首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Nine rock samples from three Jurassic stratigraphic units of a shallow core from NW Germany were analyzed by pyrolysis-gas chromatography. The units contain a mixed Type-II/III kerogen (Dogger-α), a hydrogen-rich Type-II kerogen (Lias-), and a hydrogen-poor Type-III kerogen (Lias-δ). All of the kerogen was immature (Ro = 0.5%). Two sets of kerogen concentrates (“AD”: HCl/HF followed by a density separation, and “A”: only acid treatment) prepared from the rock samples were also analyzed to make a detailed comparison of the pyrolysates of rock and corresponding kerogen-concentrates.Hydrogen-index (HI) values of the kerogen concentrates prepared from organic-carbon poor rock were nearly 200% higher than HI values of the rock samples. Changes in HI were minimal for the samples containing Type-II kerogen. The A and AD samples from the Corg-poor rock yielded pyrolysates with n-alkane series of very different molecular lengths. Pyrograms of the rock samples had n-alkane series extending to n-C14; the chromatograms of the A samples reached the n-C14-nC20 range. The AD samples from Corg-poor rock and all three sample types from the Corg-rich rock had n-alkane series up to n-C29. The benzene/hexane and toluene/heptane ratios for the Corg-poor rock and A samples were far higher than for the AD samples, which had ratios similar to those of all three sample types from the Corg-rich rocks. These results indicate that choice of kerogen preparation method is critical when Corg-poor samples are analyzed.  相似文献   

2.
Microstructures and quartz c-axis fabrics were analyzed in five quartzite samples collected across the eastern aureole of the Eureka Valley–Joshua Flat–Beer Creek composite pluton. Temperatures of deformation are estimated to be 740±50 °C based on a modified c-axis opening angle thermometer of Kruhl (J. Metamorph. Geol. 16 (1998) 142). In quartzite layers located closest (140 m) to the pluton-wall rock contact, flattened detrital grains are plastically deformed and partially recrystallized. The dominant recrystallization process is subgrain rotation (dislocation creep regime 2 of Hirth and Tullis (J. Struct. Geol. 14 (1992) 145)), although grain boundary migration (dislocation creep regime 3) is also evident. Complete recrystallization occurs in quartzite layers located at a distance of 240 m from the contact, and coincides with recrystallization taking place dominantly through grain boundary migration (regime 3). Within the quartzites, strain is calculated to be lowest in the layers closest to the pluton margin based on the aspect ratios of flattened detrital grains.The c-axis fabrics indicate that a slip operated within the quartzites closest to the pluton-wall rock contact and that with distance from the contact the operative slip systems gradually switch to prism [c] slip. The spatial inversion in microstructures and slip systems (apparent “high temperature” deformation and recrystallization further from the pluton-contact and apparent “low temperature” deformation and recrystallization closer to the pluton-contact) coincides with a change in minor phase mineral content of quartzite samples and also in composition of the surrounding rock units. Marble and calc-silicate assemblages dominate close to the pluton-wall rock contact, whereas mixed quartzite and pelite assemblages are dominant further from the contact.We suggest that a thick marble unit located between the pluton and the quartzite layers acted as a barrier to fluids emanating from the pluton. Decarbonation reactions in marble layers interbedded with the inner aureole quartzites and calc-silicate assemblages in the inner aureole quartzites may have produced high XCO2 (water absent) fluids during deformation. The presence of high XCO2 fluid is inferred from the prograde assemblage of quartz+calcite (and not wollastonite)+diopside±K-feldspar in the inner aureole quartzites. We suggest that it was these “dry” conditions that suppressed prism [c] slip and regime 3 recrystallization in the inner aureole and resulted in a slip and regime 2 recrystallization, which would normally be associated with lower deformation temperatures. In contrast, the prograde assemblage in the pelite-dominated outer part of the aureole is biotite+K-feldspar. These “wet” pelitic assemblages indicate fluids dominated by water in the outer part of the aureole and promoted prism [c] slip and regime 3 recrystallization. Because other variables could also have caused the spatial inversion of c-axis fabrics and recrystallization mechanisms, we briefly review those variables known to cause a transition in slip systems and dislocation creep regimes in quartz. Our conclusions are based on a small number of samples, and therefore, the unusual development of crystal fabrics and microstructures in the aureole to the EJB pluton suggests that further study is needed on the effect of fluid composition on crystal slip system activity and recrystallization mechanisms in naturally deformed rocks.  相似文献   

