首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We present 3 yr of timing observations for PSR J1453+1902, a 5.79-ms pulsar discovered during a 430-MHz drift-scan survey with the Arecibo telescope. Our observations show that PSR J1453+1902 is solitary and has a proper motion of  8 ±  2  mas yr−1. At the nominal distance of 1.2 kpc estimated from the pulsar's dispersion measure, this corresponds to a transverse speed of  46 ± 11   km s−1  , typical of the millisecond pulsar population. We analyse the current sample of 55 millisecond pulsars in the Galactic disc and revisit the question of whether the luminosities of isolated millisecond pulsars are different from their binary counterparts. We demonstrate that the apparent differences in the luminosity distributions seen in samples selected from 430-MHz surveys can be explained by small-number statistics and observational selection biases. An examination of the sample from 1400-MHz surveys shows no differences in the distributions. The simplest conclusion from the current data is that the spin, kinematic, spatial and luminosity distributions of isolated and binary millisecond pulsars are consistent with a single homogeneous population.  相似文献   

3.
4.
Seven giant radio pulses were recorded from the millisecond pulsar PSR B1937+21 during ≈8.1 min observation by the Ooty Radio Telescope (ORT) at 326.5 MHz. Although sparse, these observations support most of the giant pulse behaviour reported at higher radio frequencies (430 to 2380 MHz). Within the main component of the integrated profile, they are emitted only in a narrow (≲47 μs) window of pulse phase, close to its peak. This has important implications for doing super-high precision timing of PSR B1937+21 at low radio frequencies.  相似文献   

5.
We report on the discovery of three new pulsars in the first blind survey of the north Galactic plane  (45° < l < 135°; | b | < 1°)  with the Giant Meterwave Radio telescope (GMRT) at an intermediate frequency of 610 MHz. The survey covered 106 deg2 with a sensitivity of roughly 1 mJy to long-period pulsars (pulsars with period longer than 1 s). The three new pulsars have periods of 318, 933 and 1056 ms. Their timing parameters and flux densities, obtained in follow-up observations with the Lovell Telescope at Jodrell Bank and the GMRT, are presented. We also report on pulse nulling behaviour in one of the newly discovered pulsars, PSR J2208+5500.  相似文献   

6.
In the previous paper of this series, Deshpande & Rankin reported results regarding the sub-pulse drift phenomenon in pulsar B0943+10 at 430 and 111 MHz. This study has led to the identification of a stable system of sub-beams circulating around the magnetic axis of this star. Here, we present a single-pulse analysis of our observations of this pulsar at 35 MHz. The fluctuation properties seen at this low frequency, as well as our independent estimates of the number of sub-beams required and their circulation time, agree remarkably well with the reported behaviour at higher frequencies. We use the 'cartographic' transform mapping technique developed by Deshpande & Rankin in Paper I to study the emission pattern in the polar region of this pulsar. The significance of our results in the context of radio emission mechanisms is also discussed.  相似文献   

7.
A0535+262 is a transient Be/X-ray binary system which was in a quiescent phase from 1994 to 2005. In this paper we report on the timing and spectral properties of the INTEGRAL detection of the source in 2003 October. The source is detected for ∼6000 s in the 18–100 keV energy band at a luminosity of  ∼3.8 × 1035 erg s−1  ; this is compatible with the high end of the range of luminosities expected for quiescent emission. The system is observed to be outside of the centrifugal inhibition regime and pulsations are detected with periodicity,   P = 103.7 ± 0.1 s  . An examination of the pulse history of the source shows that it had been in a constant state of spin-down since it entered the quiescent phase in 1994. The rate of spin-down implies the consistent presence of an accretion disc supplying torques to the pulsar. The observations show that the system is still active and highly variable even in the absence of recent Type I or Type II X-ray outbursts.  相似文献   

