mumbai city, the economical capital of India, is located on the west coast of stable intra-plate continental region of Peninsular India which has an experience of significant historical earthquakes in the past. The city stood as the fourth most populous city in the world. Recent seismo-tectonic studies of this city highlighted the presence of active West coast fault and Chiplun fault beneath the Deccan basalt. In the present study, spatial variability of probabilistic seismic hazard for Mumbai region (latitudes of 18.85–19.35°N and longitudes of 72.80–73.15°E at a grid spacing of 0.05°) which includes Mumbai city, Suburban, part of Thane district and Navi Mumbai, in terms of ground motion parameters; peak horizontal acceleration and spectral acceleration at 1.0-s period for 2 and 10 % probability of exceedance in 50 years are generated. The epistemic uncertainty in hazard estimation is accounted by employing seven different ground motion prediction equations developed for worldwide shallow crustal intra-plate environments. Further, the seismic hazard results are deaggregated for Mumbai (latitude 18.94°N, longitude 72.84°E) to understand the relative contributions of earthquake sources in terms of magnitude and distance. The generated hazard maps are compared with the zoning specified by Indian seismic code (IS1893: Part 1 in Indian standard criteria for earthquake-resistant design of structures, Part 1—General provisions and buildings. Bureau of Indian Standards, New Delhi, India, 2002) for rocky site. Present results show an underestimation of potential seismic hazard in the entire study region by non-probabilistic zoning prescribed by IS1893: Part 1 with significantly higher seismic hazard values in the southern part of Navi Mumbai.  相似文献   

8.
A seismic hazard analysis was conducted in Laoag City, Northern Philippines to determine the design ground motion for liquefaction potential assessment of the area. Because the hazard analysis was done within the framework of liquefaction potential assessment, only those earthquakes with magnitude–distance combinations that are capable of generating liquefaction were considered in the study. Both probabilistic and deterministic approaches were used in the analysis. From the results of the probabilistic analysis, seismic hazard curves were generated from which the ground motion with a 10% probability of exceedance in 50years was obtained. This was then modified in consideration of the soft soil condition in the study area. Deaggregation was performed to determine the most likely earthquake to generate the said level of ground shaking.  相似文献   

9.
A probabilistic tsunami hazard assessment is performed for the Makran subduction zone (MSZ) at the northwestern Indian Ocean employing a combination of probability evaluation of offshore earthquake occurrence and numerical modeling of resulting tsunamis. In our method, we extend the Kijko and Sellevoll’s (1992) probabilistic analysis from earthquakes to tsunamis. The results suggest that the southern coasts of Iran and Pakistan, as well as Muscat, Oman are the most vulnerable areas among those studied. The probability of having tsunami waves exceeding 5 m over a 50-year period in these coasts is estimated as 17.5%. For moderate tsunamis, this probability is estimated as high as 45%. We recommend the application of this method as a fresh approach for doing probabilistic hazard assessment for tsunamis. Finally, we emphasize that given the lack of sufficient information on the mechanism of large earthquake generation in the MSZ, and inadequate data on Makran’s paleo and historical earthquakes, this study can be regarded as the first generation of PTHA for this region and more studies should be done in the future.  相似文献   

10.

A methodology for the development of fully probabilistic seismic risk assessments on water and sewage networks is presented in this paper together with a case study for the system of Manizales, Colombia. These kinds of assessments require the development of probabilistic seismic hazard analysis, the consideration of local site effects, when relevant, the assembly of databases to identify and characterize the exposed elements and the development and assignment of vulnerability models for each type of component. For the case of Manizales, a high-resolution exposure database has been developed (element by element, segment by segment) based on the information and data provided by the owner and operator of the network, Aguas de Manizales. Losses due to earthquakes are obtained after convoluting the hazard and vulnerability inputs in a fully probabilistic manner, using the state-of-the-art methodologies incorporated in the CAPRA risk assessment module. Several risk metrics such as the loss exceedance curve, the loss exceedance probabilities for different time frames and the average annual loss are obtained for the system as a whole as well as disaggregated by component. In addition, repair rates for the pipelines were also calculated. The risk results obtained in this study have been useful for the company in designing and implementing expansion and maintenance plans that explicitly account for seismic risk mitigation issues, as well as to explore and negotiate financial protection alternatives by means of risk transfer and retention schemes, thus becoming a valuable input in the continuous development of good disaster risk management practices in this city.