3.
Diopside single-crystals, oriented favorably for twin gliding on both systems: (001) [100] and (100)[001] have been deformed in a Griggs apparatus using talc as pressure medium. The latter mechanism is dominant at temperatures (T) below 1050° C at strain rates () of 10−3 sec−1, and below 800° C at ; at higher temperatures translation gliding on (100)[001] accompanied by syntectonic recrystallization is dominant but other glide systems also operate. Tests at a single set of conditions, T- and -incremental tests and stress-relaxation experiments have been carried out on websterite (68% CPX, 32% OPX), both in talc (“wet”) and talc-AlSiMag (“dry”) assemblies. Most tests were performed in the high-T regime, where syntectonic recrystallization and “relatively nonselective” glide are dominant. The mean size of recrystallized clinopyroxenes (D, μm) appears to be related to stress (σ, kb) as D = 60σ−0.9. The mechanical data fit the power law exp(-Q/RT)σn, where for the “wet” experiments A = 105.9kb−nsec−1, Q = 91.2 kcal/mole, n = 5.3; for σ < 3.5 kb n appears to decrease to 3.3. For the “dry” experiments A = 102.2, Q = 77.9, and n = 4.3 for σ < 7.0 kb. Clinopyroxene in the upper mantle occurs as ca. 0–15% mixed phase in peridotites and websterites occur as thin layers. Stresses in these materials will then be near those in the olivine-rich matrix. At , the equivalent viscosity of dry websterite is less than that of dry dunite at depths to 60 km but it increases rapidly at higher pressures; at 240 km it is 106 greater than that of dunite. This may account for the low strains and passive behavior observed for clinopyroxene crystals in most peridotites and websterites, that presumably have formed at great depth. Attenuated folds of websterite in peridotite—evidence of more ductile behavior—may then have formed at shallower levels; alternatively they may have formed under “wet” conditions.  相似文献   

4.
Variations of structure and optical properties in anorthites (An 93–97%) of different origin are analyzed with the petrographic microscope, U-stage methods, X-ray single crystal analysis and high voltage electron microscopy. No significant variation has been found in the orientation of the indicatrix and of the lattice constants. But c-type reflections (h + k even, odd) are strong and sharp in anorthites from slowly cooled rocks and diffuse in anorthites of identical chemical composition from quenched igneous rocks. Large type c-antiphase domains (5000–10000 Å) are found in the slowly cooled rocks, c-domains in volcanic rocks are small (100 Å) or could not be imaged. The presence of only b-domains in lunar basalt 14310 indicates quenching of this rock. Large c-domains in the Apollo 15 genesis rock (15415, Lally et al., 1972) indicate slow cooling similar to terrestrial metamorphic rocks.  相似文献   

