首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
 A specific subclass of Gauss–Markov models has been defined as containing the models for which the disturbance/response matrix, determined under the assumption of uncorrelated observations, consists of independent diagonal blocks. A proposed modification of reliability assessment procedure for such models is presented By the appropriate reduction of a given full covariance matrix for the observations, the proposal allows the assessment to be made in the resulting model which, in contrast to the initial model, is free from outlier-hiding effects of the type not occurring in ordinary models. The theoretical findings are demonstrated using simple numerical examples. All the proofs supporting the proposal are gathered in Appendixes. The proposal, which is not without its own weak points, is an attempt to associate the reliability assessment in specific Gauss–Markov models with effective outlier detection. Received: 23 June 1998 / Accepted: 5 July 2000  相似文献   

2.
 Two iterative vector methods for computing geodetic coordinates (φ, h) from rectangular coordinates (x, y, z) are presented. The methods are conceptually simple, work without modification at any latitude and are easy to program. Geodetic latitude and height can be calculated to acceptable precision in one iteration over the height range from −106 to +109 m. Received: 13 December 2000 / Accepted: 13 July 2001  相似文献   

3.
 Considering a GPS satellite and two terrestrial stations, two types of equations are derived relating the heights of the two stations to the measured data (frequency ratio or clock rate differences) and the coordinates and velocity components of all three participating objects. The potential possibilities of using such relations for the determination of heights (in terms of geopotential numbers or orthometric heights) are discussed. Received: 6 December 2000 / Accepted: 9 July 2001  相似文献   

4.
New solutions for the geodetic coordinate transformation   总被引:5,自引:2,他引:5  
 The Cartesian-to-geodetic-coordinate transformation is approached from a new perspective. Existence and uniqueness of geodetic representation are presented, along with a clear geometric picture of the problem and the role of the ellipse evolute. A new solution is found with a Newton-method iteration in the reduced latitude; this solution is proved to work for all points in space. Care is given to error propagation when calculating the geodetic latitude and height. Received: 9 August 2001 / Accepted: 27 March 2002 Acknowledgments. The author would like to thank the Clifford W.␣Tompson scholarship fund, Dr. Brian DeFacio, the University of Missouri College of Arts &Sciences, and the United States Air Force. He also thanks a reviewer for suggesting and providing a prototype MATLAB code. A MATLAB program for the iterative sequence is presented at the end of the paper (Appendix A).  相似文献   

5.
Green's function solution to spherical gradiometric boundary-value problems   总被引:1,自引:1,他引:1  
 Three independent gradiometric boundary-value problems (BVPs) with three types of gradiometric data, {Γ rr }, {Γ r θ r λ} and {Γθθ−Γλλθλ}, prescribed on a sphere are solved to determine the gravitational potential on and outside the sphere. The existence and uniqueness conditions on the solutions are formulated showing that the zero- and the first-degree spherical harmonics are to be removed from {Γ r θ r λ} and {Γθθ−Γλλθλ}, respectively. The solutions to the gradiometric BVPs are presented in terms of Green's functions, which are expressed in both spectral and closed spatial forms. The logarithmic singularity of the Green's function at the point ψ=0 is investigated for the component Γ rr . The other two Green's functions are finite at this point. Comparisons to the paper by van Gelderen and Rummel [Journal of Geodesy (2001) 75: 1–11] show that the presented solution refines the former solution. Received: 3 October 2001 / Accepted: 4 October 2002  相似文献   

6.
 The results from a global positioning system (GPS) experiment carried out in Brittany, France, in October 1999, aimed at measuring crustal displacements caused by ocean loading and quantifying their effects on GPS-derived tropospheric delay estimates, are presented. The loading effect in the vertical and horizontal position time series is identified, however with significant disagreement in amplitude compared to ocean loading model predictions. It is shown that these amplitude misfits result from spatial tropospheric heterogeneities not accounted for in the data processing. The effect of ocean loading on GPS-derived zenith total delay (ZTD) estimates is investigated and a scaling factor of 4.4 between ZTD and station height for a 10° elevation cut-off angle is found (i.e. a 4.4-cm station height error would map into a 1-cm ZTD error). Consequently, unmodeled ocean loading effects map into significant errors in ZTD estimates and ocean loading modeling must be properly implemented when estimating ZTD parameters from GPS data for meteorological applications. Ocean loading effects must be known with an accuracy of better than 3 cm in order to meet the accuracy requirements of meteorological and climatological applications of GPS-derived precipitable water vapor. Received: 16 July 2001 / Accepted: 25 April 2002 Acknowledgments. The authors are grateful to H.G. Scherneck for fruitful discussions and for his help with the ocean loading calculations. They thank H. Vedel for making the HIRLAM data available; D. Jerett for helpful discussions; and the city of Rostrenen, the Laboratoire d'Océanographie of Concarneau, and the Institut de Protection et de S?reté Nucléaire (BERSSIN) for their support during the GPS measurement campaign. Reviews by C.K. Shum and two anonymous referees significantly improved this paper. This work was carried out in the framework of the MAGIC project (http://www.acri.fr/magic), funded by the European Commission, Environment and Climate Program (EC Contract ENV4-CT98–0745). Correspondence to: E. Calais, Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907-1397, USA. e-mail: ecalais@purdue.edu Tel. : +1-765-496-2915; Fax:+1-765-496-1210  相似文献   

