首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents analytical solutions for the evolution of excess pore pressures in the vicinity of a shear band in a rate‐dependent, strain‐softening permeable soil, with the aim to explore, both qualitatively and quantitatively, the potential variation of failure shear stress in the shear band. The solutions encompass both dissipation of a pre‐existing pore pressure regime within the main soil domain, and the effects of generation of additional pore pressure within the shear band itself. The simplified analytical solutions were checked by numerical inversion of exact solutions in Laplace transform space, confirming their high accuracy. The solutions show that it is possible for the failure shear stress to rise initially because of short‐term dissipation of the pre‐existing excess pore pressure at a faster rate than generation of new excess pore pressure within the shear band. This apparent strain hardening in a strain‐softening soil can be misleading in that it can temporarily slow down the sliding mass and create a false sense of stabilization of the slope. It can also result in additional temporary shear resistance for sliding foundations or pipelines on the seabed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
For evaluation of slope stability in materials displaying strain-softening behavior, knowledge concerning the failed state material response is of importance. Here, soft sensitive clay is studied. Such clays behave contractant at failure, which for undrained conditions yields a strain-softening behavior governed by the generation of excess pore water pressure. Strain softening is further linked with material instability and the phenomenon of strain localization. In the case of shear band formation, internal pore pressure gradients are then expected to be present for globally undrained conditions in the sensitive clay due to its low permeability. In the present study, this hypothesis and its implications on the global response and shear band properties are investigated. Utilizing an experimental setup with a modified triaxial cell allowing for shear band formation, the effect of varying the displacement rate is studied. Onset of strain localization is interpreted to occur just before or at the peak shear strength. A strong rate dependency of the softening response is observed. Increasing displacement rates give raised brittleness in terms of the slope of the global softening curve due to accumulating pore pressure. Also, reduced shear band thickness and a shear band inclination approaching 45° are obtained for increasing rates. In the context of slope failure in such materials, the rate dependency in the post-peak state opens up for a large variation in behavior, all depending on time as an important factor.  相似文献   

3.
A negative second order work, strain softening, is often noticed in contractant material like sensitive clays. Failure in such clays will lead to the formation of localized deformation zone of intense inelastic strain, known as shear band. Conditions, emergence and inclination of shear band has been very well demonstrated in past decades in different manners, however a definite thickness of shear band is still an open question due to several reasons. Mesh dependency, loss of ellipticity is another challenge associated with finite element analyses for strain softening clays. This paper covers a comprehensive review of classical theories of strain localization and associated limitation. Mesh dependency, ill-possed boundary value problem is addressed using finite element simulation examples and experimental results.  相似文献   

4.
Modeling of progressive development of zones of large inelastic shear deformation (shear band) that results from strain‐softening behavior of sensitive clays could explain the failure mechanisms of large landslides. Because of toe erosion, a shear band can be initiated and propagated upward (inward) from the river bank. On the other hand, upslope surcharge loading could generate shear bands that might propagate down towards the river bank. In the present study, upward and downward propagation of shear bands and failure of sensitive clay slopes are modeled using the Coupled Eulerian Lagrangian approach in Abaqus finite element (FE) software. It is shown that the formation and propagation of shear bands are significantly influenced by kinematic constraints that change with displacements of the soil masses, and therefore the propagation of an existing shear band might be stopped and new shear bands could be formed. The main advantages of the present FE modeling are: (i) extremely large strains in the shear bands can be successfully simulated without numerical issues, (ii) a priori definition of shearing zones is not required to tackle severe strains; instead, the FE program automatically identifies the critical locations for shear band formation and propagation. Toe erosion could significantly increase the slope failure potential because of upslope surcharge loading. FE analyses with a thick and thin sensitive clay layers show that the global failure could occur at lower surcharge loads in the former as compared to the latter cases. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
不同应力路径下超固结黏土试样变形局部化分析   总被引:2,自引:1,他引:1  
甄文战  孙德安  段博 《岩土力学》2011,32(1):293-298
基于改进伏斯列夫面超固结黏土三维本构模型,利用有限元软件ABAQUS材料子程序接口,采用回映应力更新算法,实现了该模型在有限元分析中的应用。通过该模型与比奥固结理论的耦合,对超固结比为8的超固结黏土在三轴压缩、三轴伸长及平面应变应力条件下的变形局部化问题,进行了水-土耦合弹塑性有限元分析。分析结果表明:剪切带带内、带外点经历不同应力路径;剪切带带外单元经历了体缩、剪胀及被吸水体缩过程,而剪切带带内单元一直保持剪胀趋势;剪切带的形成伴随着剪胀,剪切带内、外出现了负的孔压,且孔压的分布也具有局部化特性。关于剪切带带内、外的孔隙水压及体变变化趋势与剪切速率有关,而平面应变介于三轴压缩与三轴伸长之间,但平面应变较早出现剪切带。孔隙水的迁移速度影响剪切带带内单元的剪胀,进而影响剪切带的形成及发展;而围压和弱单元位置也对剪切带的形成也有影响。  相似文献   