5.
Review of Microstructural Evidence of Magmatic and Solid-State Flow   总被引:13,自引:0,他引:13  
Evidence of magmatic flow includes: (a) parallel to sub-parallel alignment of elongate euhedral crystals (e.g., of feldspar or hornblende) that are not internally deformed, (b) imbrication (‘tiling’) of elongate euhedral crystals that are not internally deformed, (c) insufficient solid-state strain in regions between aligned or imbricated crystals to accommodate phenocryst rotation, (d) elongation of microgranitoid enclaves without plastic deformation of the minerals, (e) magmatic flow foliations and elongate microgranitoid enclaves deflected around xenoliths, and (f) schlieren layering (if due to flow sorting) in the absence of plastic deformation of the minerals involved. These features are consistent with rotation of crystals in a much weaker medium, namely a melt phase, at a stage when the magma has become viscous enough to preserve the alignment.Evidence of solid-state flow includes: (a) internal deformation and recrystallization of grains, (b) recrystallized “tails,” (c) elongation of recrystallized aggregates (e.g. of quartz and mica), (d) grainsize reduction, (e) fine-grained folia anastomosing around less deformed relics, (f) microcline twinning, (g) myrmekite, (h) flame perthite, (i) boudinage of strong minerals, typically with recrystallized aggregates of weaker minerals (e.g. quartz and mica) between the boudins, (j) foliation passing through, rather than around enclaves, and (k) heterogeneous strain with local mylonitic zones.Several criteria suggest “submagmatic flow,” including recrystallized feldspar, inferred transitions from magmatic imbrication to solid-state S/C arrangements, evidence of c-slip in quartz, and especially evidence of migration of residual melt into lower-pressure sites.Recent experimental studies indicate that a change from grain-supported flow to suspension flow typically occurs in deforming magmas at melt contents of between 20% to 40%, and that large amounts of strain may accumulate in magmas without being recorded by the final fabric. At lower melt percentages, perhaps as low as a few percent, depending on the minerals and their shapes, strain may be accommodated by: (a) melt-assisted grain-boundary sliding, (b) contact-melting assisted grain-boundary migration, (c) strain partitioning into melt-rich zones, (d) intracrystalline plastic deformation (c-slip in quartz indicating plastic deformation at temperatures near the granite solidus), and (f) transfer of melt to sites of low mean stress. The only indication of strain in the absence of crystal plasticity may be an alignment of crystals. Moreover, magmatic flow microstructures may be destroyed by fracturing, crystal plasticity and recrystallization before the magma reaches its solidus.Many rocks show evidence of solid-state flow superimposed on magmatic flow. Evidence of magmatic flow is commonly preserved in deformed felsic metamorphic rocks: for example the alignment of rectangular K-feldspar megacrysts and of microgranitoid enclaves. However, absence of alignment does not preclude a magmatic origin for K-feldspar megacrysts in felsic gneisses, as magmatic flow may cease before the magma becomes viscous enough to preserve an alignment.  相似文献   

6.
Northwestern Fujian Province is one of the most important Pre-Palaeozoic areas in the Cathaysia Block of South China. Metavolcano-sedimentary and metasedimentary rocks of different types, ages and metamorphic grades (granulite to upper greenschist facies) are present, and previously were divided into several Formations and Groups. Tectonic contacts occur between some units, whereas (deformed) unconformities have been reported between others. New SHRIMP U–Pb zircon ages presented here indicate that the original lithostratigraphy and the old “Group” and “Formation” terminology should be abandoned. Thus the “Tianjingping Formation” was not formed in the Archaean or Palaeoproterozoic, as previously considered, but must be younger than its youngest detrital zircons (1790 Ma) but older than regional metamorphism (460 Ma). Besides magmatic zircon ages of 807 Ma obtained from metavolcano-sedimentary rocks of the “Nanshan Formation” and 751–728 Ma for the “Mamianshan Group”, many inherited and detrital zircons with ages ranging from 1.0 to 0.8 Ga were also found in them. These ages indicate that the geological evolution of the study area may be related to the assembly and subsequent break-up of the Rodinia supercontinent. The new zircon results poorly constrain the age of the “Mayuan Group” as Neoproterozoic to early Palaeozoic (728–458 Ma), and not Palaeoproterozoic as previously thought. Many older inherited and detrital zircons with ages of 3.6, 2.8, 2.7, 2.6–2.5, 2.0–1.8 and 1.6 Ga were found in this study. A 3.6 Ga detrital grain is the oldest one so far identified in northwestern Fujian Province as well as throughout the Cathaysia Block. Nd isotope tDM values of eight volcano-sedimentary and clastic sedimentary rock samples centre on 2.73–1.68 Ga, being much older than the formation ages of their protoliths and thus showing that the recycling of older crust played an important role in their formation. These rocks underwent high grade metamorphism in the early Palaeozoic (458–425 Ma) during an important tectono-thermal event in the Cathaysia Block.  相似文献   