7.
 Different types of present or future satellite data have to be combined by applying appropriate weighting for the determination of the gravity field of the Earth, for instance GPS observations for CHAMP with satellite to satellite tracking for the coming mission GRACE as well as gradiometer measurements for GOCE. In addition, the estimate of the geopotential has to be smoothed or regularized because of the inversion problem. It is proposed to solve these two tasks by Bayesian inference on variance components. The estimates of the variance components are computed by a stochastic estimator of the traces of matrices connected with the inverse of the matrix of normal equations, thus leading to a new method for determining variance components for large linear systems. The posterior density function for the variance components, weighting factors and regularization parameters are given in order to compute the confidence intervals for these quantities. Test computations with simulated gradiometer observations for GOCE and satellite to satellite tracking for GRACE show the validity of the approach. Received: 5 June 2001 / Accepted: 28 November 2001  相似文献   

8.
GPS-assisted GLONASS orbit determination   总被引:1,自引:0,他引:1  
 Using 1 week of data from a network of GPS/GLONASS dual-tracking receivers, 15-cm accurate GLONASS orbit determination is demonstrated with an approach that combines GPS and GLONASS data. GPS data are used to define the reference frame, synchronize receiver clocks and determine troposphere delay for the GLONASS tracking network. GLONASS tracking data are then processed separately, with the GPS-defined parameters held fixed, to determine the GLONASS orbit. The quality of the GLONASS orbit determination is currently limited by the size and distribution of the tracking network, and by the unavailability of a sufficiently refined solar pressure model. Temporal variations in the differential clock bias of the dual-tracking receivers are found to have secondary impact on the orbit determination accuracy. Received: 5 January 2000 / Accepted: 15 February 2001  相似文献   

9.
 A new method for calculating analytical solar radiation pressure models for GNSS spacecraft has been developed. The method simulates the flux of light from the Sun using a pixel array. The method can cope with a high level of complexity in the spacecraft structure and models effects due to reflected light. Models have been calculated and tested for the Russhar global navigation satellite system GLONASS IIv spacecraft. Results are presented using numerical integration of the force model and long-arc satellite laser ranging (SLR) analysis. The integrated trajectory differs from a precise orbit calculated using a network of global tracking stations by circa 2 m root mean square over a 160 000-km arc. The observed − computed residuals for the 400-day SLR arc are circa 28 mm. Received: 23 December 1999 / Accepted: 28 August 2000  相似文献   

10.
 The New Hebrides experiment consisted of setting up a pair of DORIS beacons in remote tropical islands in the southwestern Pacific, between 1993 and 1997. Because of orbitography requirements on TOPEX/Poséidon, the beacons were only transmitting to SPOT satellites. Root-mean-square (RMS) scatters at the centimeter level on the latitude and vertical components were achieved, but 2-cm RMS scatters affected the longitude component. Nevertheless, results of relative velocity (123 mm/year N250°) are very consistent with those obtained using the global positioning system (GPS) (126 mm/yr N246°). The co-seismic step (12 mm N60°) related to the Walpole event (M W = 7.7) is consistent with that derived from GPS (10 mm N30°) or from the centroid moment tensor (CMT) of the quake (12 mm N000°). Received: 19 November 1999 / Accepted: 17 May 2000  相似文献   

11.
 The problem of phase ambiguity resolution in global positioning system (GPS) theory is considered. The Bayesian approach is applied to this problem and, using Monte Carlo simulation to search over the integer candidates, a practical expression for the Bayesian estimator is obtained. The analysis of the integer grid points inside the search ellipsoid and their evolution with time, while measurements are accumulated, leads to the development of a Bayesian theory based on a mathematical mixture model for the ambiguity. Received: 29 March 2001 / Accepted: 3 September 2001  相似文献   

