首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bending stresses produced in pavement concrete slabs are influenced by the contact condition along the slab–foundation interface. A finite element model for the analysis of frictional contact between unbonded pavement layers is presented. A 2D plate element is proposed for the idealization of composite slabs. Interface elements are used to connect the unbonded layers within the composite slab and to model the interface between the bottom slab layer and the foundation layer. Interface elements have the ability to capture the separation and sliding between pavement layers, due to thermal loads, and to calculate the frictional traction at their interface.  相似文献   

2.
A railway track–subgrade system is modeled using the finite element method (FEM). Two different transition zones between a bridge and an ordinary subgrade, usually used for high speed passenger lines in China, are investigated. Both the calculated vertical displacement and acceleration of the rail and the slab and the calculated vertical displacement and the stress of the subgrade surface of the two transition zones are compared. The dynamic response of the two-part transition section is better than that of the inverted trapezoid transition section, and a 30-m length of both transition sections is recommended. The dynamic response of the track–subgrade system changes abruptly after the first 3 m of the transition section, measured from the bridge abutment. Special attention should be given to this critical zone during construction.  相似文献   

3.
The role of the seismic soil–pile–structure interaction (SSPSI) is usually considered beneficial to the structural system under seismic loading since it lengthens the lateral fundamental period and leads to higher damping of the system in comparison with the fixed-base assumption. Lessons learned from recent earthquakes show that fixed-base assumption could be misleading, and neglecting the influence of SSPSI could lead to unsafe design particularly for structures founded on soft soils. In this study, in order to better understand the SSPSI phenomena, a series of shaking table tests have been conducted for three different cases, namely: (i) fixed-base structure representing the situation excluding the soil–structure interaction; (ii) structure supported by shallow foundation on soft soil; and (iii) structure supported by floating (frictional) pile foundation in soft soil. A laminar soil container has been designed and constructed to simulate the free field soil response by minimising boundary effects during shaking table tests. In addition, a fully nonlinear three dimensional numerical model employing FLAC3D has been adopted to perform time-history analysis on the mentioned three cases. The numerical model adopts hysteretic damping algorithm representing the variation of the shear modulus and damping ratio of the soil with the cyclic shear strain capturing the energy absorbing characteristics of the soil. Results are presented in terms of the structural response parameters most significant for the damage such as foundation rocking, base shear, floor deformation, and inter-storey drifts. Comparison of the numerical predictions and the experimental data shows a good agreement confirming the reliability of the numerical model. Both experimental and numerical results indicate that soil–structure interaction amplifies the lateral deflections and inter-storey drifts of the structures supported by floating pile foundations in comparison to the fixed base structures. However, the floating pile foundations contribute to the reduction in the lateral displacements in comparison to the shallow foundation case, due to the reduced rocking components.  相似文献   

4.
ABSTRACT

Micaceous soil is believed to be detrimental for civil engineering constructions due to the effect of high compressibility, low compacted density and low shear strength. Individual mica particle has numerous intact mica flakes foliated over each other making it flexible upon loading and rebound upon unloading due to its low hardness and resilient nature. Hence, micaceous soils with mica content more than 10% are considered undesirable for highway pavements, embankments and railway track constructions. When platy mica particles are sufficiently numerous to interact with spherical sand particles, bridging and ordering phenomena are augmented within the soil mass creating unique sand-mica particle orientation (MS microstructure) unlike sand-sand particle orientation (PS microstructure). The current experimental research was conducted to evaluate the variation in stress–strain, pore pressure and effective stress path response of Sabarmati sand under the influence of mica (sand with 30% mica and pure sand) with MS and PS microstructure respectively. Effect of particle crushing on stress–strain and pore pressure response was also studied on Sabarmati sand with MS and PS microstructure. Distinctive macroscopic response was observed in Sabarmati sand with MS microstructure under the influence of mica as well as mica particle crushing.  相似文献   

5.