7.
Twiss (1976) has suggested that the “ductile faulting” events observed by Post (1973) during high temperature creep of dunite are due to a transition from creep by dislocation movement to a diffusion accommodated, grain-boundary sliding mechanism following a reduction in grain size by dynamic recrystallization. Similarly, Goetze (1978) has explained both ductile faulting and water weakening of dunite by transition to a “nonlinear Coble” creep mechanism. However, the fundamental assumption made by Twiss (1976) that the stress exponent, n, reduces to unity during ductile faulting events is questionable. If the stress exponent remains high, (n≥3), then a diffusion-accomodated grain-boundary sliding mechanism is excluded. “Nonlinear Coble” creep would remain a viable alternative; however, this model fails to adequately explain the water weakening phenomenon, and the available data do not constrain us to this model. Assuming that the water-weakening phenomenon can be explained by other models (e.g., Blacic, 1972), it will be shown (by analogy with the behavior of metals) that a third model, also consistent with the available data, also qualitatively explains the observations associated with ductile faulting without appeal to a transition in creep mechanisms. The model is similar to one for metals undergoing deformation by dislocation movement and recovery by dynamic recrystallization, which commonly exhibit behavior virtually identical to that observed in dunite during ductile faulting events without transition to grain-size-sensitive creep mechanisms.  相似文献   

8.
9.
The Raspas Metamorphic Complex of southwestern Ecuador is regarded as the southernmost remnant of oceanic and continental terranes accreted in the latest Jurassic–Early Cretaceous. It consists of variably metamorphosed rock types. (1) Mafic and ultramafic rocks metamorphosed under high-pressure (HP) conditions (eclogite facies) show oceanic plateau affinities with flat REE chondrite-normalized patterns, Nd150 Ma ranging from +4.6 to 9.8 and initial Pb isotopic ratios intermediate between MORB and OIB. (2) Sedimentary rocks metamorphosed under eclogitic conditions exhibit LREE enriched patterns, strong negative Eu anomalies, Rb, Nb, U, Th, Pb enrichments, low Nd150 Ma values (from −6.4 to −9.5), and high initial 87Sr/86Sr and 206,207,208Pb/204Pb isotopic ratios suggesting they were originally sediments derived from the erosion of an old continental crust. (3) Epidote-bearing amphibolites show N-MORB affinities with LREE depleted patterns, LILE, Zr, Hf and Th depletion, high Nd150 Ma (>+10) and low initial Pb isotopic ratios.The present-day well defined internal structure of the Raspas Metamorphic Complex seems to be inconsistent with the formerly proposed interpretation of a “tectonic mélange”. The association of oceanic plateau rocks and continent-derived sediments both metamorphosed in HP conditions suggests that the thin edge of the oceanic plateau first entered the subduction zone and dragged sediments downward of the accretionary wedge along the Wadatti–Benioff zone. Subsequently, when its thickest part arrived into the subduction zone, the oceanic plateau jammed the subduction processes, due to its high buoyancy.In Ecuador and Colombia, the latest Jurassic–Early Cretaceous suture involves HP oceanic plateau rocks and N-MORB rocks metamorphosed under lower grades, suggesting a composite or polyphase nature for the latest Jurassic–Early Cretaceous accretionary event.  相似文献   

10.
Most Ordovician source rocks consist of accumulation of a colonial marine microorganism, Gloeocapsomorpha prisca (G. prisca) whose nature, ecology and affinity with extant organisms have been in dispute for years. Furthermore, recent studies have shown major differences in phenol moieties between two G. prisca-rich samples. Examination of five G. prisca-rich kerogens by electron microscopy and pyrolysis studies revealed (i) the occurrence of two markedly distinct “morpho/chemical” types: a “closed/phenol-rich” type (Baltic samples) and an “open/phenol-poor” one (North American samples) and (ii) the selective preservation of the resistant micromolecular material building up the thick cell walls in the original organism. Comparison with extant Botryococcus braunii (a widespread green microalga) grown on media of increasing salinity suggests that G. prisca is likely to be a planktonic green microalga related to B. braunii, which can adapt to large salinity variations which, in turn, control its polymorphism. The large differences in colony morphology and in the content of phenol moieties observed in fossil G. prisca and the resulting occurrence of two “morpho/chemical” types, should therefore reflect depositional environments with different salinities. The presence of thick, highly aliphatic, resistant walls in G. prisca selectively preserved during fossilization, accounts for the major contribution of this organism to Ordovician organic-rich sediments and for the resulting typical signature of Ordovician oils.  相似文献   