8.
9.
We present Rossi X-ray Timing Explorer ( RXTE ) observations of the Be/X-ray transient EXO 2030+375 during an outburst after a period of quiescence between 1993 August and 1996 April. When active, EXO 2030+375 is normally detected at each periastron passage of the neutron star. Our observations correspond to the third periastron passage after the source 'turned on' again. All outbursts after the quiescent period, including the one reported here, have been occurring at a much earlier binary phase than in the past. We discuss the possible mechanisms that may explain this shift in the onset of the outburst. Pulsations in the X-ray radiation are detected throughout the entire run. The neutron star spun up during the outburst at a rate of −1.16×10−8 s s−1, but no variations in the shape of the pulse profile as a function of intensity were seen. A correlation between the hardness ratio and the intensity is observed at low energies (6–12/2–6 keV). By comparing the magnetospheric and corotation radii we argue that the neutron star spins at a rate close to the equilibrium period. Finally, we perform pulse-phase spectroscopy and comment on changes seen as a function of spin phase.  相似文献   

10.
Numerous studies of the brightest Cambridge pulsar, B1133+16, have revealed little order in its individual pulses, apart from a weak 30-odd-rotation-period fluctuation feature and that some 15 per cent of the star's pulsars are 'nulls'. New Arecibo observations confirm this fluctuation feature and that it modulates all the emission, not simply the 'saddle' region. By replacing each pulse with a scaled version of the average profile, we were able to quench all subpulse modulation and thereby demonstrate that the star's 'null' pulses exhibit a similar periodicity. A subbeam carousel model with a sparse and irregular 'beamlet' population appears to be compatible with these characteristics.  相似文献   

11.
12.
We present results and applications of high-precision timing measurements of the binary millisecond pulsar J1012+5307. Combining our radio timing measurements with results based on optical observations, we derive complete 3D velocity information for this system. Correcting for Doppler effects, we derive the intrinsic spin parameters of this pulsar and a characteristic age of 8.6±1.9 Gyr . Our upper limit for the orbital eccentricity of only 8×10−7 (68 per cent confidence level) is the smallest ever measured for a binary system. We demonstrate that this makes the pulsar an ideal laboratory in which to test certain aspects of alternative theories of gravitation. Our precision measurements suggest deviations from a simple pulsar spin-down timing model, which are consistent with timing noise and the extrapolation of the known behaviour of slowly rotating pulsars.  相似文献   

13.
We present the results of a 430-MHz survey for pulsars conducted during the upgrade to the 305-m Arecibo radio telescope. Our survey covered a total of 1147 deg2 of sky using a drift-scan technique. We detected 33 pulsars, 10 of which were not known prior to the survey observations. The highlight of the new discoveries is PSR J0407+1607, which has a spin period of 25.7 ms, a characteristic age of 1.5 Gyr and is in a 1.8-yr orbit about a low-mass  (>0.2 M)  companion. The long orbital period and small eccentricity  ( e = 0.0009)  make the binary system an important new addition to the ensemble of binary pulsars suitable to test for violations of the strong equivalence principle. We also report on our initially unsuccessful attempts to detect optically the companion to J0407+1607, which imply that its absolute visual magnitude is >12.1. If, as expected on evolutionary grounds, the companion is an He white dwarf, our non-detection implies a cooling age of least 1 Gyr.  相似文献   

14.
15.
16.
17.
18.
19.
20.
This paper reports new observations of pulsar B0943+10 carried out at the Pushchino Radio Astronomy Observatory (PRAO) at the low radio frequencies of 42, 62 and 112 MHz. B0943+10 is well known for its exquisitely regular burst-mode (B-mode) drifting subpulses as well as its weaker and chaotic quiescent mode. Earlier Arecibo investigations at 327 MHz have identified remarkable, continuous changes in its B-mode subpulse drift rate and integrated-profile shape with durations of several hours. These PRAO observations reveal that the changes in profile shape during the B-mode lifetime are strongly frequency dependent – namely the measured changes in the component amplitude ratio are more dramatic at 327 and 112 MHz as compared with those at 62 and 42 MHz. The differences, however, are most marked during the first several tens of minutes after B-mode onset; after an hour or so the profile shape changes tend to be more similar at all four frequencies. We also have found that the linear polarization of the integrated profile increases continuously throughout the lifetime of the B mode, going from hardly 10 per cent just after onset to some 40–50 per cent after several hours. Pulsar B0943+10's B mode thus provides a unique new opportunity to investigate continuous systematic changes in the plasma flow within the polar flux tube. While refraction in the pulsar's magnetosphere may well play some role, we find that the various frequency-dependent effects, both between and within the two modes, can largely be understood geometrically. If the modes and B-mode decay reflect systematic variations in the carousel-'spark' radius and emission height then a specific set of profile and linear polarization changes would be expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号