12.
 The identification of mean semi-major axes (suitably defined) for satellite orbits to satisfy a variety of requirements for geodesy, geophysics and oceanography, in terms of repeat orbits (with orbital resonances), is investigated. Various options for the definition of semi-major axis, from the viewpoint of satellite dynamics, are described. Simple simulations of the expected resonant changes in inclination are presented, and tools for the analysis of orbit resonances to extract certain lumped harmonic coefficients of the geopotential (e.g. from the very precise CHAMP orbit) are resurrected. Finally, a preliminary example of the 46th-order resonance analysis possible for CHAMP, based on the mean orbital elements produced by GFZ (GeoForschungs Zentrum) for ephemeris prediction, is presented. Received: 10 July 2001 / Accepted: 17 July 2002 Correspondence to: J. Klokočník at Ondřejov Observatory Acknowledgements. We thank Prof. Dr. Ch. Reigber, Dr. P. Schwintzer, Dr. T. Gruber and Dr. R. K?nig from GFZ Potsdam for various consultations and discussions, and for the CHAMP two-line mean elements. This investigation was performed under the aegis of CEDR (Center for Earth's Dynamics Research, Prague-Ondřejov); it has been supported by project LN00A005 (provided by the Ministry of Education of the Czech Republic) and by grant A 3004 of the Grant Agency of the Academy of Sciences of the Czech Republic.  相似文献   

13.
 Simplified techniques for high-degree spherical harmonic synthesis are extended to include gravitational potential second derivatives with respect to latitude. Received: 23 July 2001 / Accepted: 12 April 2002 Acknowledgement. The authors would like to thank Christian Tscherning for recommending Laplace's equation as an accuracy test. Our use of Legendre's differential equation, as the most direct means for extending our simplified synthesis methods to second-order derivatives, was a direct result of this suggestion. Correspondence to: S. A. Holmes  相似文献   

14.
 Carrier phase ambiguity resolution is the key to fast and high-precision GNSS (Global Navigation Satellite System) kinematic positioning. Critical in the application of ambiguity resolution is the quality of the computed integer ambiguities. Unsuccessful ambiguity resolution, when passed unnoticed, will too often lead to unacceptable errors in the positioning results. Very high success rates are therefore required for ambiguity resolution to be reliable. Biases which are unaccounted for will lower the success rate and thus increase the chance of unsuccessful ambiguity resolution. The performance of integer ambiguity estimation in the presence of such biases is studied. Particular attention is given to integer rounding, integer bootstrapping and integer least squares. Lower and upper bounds, as well as an exact and easy-to-compute formula for the bias-affected success rate, are presented. These results will enable the evaluation of the bias robustness of ambiguity resolution. Received: 28 September 2000 / Accepted: 29 March 2001  相似文献   

15.
 A potential-type Molodensky telluroid based upon a minimum-distance mapping is derived. With respect to a reference potential of Somigliana–Pizzetti type which relates to the World Geodetic Datum 2000, it is shown that a point-wise minimum-distance mapping of the topographical surface of the Earth onto the telluroid surface, constrained to the gauge W(P)=u(p), leads to a system of four nonlinear normal equations. These normal equations are solved by a fast Newton–Raphson iteration. Received: 7 February 2000 / Accepted: 23 October 2001  相似文献   

16.
 Until recently, the Global Positioning System (GPS) was the only operational means of distributing time to an arbitrary number of users and of synchronizing clocks over large distances with a high degree of precision and accuracy. Over the last few years it has been shown that similar performance can be achieved using the Russian Global Navigation Satellite System (GLONASS). GLONASS time transfer between continents was initially hampered by the lack of post-processed precise ephemerides. Results from the International GLONASS Experiment (IGEX) campaign are now available, however, and this paper reports on the first use of IGEX precise ephemerides for GLONASS P-code intercontinental time links. The results of GLONASS P-code and GPS C/A-code time transfer are compared under similar conditions. Received: 31 January 2000 / Accepted: 10 July 2000  相似文献   

17.
 The traditional remove-restore technique for geoid computation suffers from two main drawbacks. The first is the assumption of an isostatic hypothesis to compute the compensation masses. The second is the double consideration of the effect of the topographic–isostatic masses within the data window through removing the reference field and the terrain reduction process. To overcome the first disadvantage, the seismic Moho depths, representing, more or less, the actual compensating masses, have been used with variable density anomalies computed by employing the topographic–isostatic mass balance principle. In order to avoid the double consideration of the effect of the topographic–isostatic masses within the data window, the effect of these masses for the used fixed data window, in terms of potential coefficients, has been subtracted from the reference field, yielding an adapted reference field. This adapted reference field has been used for the remove–restore technique. The necessary harmonic analysis of the topographic–isostatic potential using seismic Moho depths with variable density anomalies is given. A wide comparison among geoids computed by the adapted reference field with both the Airy–Heiskanen isostatic model and seismic Moho depths with variable density anomaly and a geoid computed by the traditional remove–restore technique is made. The results show that using seismic Moho depths with variable density anomaly along with the adapted reference field gives the best relative geoid accuracy compared to the GPS/levelling geoid. Received: 3 October 2001 / Accepted: 20 September 2002 Correspondence to: H.A. Abd-Elmotaal  相似文献   