6.
This paper presents a numerical model for the elasto‐plastic electro‐osmosis consolidation of unsaturated clays experiencing large strains, by considering electro‐osmosis and hydro‐mechanical flows in a deformable multiphase porous medium. The coupled governing equations involving the pore water flow, pore gas flow, electric flow and mechanical deformation in unsaturated clays are derived within the framework of averaging theory and solved numerically using finite elements. The displacements of the solid phase, the pressure of the water phase, the pressure of the gas phase and the electric potential are taken as the primary unknowns in the proposed model. The nonlinear variation of transport parameters during electro‐osmosis consolidation are incorporated into the model using empirical expressions that strongly depend on the degree of water saturation, whereas the Barcelona Basic Model is employed to simulate the elasto‐plastic mechanical behaviour of unsaturated clays. The accuracy of the proposed model is evaluated by validating it against two well‐known numerical examples, involving electro‐osmosis and unsaturated soil behaviour respectively. Two further examples are then investigated to study the capability of the computational algorithm in modelling multiphase flow in electro‐osmosis consolidation. Finally, the effects of gas generation at the anode, the deformation characteristics, the degree of saturation and the time dependent evolution of the excess pore pressure are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
软黏土层一维有限应变固结的超静孔压消散研究   总被引:1,自引:0,他引:1  
根据土力学固结理论计算分析软黏土层固结过程的超静孔隙水压力值,确定软黏土体固结过程的强度增长,对排水固结法处理软土地基至关重要。软黏土层固结过程中土体变形较大时,有限应变固结理论和小应变固结理论计算分析软黏土固结所得结果差异较大。利用非线性有限元法及程序,通过对软黏土层固结工程算例的计算结果分析,研究了有限应变固结理论和小应变固结理论计算分析软黏土层一维固结超静孔压值消散的差异;探讨了软黏土体一维固结过程中,几何非线性、土体渗透性变化和压缩性变化对超静孔隙水压力消散的影响。研究结果表明,当土体的变形较大时,有限应变固结理论计算出的超静孔压要比小应变固结理论得到的值消散的更快。考虑土体固结过程中渗透性的变化时,超静孔压消散变慢;可用软黏土渗透性变化指数ck 反映渗透性变化对超静孔压消散的影响,渗透性变化指数ck值越小、超静孔压消散越慢。固结过程中软黏土压缩性的大小及变化也影响超静孔压的消散,可用软黏土的压缩指数cc反映固结过程中压缩性的大小及变化对超静孔压消散的影响,软黏土的压缩指数cc越小,固结过程软黏土层中的超静孔压消散越快。  相似文献   