  相似文献   

11.
We investigated the Coulomb stress changes in the active faults surrounding a moderate‐magnitude normal‐faulting earthquake (2009 L'Aquila, Mw 6.3) and the associated variations in the expected ground motion on regional probabilistic seismic hazard maps. We show that the static stress variations can locally increase the seismic hazard by modifying the expected mean recurrence time on neighbouring faults by up to ~290 years, with associated variations in the probability of occurrence of the maximum expected earthquake of up to ~2%. Our findings suggest that the increase in seismic hazard on neighbouring faults following moderate‐magnitude earthquakes is probably not sufficient to necessitate systematic upgrades of regional probabilistic seismic hazard maps, but must be considered to better address and schedule strategies for local‐scale mitigation of seismic risk.  相似文献   

12.
The assessment of local site effects on seismic ground motions is of great importance in earthquake engineering practice. Several destructive earthquakes in the past have demonstrated that the amplification of ground motion and associated damage to structures due to local site conditions is a significant consideration in earthquake hazard analysis. A recent paper published in this journal highlights the hazard posed by earthquakes in the megacity of Kolkata in India due to its seismic and geological settings. The seismic hazard assessment study speculates that the deep alluvial deposit in the city may increase the seismic hazard probably due to the amplification of the seismic energies. This paper focuses on the seismic response studies of the various soil strata (i.e. for local subsurface conditions) obtained from various construction sites in the city for predicted earthquake. It is very well recognized that site response studies (a part of seismic microhazard zonation for urban areas) are the first step towards performance-based foundation design or seismic risk analysis and mitigation strategy. One of the problems for carrying out site-specific study in Kolkata is the lack of recorded strong motion data in the city. Hence, this paper outlines a methodology to carry out site-specific study, where no strong motion data or seismic data are available. The methodology uses wavelet-based spectrum compatibility approach to generate synthetic earthquake motions and equivalent linear method for seismic site response analysis. The Mega City of Kolkata has been considered to explain the methodology. Seismic hazard zonation map by the Bureau of Indian Standards classifies the City of Kolkata as moderate seismic zone (Zone III) with a zone factor 0.16. On the other hand, GSHAP(Global Seismic Hazard Assessment Program) map which is based on 10% probability of exceedance in 50 years specifies a maximum peak ground acceleration (PGA) of 1.6 m/s2 (0.163 g) for this region. In the present study, the seismic response has been carried out based on GSHAP. The results of the analysis indicate the amplification of ground motion in the range of 4.46–4.82 with the fundamental period ranging from 0.81 to 1.17 s. Furthermore, the maximum spectral accelerations vary in the range of 0.78–0.95 g.  相似文献   

13.
China is prone to highly frequent earthquakes due to specific geographical location, which could cause significant losses to society and economy. The task of seismic hazard analysis is to estimate the potential level of ground motion parameters that would be produced by future earthquakes. In this paper, a novel method based on fuzzy logic techniques and probabilistic approach is proposed for seismic hazard analysis (FPSHA). In FPSHA, we employ fuzzy sets for quantification of earthquake magnitude and source-to-site distance, and fuzzy inference rules for ground motion attenuation relationships. The membership functions for earthquake magnitude and source-to-site distance are provided based on expert judgments, and the construction of fuzzy rules for peak ground acceleration relationships is also based on expert judgment. This methodology enables to include aleatory and epistemic uncertainty in the process of seismic hazard analysis. The advantage of the proposed method is in its efficiency, reliability, practicability, and precision. A case study is investigated for seismic hazard analysis of Kunming city in Yunnan Province, People’s Republic of China. The results of the proposed fuzzy logic-based model are compared to other models, which confirms the accuracy in predicting the probability of exceeding a certain level of the peak ground acceleration. Further, the results can provide a sound basis for decision making of disaster reduction and prevention in Yunnan province.  相似文献   