18.
  The Western Alps are among the best studied collisional belts with both detailed structural mapping and also crustal geophysical investigations such as the ECORS and EGT seismic profile. By contrast, the present-day kinematics of the belt is still largely unknown due to small relative motions and the insufficient accuracy of the triangulation data. As a consequence, several tectonic problems still remain to be solved, such as the amount of N–S convergence in the Occidental Alps, the repartition of the deformation between the Alpine tectonic units, and the relation between deformation and rotation across the Alpine arc. In order to address these problems, the GPS ALPES group, made up of French, Swiss and Italian research organizations, has achieved the first large-scale GPS surveys of the Western Alps. More than 60 sites were surveyed in 1993 and 1998 with a minimum observation of 3 days at each site. GPS data processing has been done by three independent teams using different software. The different solutions have horizontal repeatabilities (N–E) of 4–7 mm in 1993 and 2–3 mm in 1998 and compare at the 3–5-mm level in position and 2-mm/yr level in velocity. A comparison of 1993 and 1998 coordinates shows that residual velocities of the GPS marks are generally smaller than 2 mm/yr, precluding a detailed tectonic interpretation of the differential motions. However, these data seem to suggest that the N–S compression of the Western Alps is quite mild (less than 2 mm/yr) compared to the global convergence between the African and Eurasian plate (6 mm/yr). This implies that the shortening must be accomodated elsewhere by the deformation of the Maghrebids and/or by rotations of Mediterranean microplates. Also, E–W velocity components analysis supports the idea that E–W extension exists, as already suggested by recent structural and seismotectonic data interpretation. Received: 27 November 2000 / Accepted: 17 September 2001  相似文献   

19.
P. Moore 《Journal of Geodesy》2001,75(5-6):241-254
 Dual satellite crossovers (DXO) between the two European Remote Sensing satellites ERS-1 and ERS-2 and TOPEX/Poseidon are used to (1) refine the Earth's gravity field and (2) extend the study of the ERS-2 altimetric range stability to cover the first four years of its operation. The enhanced gravity field model, AGM-98, is validated by several methodologies and will be shown to provide, in particular, low geographically correlated orbital error for ERS-2. For the ERS-2 altimetric range study, TOPEX/Poseidon is first calibrated through comparison against in situ tide gauge data. A time series of the ERS-2 altimeter bias has been recovered along with other geophysical correction terms using tables for bias jumps in the range measurements at the single point target response (SPTR) events. On utilising the original version of the SPTR tables the overall bias drift is seen to be 2.6±1.0 mm/yr with an RMS of fit of 12.2 mm but with discontinuities at the centimetre level at the SPTR events. On utilising the recently released revised tables, SPTR2000, the drift is better defined at 2.4±0.6 mm/yr with the RMS of fit reduced to 3.7 mm. Investigations identify the sea-state bias as a source of error with corrections affecting the overall drift by close to 1.2 mm/yr. Received: 25 May 2000 / Accepted: 24 January 2001  相似文献   

20.
 The Somigliana–Pizzetti gravity field (the International gravity formula), namely the gravity field of the level ellipsoid (the International Reference Ellipsoid), is derived to the sub-nanoGal accuracy level in order to fulfil the demands of modern gravimetry (absolute gravimeters, super conducting gravimeters, atomic gravimeters). Equations (53), (54) and (59) summarise Somigliana–Pizzetti gravity Γ(φ,u) as a function of Jacobi spheroidal latitude φ and height u to the order ?(10−10 Gal), and Γ(B,H) as a function of Gauss (surface normal) ellipsoidal latitude B and height H to the order ?(10−10 Gal) as determined by GPS (`global problem solver'). Within the test area of the state of Baden-Württemberg, Somigliana–Pizzetti gravity disturbances of an average of 25.452 mGal were produced. Computer programs for an operational application of the new international gravity formula with (L,B,H) or (λ,φ,u) coordinate inputs to a sub-nanoGal level of accuracy are available on the Internet. Received: 23 June 2000 / Accepted: 2 January 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号