11.
The ammonite and inoceramid bivalve faunas of the Davutlar Formation of the Devrekani–Kastamonu area in central-north Turkey, are described. The formation yields an ammonite assemblage of Pseudophyllites indra (Forbes, 1846), Pachydiscus (Pachydiscus) haldemsis (Schlüter, 1867), Pachydiscus (Pachydiscus) oldhami (Sharpe, 1855), Didymoceras binodosum (Kennedy and Cobban, 1993), Bostrychoceras polyplocum (Roemer, 1841) and Baculites alavensis Santamaria Zabala, 1996. The inoceramid assemblage is Cataceramus subcompressus (Meek and Hayden, 1862), Cataceramus goldfussianus (d'Orbigny, 1846), Platyceramus vanuxemi (Meek and Hayden, 1860), Cataceramus cf. mortoni (Meek, 1876), Cataceramus pteroides (Giers, 1964), Cataceramus aff. barabini (Morton, 1834), Platyceramus pierrensis (Walaszczyk et al., 2001), “Inoceramusconvexus Hall and Meek, 1856, Cordiceramus heberti (Fallot, 1885), “Inoceramustenuilineatus Hall and Meek, 1856, “Inoceramusborilensis Jolkicev, 1962, as well as some forms with no or equivocal specific affiliation. Both ammonite and inoceramid faunas suggest an early Late Campanian age for the formation, most probably Bostrychoceras polyplocum and Didymoceras donezianum ammonite Zones / Cataceramus subcompressus and “Inoceramustenuilineatus inoceramid Zones. Both ammonite and inoceramid assemblages are well represented throughout the Euramerican biogeographical region.  相似文献   

12.
Summary. Most currently used techniques for analysing the stability of near surface structures, such as rock slopes, are based on the application of the effective Coulomb shear strength parameters cohesion c′, and the angle of friction φ′ on some known or anticipated shear surface subjected to an effective normal stress σ′n. The most widely used of these techniques are the variants of the method of slices and related upper bound techniques. If the Hoek-Brown criterion is to be used to model the strength of near surface fractured rocks, it is necessary to determine equivalent Coulomb shear strength parameters for the specified level of effective normal stress. Calculation of the equivalent Coulomb parameters for the Hoek-Brown criterion for cases when a ≠ 0.5 is not a straightforward matter. A simple procedure for calculating instantaneous values of ci and φ′i has been developed based on spreadsheet calculations and the application of a numerical optimisation routine. This procedure can also be applied to calculating the Hoek-Brown envelope plotted in shear stress/normal stress space. A simple closed form solution for ci and tan φ′i has also been developed for the special case when a = 1. A three-dimensional version of the Hoek-Brown criterion has been developed by combining it with the Drucker-Prager criterion. This new yield criterion has been implemented by numerical solution of the governing equations. A simplification of this three-dimensional yield criterion has been developed by introducing an intermediate principal stress weighting factor. Comparison with published results demonstrates that this simplified criterion has the capacity to model the results of true triaxial tests for a range of different rock types over a wide range of stress levels. The new three-dimensional yield criterion has the advantage that its input parameters can be determined from routine uniaxial compression tests and mineralogical examination.  相似文献   