The design of earthquake-resistant structures depends greatly on the soil–foundation–structure interaction. This interaction is more complex in the presence of liquefiable soils. Pile and rigid inclusion systems represent a useful practice to support structures in the presence of liquefiable soils in seismic zones. Both systems increase the bearing capacity of soil and allow reducing the settlements in the structure. Numerical models with a 3-storey reinforced concrete frame founded on inclusions systems (soil–inclusion–platform–structure) and pile systems (soil–pile–structure) were analyzed. Finite difference numerical models were developed using Flac 3D. Two different soil profiles were considered. A simple constitutive model for liquefaction analysis that relates the volumetric strain increment to the cyclic shear strain amplitude was utilized to represent the behavior of the sand, and the linear elastic perfectly plastic constitutive model with a Mohr–Coulomb failure criterion was used to represent the behavior of the earth platform. Two earthquakes were used to study the influence of the different frequency of excitation in the systems. The results were presented in terms of maximum shear forces distribution in the superstructure and spectrum response of each system. The efforts and displacements in the rigid elements (piles or rigid inclusions) were compared for the different systems. The bending and buckling failure modes of the pile were examined. The results show that the pile system, the soil profile and the frequency of excitation have a great influence on the magnitude and location of efforts and displacements in the rigid elements.

  相似文献   

6.
Current analytical methodologies for the evaluation of soil pressures on laterally displaced pipelines, as in the case of differential (e.g. fault-induced) permanent ground movements, allow the use of sand fill material properties under the condition that the size of the trench is adequate so that the failure surface develops fully within the sand fill (i.e. “free field” response). The accuracy of this assumption is investigated in this paper by means of numerical analyses, which employ a number of advanced features, such as pipe-backfill interface elements, large strain formulation and mesh rezoning. Following verification against well-documented experimental data, the analyses investigate: (a) the shape and size of the failure mechanism, as well as, (b) the potential trench effects on soil pressures and pipeline strains in the case of a strike-slip fault rupture. It is shown that for small embedment depths soil failure extends to the ground surface, in the form of a general shear failure mechanism, while for larger depths it becomes progressively localized and surrounds the pipeline. It is also shown that, for most cases of pipeline diameter and embedment depth, common trench dimensions cannot contain the “free field” failure surface dimensions. Finally, analyses for limited trench dimensions, reveal that the ultimate soil pressure increases exponentially with decreasing trench width, leading to high bending strains in pipelines subjected to differential lateral ground displacements.  相似文献   

7.
Geotechnical and Geological Engineering - The solidification technology of sludge can effectively solve the problem of environmental pollution and resource shortage. Whereas, the current study...  相似文献   

8.
A sand constitutive model accounting for elastic–plastic coupling is presented. To this aim, general constitutive equations describing an elastic–plastic coupling effect are developed first. Afterwards, a modified critical state plasticity model for granular soils is introduced accordingly. Several examples are presented to show the achieved improvements compared to the existing approaches. Comparing directly with experimental data, it is shown that the proposed model provides realistic simulations for pore pressure built-up under undrained cyclic loadings.  相似文献   

9.
The effects of rate of strain on strength and deformation characteristics of soil–lime were investigated. Five strain rates (0.1, 0.8, 2.0, 4.0 and 7.0 %/min), five lime contents (0, 3, 6, 9 and 12 %) by dry soil weight and three cell pressures (100, 200 and 340 kN/m2) were carried. Triaxial tests, under unconsolidated condition, were used to study the effect of strain rate on strength and initial modulus of elasticity of soil and soil–lime mixture after two curing periods 7 and 21 days, respectively. A total of 405 triaxial specimens have been tested, where 225 specimens have been tested with first curing period (7 days). The testing program includes nine specimens for each strain rate, and each lime content was carried out, including natural soil with zero lime content. Another set of triaxial tests with a total of 180 specimens for the second curing period (21 days) was prepared at optimum moisture content, and the corresponding maximum dry density was also tested. The effects of strain rate and curing period on each of stress–strain behavior, type of failure, deviator stress at failure, cohesion and angle of internal friction and initial modulus of elasticity were studied thoroughly for the natural soil as well as soil–lime mixtures. For natural soil, the test results showed that the undrained shear strength, the initial modulus of elasticity and the cohesion increase significantly as the strain rate increase, while for soil–lime mixture at different curing periods, the undrained shear strength, initial modulus of elasticity and the cohesion increases to a maximum and then decreases as the strain rate and lime content increase. Also, the same variables and angle of internal friction increase with increasing curing period.  相似文献   