14.
Gwadar City is located at the coastline of Pakistan. The city is currently in a phase of development, which is expected to become a future economic hub for Pakistan. This has led us to choose Gwadar for seismic hazard evaluation. Seismic hazard analysis for Gwadar is carried out using deterministic and probabilistic seismic hazard analysis techniques. The present study will help in sustainable development of a future large city and economic hub for Pakistan on ways of coping from a major threat of earthquake hazard. In deterministic seismic hazard analysis, line sources were identified close to Gwadar. Based on the analysis of maximum magnitude and closest distance (worse conditions), Makran subduction zone was identified out of all the line sources with earthquake potential of 8.2 at a distance of 30 km. This yielded a peak ground acceleration value of 0.38 g for Gwadar City. In second phase, probabilistic seismic hazard analysis technique with the area source modeling was adopted to acquire results at different return periods. For this purpose, seismic data were collected from the Pakistan Meteorological Department and International Seismological Center (2010) databases for development of a comprehensive data catalog. The a and b values were obtained using regression analysis for each source zone, and probabilistic analysis yielded the results of 0.34 g for a return period of 500 years. As per building codes of Pakistan, areas or cities with ground acceleration greater than 0.32 g are considered in seismic zone 4, and both deterministic and probabilistic hazard analysis place the city in seismic zone 4. These values correspond to rock site with shear wave velocity of 760 m/s.  相似文献   

15.
This article describes a new performance-based approach for evaluating the return period of seismic soil liquefaction based on standard penetration test (SPT) and cone penetration test (CPT) data. The conventional liquefaction evaluation methods consider a single acceleration level and magnitude and these approaches fail to take into account the uncertainty in earthquake loading. The seismic hazard analysis based on the probabilistic method clearly shows that a particular acceleration value is being contributed by different magnitudes with varying probability. In the new method presented in this article, the entire range of ground shaking and the entire range of earthquake magnitude are considered and the liquefaction return period is evaluated based on the SPT and CPT data. This article explains the performance-based methodology for the liquefaction analysis – starting from probabilistic seismic hazard analysis (PSHA) for the evaluation of seismic hazard and the performance-based method to evaluate the liquefaction return period. A case study has been done for Bangalore, India, based on SPT data and converted CPT values. The comparison of results obtained from both the methods have been presented. In an area of 220 km2 in Bangalore city, the site class was assessed based on large number of borehole data and 58 Multi-channel analysis of surface wave survey. Using the site class and peak acceleration at rock depth from PSHA, the peak ground acceleration at the ground surface was estimated using probabilistic approach. The liquefaction analysis was done based on 450 borehole data obtained in the study area. The results of CPT match well with the results obtained from similar analysis with SPT data.  相似文献   

16.
The preparation of the preliminary seismic hazard maps of the territory of Slovenia has been based on an expansion of the basic approach laid out by Cornell in 1968. Three seismic source models were prepared. Two of them are based mainly on the earthquake catalogue using the Poissonian probability model. A map of seismic energy release and a map of earthquake epicenter density are used to delineate seismic sources in these models. The geometry of the third model which is based on a rough estimate of seismotectonic setting is taken from the probabilistic seismic hazard analysis of a nuclear power plant in Slovenia. Published ground motion attenuation models based on strong motion records of recent strong earthquakes in Italy are used. Test maps for variable and uniform b-values are presented. The computer program, Seisrisk III, developed by the U.S. Geological Survey is used.  相似文献   

17.
A seismic hazard evaluation for three dams in the Rocky Mountains of northern Colorado is based on a study of the historical seismicity. To model earthquake occurrence as a random process utilizing a maximum likelihood method, the catalog must exhibit random space-time characteristics. This was achieved using a declustering procedure and correction for completeness of recording. On the basis of the resulting a- and b-values, probabilistic epicentral distances for a 2 × 10–5 annual probability were calculated. For a random earthquake of magnitude M L 6.0–6.5, this distance is 15 km. Suggested ground motion parameters were estimated using a probabilistic seismic hazard analysis. Critical peak horizontal accelerations at the dams are 0.22g if median values are assumed and 0.39g if variable attenuation and seismicity rates are taken into account. For structural analysis of the dams, synthetic acceleration time series were calculated to match the empirical response spectra. In addition, existing horizontal strong motion records from two Mammoth Lakes, California earthquakes were selected and scaled to fit the target horizontal acceleration response spectra.  相似文献   