8.
This paper presents numerical simulations of Cone Penetration Test (CPT) in water-saturated soft soils taking into account pore pressure dissipation during installation. Besides modelling interaction between soil skeleton and pore fluid, the problem involves large soil deformations in the vicinity of the penetrometer, soil–structure interaction, and complex non-linear response of soil. This makes such simulations challenging. Depending on the soil’s permeability and compressibility, undrained, partially drained or drained conditions might occur. Partially drained conditions are commonly encountered in soils such as silts and sand–clay mixtures. However, this is often neglected in CPT interpretation, which may lead to inaccurate estimates of soil properties. This paper aims at improving the understanding of the penetration process in different drainage conditions through advanced numerical analyses. A two-phase Material Point Method is applied to simulate large soil deformations and generation and dissipation of excess pore pressures during penetration. The constitutive behaviour of soil is modelled with the Modified Cam Clay model. Numerical results are compared with experimental data showing good agreement.  相似文献   

9.
邓志勇  张翠兵  张志毅 《岩土力学》2008,29(7):1931-1937
袋装砂井爆夯法处理软土地基是利用炸药在设置有排水通道的软土中爆炸产生冲击和振动而使土体加固的方法。针对该法进行理论研究,提出了一种将袋装砂井爆夯处理软土地基的三维问题转化为二维平面应变问题的数值模拟方法:袋装砂井转化为等价砂墙;利用等效冲量原理,炮孔爆炸压力则转化为等效压力墙。数值模拟中考虑了土体骨架变形与孔隙水非达西渗流的耦合。对数值模拟的现场试验验证分析表明,沉降数值分析的结果与铁路宁启线软基处理现场测试结果具有很好的可比性。所提出的数值分析方法可模拟袋装砂井爆夯处理软土地基的超静孔隙水压产生和消散以及土体沉降变形的动态过程。  相似文献   

10.
砂质混合粘土的孔隙水压力和残余变形特性研究   总被引:1,自引:0,他引:1  
以砂质混合粘土为例,通过实施不同初始固结比水平的动力循环荷载试验,考察了土的孔隙水压力和残余变形的发生过程。探讨了当将土的不等向固结分为初始剪应力和等向固结两种应力状态时,孔隙水压力和残余变形的预测方法。提出了归一化的孔隙水压力和累积损失能量及残余变形和有效应力比间的关系模型。  相似文献   

11.
Previous field and laboratory studies have shown that the creation of a borehole in a saturated cohesive soil mass induces significant pore water suctions in the vicinity of the hole. The dissipation of these pore water suctions (swelling) leads to local increases in the moisture content and hence a softening of the soil around the hole. This softening may have important consequences for the stability of the hole and also for the ultimate load capacity of any foundation elements (bored piles or drilled shafts) constructed in these holes. This paper presents a semi-analytical solution for the radial dissipation of pore water pressure around a freshly created, vertical hole. It is assumed the soil deforms elastically during the swelling process. The solutions are presented in the form of isochrones of excess pore water pressure and may be used to obtain estimates of the time required for the soil around the hole to swell and therefore to soften. Both permeable and impermeable borehole interfaces have been considered, together with either no support for the hole or partial support provided by hydrostatic pressure within the hole.  相似文献   

12.
A computational framework is presented for dynamic strain localization and deformation analyses of water‐saturated clay by using a cyclic elasto‐viscoplastic constitutive model. In the model, the nonlinear kinematic hardening rule and softening due to the structural degradation of soil particles are considered. In order to appropriately simulate the large deformation phenomenon in strain localization analysis, the dynamic finite element formulation for a two‐phase mixture is derived in the updated Lagrangian framework. The shear band development is shown through the distributions of viscoplastic shear strain, the axial strain, the mean effective stress, and the pore water pressure in a normally consolidated clay specimen. From the local stress–strain relations, more brittleness is found inside the shear bands than outside of them. The effects of partially drained conditions and mesh‐size dependency on the shear banding are also investigated. The effect of a partially drained boundary is found to be insignificant on the dynamic shear band propagation because of the rapid rate of applied loading and low permeability of the clay. Using the finer mesh results in slightly narrower shear bands; nonetheless, the results manifest convergency through the mesh refinement in terms of the overall shape of shear banding and stress–strain relations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Foundation soils are often under non-proportional cyclic loadings. The deformation behaviour and the mechanism of non-coaxiality under continuous pure principal stress rotation for clays are not clearly investigated up to now. In order to study the effect of pure principal stress rotation, a series of cyclic undrained tests on Shanghai soft clay subjected to cyclic rotation of principal stress directions keeping the deviatoric stress constant under the pure rotation condition were conducted using hollow cylinder apparatus. Based on this, the evolutions of excess pore pressure and strains during cyclic loading were investigated, together with the effects of the intermediate principal stress parameter and the deviatoric stress level on stress–strain stiffness and non-coaxiality. The result can provide an experimental basis for constitutive modelling of clays describing the behaviour under non-proportional loadings.  相似文献   