10.
In the present study, influence of wetting–drying cycles on swelling pressures of sand–bentonite mixtures used in the construction of sanitary landfills to have an impermeable liner was investigated before and after lime treatment of the mixtures. Swelling pressure tests were conducted to see if the swelling pressures were affected by wetting–drying cycles. First series of specimens were prepared as a mixture of sand and bentonite only. In the first series of specimens, sand was mixed with bentonite in various proportions with their optimum water contents and compacted by using standard proctor energy. In the second series of the specimens, lime in various proportions was added to the mixtures of sand–bentonite. Then, the sand–bentonite mixtures stabilized by lime were compacted with the standard proctor energy at their optimum moisture contents. Five wetting–drying cycles were performed on each specimen and values of swelling pressures were measured at the end of each cycle. Results of swelling pressure tests indicated that the swelling pressure is decreased when lime is added to the mixtures. In addition, decrements were observed on swelling pressures by wetting–drying cycles. The results of the experiments of this investigation showed that the beneficial effect of lime stabilization to control the swelling pressures was partly lost by the wetting–drying cycles. However, the test results indicated that the swelling pressures of the specimens made of sand–bentonite mixtures stabilized by lime were lower than the swelling pressures of the specimens made of only sand–bentonite mixtures.  相似文献   

11.
Rainfall infiltration is the main factor that causes slope instability. To study the effect of hydraulic parameters on the final saturation line and stability of slopes, a numerical slope model is established with a saturated–unsaturated seepage analysis method. Analysis results show the following, (1) When parameter a increases, the effective rainfall duration decreases linearly, and the ultimate safety factor increases gradually; when parameter m increases, the effective rainfall duration increases linearly, and the ultimate safety factor decreases linearly; when parameter n increases, both the effective rainfall duration and the ultimate safety factor decrease first and then remain stable. (2) When the saturated permeability coefficient decreases, the effective rainfall duration presents a crescent trend, and the ultimate safety factor decreases first and then remains the same after rainfall intensity exceeds the saturated permeability coefficient of soil. (3) When rainfall intensity is less than the saturated permeability coefficient of soil, the location of the final saturation line rises as the saturated permeability coefficient decreases and is thus independent of parameters a, m, and n.  相似文献   

12.
The importance of Cl in basalt petrogenesis has been recognized, yet constraints on its effect on liquidus crystallization of basalts are scarce. In order to quantify the role of Cl in basaltic systems, we have experimentally determined near-liquidus phase relations of a synthetic Fe–Mg-rich basalt, doped with 0.0–2.5 wt% dissolved Cl, at 0.7, 1.1, and 1.5 GPa. Results have been parameterized and compared with previous data from literature. The effect of Cl on mineral chemistry and liquidus depression is dependent on the starting basaltic composition. The liquidus depression measured for a SiO2-rich, Al2O3-poor basalt is smaller than that observed for a basaltic melt depleted in silica and enriched in FeOT and Al2O3. The effect of Cl on depression of the olivine–orthopyroxene–liquid multiple saturation pressure does not seem to vary with the starting composition of the basaltic liquid. This suggests that Cl may significantly promote the generation of silica-poor, Fe–Al-rich magmas in the Earth, Mars, and the Moon.  相似文献   

13.
14.
The load distribution and deflection of large diameter piles are investigated by lateral load transfer method (py curve). Special attention is given to the soil continuity and soil resistance using three-dimensional finite element analysis. A framework for determining a py curve is calculated based on the surrounding soil stress. The appropriate parametric studies needed for verifying the py characteristic are presented in this paper. Through comparisons with results of field load tests, the three-dimensional numerical methodology in the present study is in good agreement with the general trend observed by in situ measurements and thus, represents a realistic soil–pile interaction for laterally loaded piles in clay than that of existing py method. It can be said that a rigorous numerical analysis can overcome the limitations of existing py methods to some extent by considering the effect of realistic three-dimensional combination of pile–soil forces.  相似文献   