18.
This article contributes to the development and application of two latest-generation methods of seismic risk analysis in urban areas. The first method, namely vulnerability index method (VIM), considers five non-null damage states, defines the action in terms of macroseismic intensity and the seismic quality of the building by means of a vulnerability index. The estimated damage degree is measured by semi-empirical functions. The second method, namely capacity spectrum based method (CSBM), considers four no damage states, defines the seismic action in terms of response spectra and the building vulnerability by means of its capacity spectrum. In order to apply both methods to Barcelona (Spain) and compare the results, a deterministic and a probabilistic hazard scenario with soil effects are used. The deterministic one corresponds to a historic earthquake, while the probabilistic seismic ground motion has a probability of exceedence of 10% in 50 years. Detailed information on the building design has been obtained along years by collecting, arranging, improving, and completing the database of the dwellings of the city. A Geographic Information System (GIS) has been customized allowing storing, analysing, and displaying this large amount of spatial and tabular data of dwellings. The obtained results are highly consistent with the historical and modern evolution of the populated area and show the validity and strength of both methods. Although Barcelona has a low to moderate seismic hazard, its expected seismic risk is significant because of the high vulnerability of its buildings. Cities such as Barcelona, located in a low to moderate seismic hazard region, are usually not aware of the seismic risk. The detailed risk maps obtained offer a great opportunity to guide the decision making in the field of seismic risk prevention and mitigation in Barcelona, and for emergency planning in the city.  相似文献   

19.
Seismic Hazard and Loss Estimation for Central America   总被引:2,自引:2,他引:2  
Yong  Chen  Ling  Chen  Güendel  Federico  Kulhánek  Ota  Juan  Li 《Natural Hazards》2002,25(2):161-175
A new methodology of seismic hazard and loss estimation has been proposed by Chen et al. (Chen et al., 1998; Chan et al., 1998) for the study of global seismic risk. Due to its high adaptability for regions of different features and scales, the methodology was applied to Central America. Seismic hazard maps in terms of both macro-seismic intensity and peak ground acceleration (PGA) at 10% probability of exceedance in 50 years are provided. The maps are all based on the global instrumental as well as historical seismic catalogs and available attenuation relations. Employing the population-weighted gross domestic product (GDP) data, the expected earthquake loss in 50 years for Central America is also estimated at a 5' latitude × 5' longitude resolution. Besides the seismic risk index, a measure of the relative loss or risk degree is calculated for each individual country within the study area. The risk index may provide a useful tool to help allocations of limited mitigation resources and efforts for the purpose of reduction of seismic disasters. For expected heavy loss locations, such as the Central American capital cities, earthquake scenario analysis is helpful in providing a quick overview of loss distribution assuming a major event occurs there. Examples of scenario analysis are given for San Jose, capital of Costa Rica, and Panama City, capital of Panama, respectively.  相似文献   

20.
The National Capital Region (NCR) of India is exposed to high seismic hazard and risk due to a great earthquake in the central seismic gap of Himalaya and/or due to moderate-size earthquake within NCR. The high population density, rapid growth of infrastructure, and old engineering structures in the region make it more vulnerable to the human as well as economic loss due to moderate-size earthquakes also. The evaluation of seismic hazard is the first step to prepare a proper mitigation plan for the region. The aim of this paper is to evaluate the seismic hazard and risk due to moderate-size earthquakes in the vicinity of NCR. For this purpose, a suit of accelerograms have been generated from hypothetical moderate-size earthquakes (M 5.5 and 6.0) in the region. A basic fault-plane solution is assumed for this purpose. The ranges of the different parameters like depth of focus and stress drop values have been used in order to examine the effect of these parameters on hazard. The accelerograms have been synthesized using two basic velocity models, one representing a hard site and the other a site with a significant low-velocity cover. These two velocity models represent the ridge area and trans-Yamuna river area in the NCR. The decay of peak ground acceleration (pga) values with distance is fast in trans-Yamuna region (with low-velocity surface layer of 100 m) as compared to that of ridge area (with low-velocity surface layer of 1 m). Also, the decay of pga becomes slower if we increase the depth of focus from 10 to 20 km. The response spectra (5% damping) of the synthetic accelerograms for the three periods T = 0.4s, 0.75s, and 1.25s have been estimated and presented in the form of decay curves. The amplifications as a function of epicentral distance and stress drop have also been estimated. We note that the amplifications in 100-m layer case do not occur uniformly at all the distances, rather it is dependent on the angle of incidence of energy into the layers. The pga values are generally amplified by more than twice with increase in stress drop from 100 to 400 bars. The seismic exposure of the population in Delhi city has been presented. The results presented in this study may serve as an important input in the planning of mitigation and disaster management programs in the National Capital Region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号