14.
不同应力路径下剪切带的数值模拟   总被引:4,自引:1,他引:3  
孙德安  甄文战 《岩土力学》2010,31(7):2253-2258
采用回映应力更新算法,编写了基于伏斯列夫面的超固结黏土本构关系模型子程序,嵌入非线性有限元软件ABAQUS。通过对单元试验进行三轴压缩、三轴伸长及平面应变等问题的模型预测,再现了超固结黏土在不同初始超固结比和应力路径时的变形和强度特性,从而验证了子程序的正确性。借助该本构模型,对三轴压缩、三轴伸长及平面应变应力路径下超固结黏土体变形局部化问题,进行了三维数值模拟。分析结果表明:超固结黏土在三轴压缩及伸长状态时,土体变形局部化在应力-应变关系软化时出现,而平面应变状态时,在应力-应变关系硬化阶段出现,其超固结黏土的剪胀特性在剪切带的形成过程中起重要作用。  相似文献   

15.
基于Fredlund非饱和土一维固结理论,建立了二维平面应变条件下的固结方程组,并得到了单层非饱和土平面应变条件下的解析解。基于相关理论,假设体变系数和渗透系数都为常量,同时考虑到瞬时加载条件下,沿着土体深度方向上产生均匀或者线性分布的初始超孔隙压力,建立了二阶二元偏微分方程组。求解时,引入函数方法来降低方程的阶数,然后通过分离变量法获得方程的通解。在此基础上,结合一个针对单面排水条件下二维平面应变问题案例,通过与数值解对比,验证了所提方法的正确性。并采用所提方法计算获得了二维平面下超孔隙水压力、气压力沿垂直和水平方向消散的等时线,通过计算对比,分析了不同线性分布情况下,初始超孔隙压力对固结消散过程的影响。研究结果表明:初始超孔隙压力的不同分布对超孔隙气压力消散的影响几乎可以忽略,而对超孔隙水压力消散的影响更大。  相似文献   

16.
Modelling shear band is an important problem in analysing failure of earth structures in soil mechanics. Shear banding is the result of localization of deformation in soil masses. Most finite element schemes are unable to model discrete shear band formation and propagation due to the difficulties in modelling strain and displacement discontinuities. In this paper, a framework to generate shear band elements automatically and continuously is developed. The propagating shear band is modelled using discrete shear band elements by splitting the original finite element mesh. The location or orientation of the shear band is not predetermined in the original finite element mesh. Based on the elasto‐perfect plasticity with an associated flow rule, empirical bifurcation and location criteria are proposed which make band propagation as realistic as possible. Using the Mohr–Coulomb material model, various results from numerical simulations of biaxial tests and passive earth pressure problems have shown that the proposed framework is able to display actual patterns of shear banding in geomaterials. In the numerical examples, the occurrence of multiple shear bands in biaxial test and in the passive earth pressure problem is confirmed by field and laboratory observations. The effects of mesh density and mesh alignment on the shear band patterns and limit loads are also investigated. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
李镜培  操小兵  李林  龚卫兵 《岩土力学》2018,39(12):4305-4311
为了探究静压沉桩与CPTU贯入力学机制,开展了饱和黏土中静压沉桩及CPTU贯入的离心模型试验,获得了静压沉桩与CPTU贯入过程中土压力、超孔压和贯入阻力的变化规律。同时,将静压桩和CPTU压入过程视为一系列球孔的连续贯入,应用圆孔扩张解答,建立了静压沉桩和CPTU贯入过程中锥头阻力、侧阻力与超孔压的预测方法。通过离心模型试验和理论预测结果的对比分析表明:随着桩体的压入,桩周土体的超孔压和土压力均逐渐增大,当桩头通过监测点时,超孔压与土压力均达到最大值;在饱和黏土中,CPTU锥头阻力、锥侧摩阻力和锥头超孔压与锥头贯入深度总体上呈线性关系。预测方法估算沉桩和CPTU贯入引起的土压力、超孔压与模型试验结果相符,较好地反映了饱和黏土中静压沉桩和CPTU贯入的力学机制。  相似文献   