13.
H.J. Melosh 《Tectonophysics》1976,35(4):363-390
This paper investigates the effect of shear heating in the asthenosphere on the thermal structure of the upper mantle. Equations describing the motion of the lithosphere over the asthenosphere in the presence of a strongly temperature-dependent stress-strain rate relation are derived and solved with the help of several approximations. These approximations are shown to be valid under conditions appropriate for the earth.Two sets of solutions are found. For one set (the “subcritical” solutions) a normal shear stress—velocity relation is found for small stresses. The velocity increases as the stress increases, reaching a maximum velocity σc for a critical stress σc. The subcritical solutions have a negligible effect on the thermal structure of the earth, even at the critical stress. The other set of solutions (the “supercritical” solutions) has the bizarre property that a decrease of applied shear stress leads to an increase of velocity. Thus, as the shear stress goes to zero, the velocity becomes infinite. At larger shear stresses the velocity decreases until it reaches σc at a stress σc (the two sets of solutions share this point in common). There are no steady solutions of any kind for shear stresses in excess of σc. We discard the supercritical solutions as candidates for the thermal structure of the earth on the basis of their instability to small perturbations of applied stress and temperature.The realm of subcritical solutions (stress less than σc, velocity less than σc) thus defines a regime of plate motion in which the thermal effects of shear heating are negligible. If the shear stresses acting on plates exceed σc, however, new physical processes must come into play to dissipate the excess heat generated. Assuming that the velocities of plates on the earth today are less than σc, relative to the deep mantle, a strict upper limit of a few tens of bars can be derived for σc, corresponding to effective viscosities of ca. 1019 poise in the asthenosphere.  相似文献   

14.
This report extends previous work ([Louda et al., 1998a] and [Louda et al., 1998b]. Chlorophyll degradation during senescence and death. Organic Geochemistry 29, 1233–1251.) in which we detailed type-I (alteration) and -II (destruction) degradation of chlorophyll with representative fresh water phytoplankton. The present study covers similar experiments with marine phytoplankton, namely, a cyanobacterium (“ANA” Anacystis sp), a coccolithophore (“COC” Coccolithophora sp.), a dinoflagellate (“GYM” Gymnodinium sp.) and two diatoms (“CYC” Cyclotella meneghiniana and “THAL” Thalassiosira sp.). Mg loss (‘pheophytinization') was rapid and continuous in all species under room-oxic conditions and slow or sporadic under anoxic conditions. The proportion of dephytylated pigments (pheophorbides-a, chlorophyllides-a), relative to the phytylated forms (chlorophyll-a, pheophytins-a), increased over the first year under room-oxic conditions and in room-anoxic conditions only in “CYC”. Pheophorbide-a was converted to pyropheophorbide-a within 15 months only in “THAL” and “ANA”, and slightly in “COC”. After 9–15 months of oxic incubation, “COC” was found to contain traces of purpurin-18 phytyl ester. Consideration of carotenoid pigments is also included herein. All fucoxanthin containing species, except “THAL”, exhibited conversion of fucoxanthin to fucoxanthinol in room-oxic conditions. Diadinoxanthin was rapidly de-epoxidized to give diatoxanthin within the first 2–4 weeks. Diatoxanthin then disappeared from all species by 15 months with a concurrent increase in a pigment which we tentatively identify as a cis-zeaxanthin. Incubations of pure cultures are found to be an effective way by which to model the early type-I reactions for both chlorophylls and carotenoids. The influence of oxygen during senescence-death and the onset of early diagenesis is of paramount importance. The absence of oxygen and, by inference, aerobic microbiota, retards the breakdown of these pigments dramatically.  相似文献   

15.
Understanding the electromagnetic response to geodynamic processes occurring in the earth's upper crust, in particular pre-seismic and seismic processes, is a challenging task in modern geophysics. There is increasing evidence that seismo-electromagnetic (SEM) phenomena are difficult to describe quantitatively by “linear” models using “averaged” parameters of the medium, such as electrical and hydraulic conductivities. Because the upper crust is highly inhomogeneous (at all scales), porous, and can be fully or partially water-saturated, the most natural way to describe its parameters is via fractal-theoretic and percolation-theoretic models.Recent studies indicate that the electrokinetic effect is the most likely driving mechanism for the various types of SEM signals. Here we considered the hydraulic, electric, and electrokinetic conductances of a porous water-saturated medium as a function of porosity () and moisture content (θ), utilizing a percolation/fractal approach. We show that the electric conductivity and electrokinetic current in such a medium are both proportional to (c)2 and (θθc)2, where c and θc are the critical values of porosity and moisture content, respectively. This behavior admits the possibility of a relatively large change in the respective electric and electrokinetic parameters due to a small change in the mechanical strain field. This is significant because it may account for the appearance of some types of SEM signals at large distances from the earthquake origin, which is the main deficiency of most models. Indeed, the anticipated strain changes related to pre-earthquake processes is usually very small except near the focal area. The expected ‘averaged’ electromagnetic response also would be very small, unless a local underground water system exists, not necessarily near the focal area, but which is close to critical point(s).We discuss the conditions under which electrotelluric and geomagnetic variations can accompany mechanical disturbances in the earth's crust.  相似文献   