15.
16.
The use of yield in supports to control the final loading that develops upon a support system has been one of the most important deformation control techniques used by tunnelling engineers, both historically and currently. Successful use of this approach requires a thorough understanding of the process of rock–support interaction as it is an approach that can fail dramatically if incorrectly applied. There is a fine line between the yield support technique improving the conditions, and the approach resulting in the development of a large area of failed rock, which could ultimately be detrimental. The relationship between the support action and the rock has historically been studied using analytical approaches with the application of significant simplifying assumptions.This paper presents a new approach, where a state-of-the-art numerical model is run repeatedly to develop rock–support interaction curves. This has the advantage of allowing more realistic tunnel geometry, stress states and ground conditions to be simulated. It does, however, use the familiar output form of the relatively simple rock–support interaction curve as opposed to complex and voluminous graphics. Its disadvantage lies in the considerable number of computer runs required to develop the full solutions. Computer software has, however, been written to automate much of this process using a programming language within the modelling package.The analysis approach has been further improved by plotting not one rock–support interaction curve but a whole family of curves representing variations in the rock mass quality of the assumed ground, since this is the most variable of the input parameters for most tunnelling situations. This form of output allows engineers to study the practical range of yield they may require for their rock conditions and also to define at what rock mass quality they can expect the yielding approach to cease to be an effective strategy. This new approach has been presented on a test case history with idealized rock mass properties to illustrate the approach. However, it is an approach that can be specially tailored to any set of rock conditions, tunnel geometry or stress.  相似文献   

17.
Open-ended piles such as tubular piles or I-beams are used as foundations for offshore and nearshore construction. After the pile installation a load test to estimate the bearing capacity of these open-ended piles is necessary. Due to the offshore conditions and the high bearing capacity of the installed piles a static load test is not normally feasible. Therefore, dynamic load tests are carried out where the wave propagation due to an dynamic impact at the pile head is measured. The methods to estimate the bearing capacity from the measured signal of the dynamic tests were derived for solid pile profiles. It is questionable whether these evaluation techniques are applicable for open-ended piles. Hence, the influence of various important system parameters as well as the differences between static and dynamic load tests on open-ended piles is investigated in this paper.  相似文献   

18.
The present study makes an attempt to investigate the soil–structure resonance effects on a structure based on dynamic soil–structure interaction (SSI) methodology by direct method configuration using 2D finite element method (FEM). The investigation has been focused on the numerical application for the four soil–structure models particularly adjusted to be in resonance. These models have been established by single homogenous soil layers with alternating thicknesses of 0, 25, 50, 75 m and shear wave velocities of 300, 600, 900 m/s-a midrise reinforced concrete structure with a six-story and a three-bay that rests on the ground surface with the corresponding width of 1,400 m. The substructure has been modeled by plane strain. A common strong ground motion record, 1940 El Centro Earthquake, has been used as the dynamic excitation of time history analysis, and the amplitudes, shear forces and moments affecting on the structure have been computed under resonance. The applicability and accuracy of the FEM modeling to the fundamental period of soils have been confirmed by the site response analysis of SHAKE. The results indicate that the resonance effect on the structure becomes prominent by soil amplification with the increased soil layer thickness. Even though the soil layer has good engineering characteristics, the ground story of the structure under resonance is found to suffer from the larger soil layer thicknesses. The rate of increment in shear forces is more pronounced on midstory of the structure, which may contribute to the explanation of the heavily damage on the midrise buildings subjected to earthquake. Presumably, the estimated moment ratios could represent the factor of safeties that are excessively high due to the resonance condition. The findings obtained in this study clearly demonstrate the importance of the resonance effect of SSI on the structure and can be beneficial for gaining an insight into code provisions against resonance.  相似文献   

19.
20.
Both finite-element and finite-difference numerical models are applied to simulate storm surges and associated currents generated by tropical cyclones that struck the coast of Andhra Pradesh, located on the east coast of India. During a cyclone, the total water level at any location on the coast is made up of the storm surge, surge–wind wave interaction and the tide. The advanced circulation two-dimensional depth-integrated (ADCIRC-2DDI) model based on finite-element formulation and the two-dimensional finite-difference model of storm surges developed at IIT Delhi, hereafter referred as IITD storm surge model, are used. These models are driven by astronomical tides at the open ocean boundary and cyclonic asymmetric winds over the surface of the computational domain. Comparison of model simulated sea-surface elevations with coarse and finer spatial resolutions suggests that the grid resolution near the coast is very crucial for accurate determination of the surges in addition to the local bathymetry. The model underpredicts surges, and the peak surge location shifts more to the right of the landfall as the spatial resolution of the model becomes coarser. The numerical experiments also demonstrate that the ADCIRC model is robust over the IITD storm surge model for surge computations as the coastline is better represented in the former.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号