18.
The analysis of three cataclastic band sets from Provence (France) reveals that the band density, their conjugate angles, their ratio of shear displacement to compaction, and the amount of cataclasis within the bands differ and can be expressed as functions of tectonic setting and petrophysical properties. We identify (1) a dense and closely spaced network of shear-enhanced (reverse) compaction bands; (2) a regularly spaced less dense network of reverse compactional shear bands; and (3) a localized network of normal shear bands. The field data show that strain localization is favored in an extensional regime and is characterized by shear bands with a large shear to compaction ratio and a small conjugate band angle. In contrast, distributed strain is favored in a contractional regime and is characterized by compactional bands with a low ratio of shear to compaction and a large conjugate band angle. To explain the mechanical origin of this strain localization, we quantify the yield strength and the stress evolution in extensional and contractional regimes in a frictional porous granular material. We propose a model of strain localization in porous sands as a function of tectonic stresses, burial depth, material properties, strain hardening and fluid pressure. Our model suggests that stress reduction, inherent to extensional regime, favors strain localization as shear bands, whereas stress increase during contraction favors development of compactional bands.  相似文献   

19.
李新明  贾亚垒  王志留  尹松 《岩土力学》2022,43(12):3327-3334
为研究应变速率对原状膨胀土力学性状的影响,通过GDS三轴试验系统进行了不同速率和围压下的固结不排水三轴剪切试验,分析了应力−应变曲线、孔隙水压力、剪切强度以及破坏模式随应变速率的变化规律。结果表明:不同应变速率下,膨胀土应力−应变曲线均呈应变硬化型。随着应变速率的增加,不排水剪切强度单调递增,引入应变速率参数ρ0.9后发现,不排水强度增长率为14.3%~23.2%,平均值为18.4%。低围压下,应变速率对孔隙水压力影响较小,随着围压的增大,孔隙水压力的发展趋势由软化型转变为硬化型,孔隙水压力峰值随应变速率的增大而减小。原状膨胀土应变速率效应与其多裂隙性密切相关,破坏形式表现为小应变速率下主剪切带与次剪切带共存,大应变速率下仅有主剪切带,裂隙或多剪切带的出现强化了膨胀土强度的应变速率效应。  相似文献   

20.
平面应变状态下岩石剪切带网络数值模拟研究   总被引:9,自引:3,他引:6  
研究了围压、端面约束、试件高度及界面特性对剪切带网络形成的影响。首先对影响剪切带网络形成的因素(包括试件高度、围压及温度、试件端部轴向应变大小的计算方法的差异)进行了分析。之后采用FLAC 3D对平面剪切带网络进行了数值模拟,其中摩擦角及内聚力为应变软化。探讨了倾向于出现剪切带网络的若干条件。若端面缚束较强且存在一定的侧压力,试件中部出现多重剪切带。若端面缚束较弱,试件端部易于形成剪切带网络,且随试件高度的增加剪切带条数增加。界面法向和切向刚度越大,剪切带穿越断层并按其固有方向延伸能力越强,剪切带网络格局越明显。获得的数值结果可在实验中找到佐证,并且可以用来解释地震中的一些剪切应变局部化现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号