16.
Hydrochemical conditions up to depths of 1000 m below ground level around the Mizunami Underground Research Laboratory were investigated to construct a “baseline condition model” describing the undisturbed hydrochemical environment prior to excavation of the underground facilities at Mizunami, Gifu, Japan. Groundwater chemistry in this area was classified into a Na–Ca–HCO3 type of groundwater in the upper part of sedimentary rock sequence and a Na–(Ca)–Cl type of groundwater in the deeper part of the sedimentary rock sequence and basement granite. The residence time of the groundwaters was estimated from their 14C contents to be approximately 9.3 ka in the middle part of the sedimentary rock and older than 50 ka in the deep part of the granite. The evolution processes of these groundwaters were inferred to be water–rock interactions such as weathering of plagioclase, dissolution of marine sulphate/sulphide minerals and carbonate minerals in the Na–Ca–HCO3 type of groundwater, and mixing between “low-salinity water” in the shallow part and “higher-salinity water” in the deeper part of the granite in the Na–(Ca)–Cl type of groundwater. The source of salinity in the deeper part of the granite was possibly a palaeo-hydrothermal water or a fossil seawater that recharged in the Miocene, subsequently being modified by long-term water–rock interaction. The Cl-depth trend in granitic groundwater changes at a depth of −400 m below sea level. The hydrogeological properties controlling the groundwater flow and/or mixing processes such as advection and diffusion were inferred to be different at this depth in the granite. This hydrochemical conceptual model is indispensable not only when constructing the numerical model for evaluating the hydrochemical disturbance during construction and operation of the MIU facility, but also when confirming a hydrogeological model.  相似文献   

17.
Pre-Cretaceous metasedimentary rocks occurring in the Inner Zone of the Southwest Japan Arc can be divided into three major groups, namely, high P/T metamorphic (Renge and Suo belts), low P/T metamorphic (Hida-Oki, Ryoke and Higo belts), and accretionary terranes (Akiyoshi, Maizuru, Mino-Tamba, and Ashio belts). Major and trace element compositions of most of the sedimentary rocks are typical of relatively mature sedimentary rocks, although abundances of ferromagnesian elements also suggest the presence of a significant mafic to intermediate igneous component. The sedimentary rocks with older Nd model ages (> 2.0 Ga) have high εSr values and major and trace element geochemical signatures typical of mature sediments, whereas those with younger model ages (< 1.45 Ga) have low εSr values and immature geochemical characteristics. With the exception of Hida samples, the sedimentary rocks from other districts have geochemical and isotopic features intermediate between the rocks with old and young Nd model ages. Some of the Hida samples have old Nd model ages, but others are influenced by younger rock fragments and have immature geochemical features. Based on combined isotopic and geochemical evidence, Inner Zone sedimentary rocks with older Nd model ages are interpreted to have been derived from felsic upper continental crustal materials such as Sino-Korean or northwest Yangtze craton granitoids. Compositions of rocks with younger Nd model ages reflect addition of mafic to intermediate detritus, such as island arc basalts and andesites. The rocks with intermediate Nd model ages may have formed in and around the Asian continental margin. The Hida metasedimentary rocks may have been derived from several terranes of varying age and geochemical composition.  相似文献   

18.
The nature of the petrogenetic links between carbonatites and associated silicate rocks is still under discussion (i.e., [Gittins J., Harmer R.E., 2003. Myth and reality of the carbonatite–silicate rock “association”. Period di Mineral. 72, 19–26.]). In the Paleozoic Kola alkaline province (NW Russia), the carbonatites are spatially and temporally associated to ultramafic cumulates (clinopyroxenite, wehrlite and dunite) and alkaline silicate rocks of the ijolite–melteigite series [(Kogarko, 1987), (Kogarko et al., 1995), (Verhulst et al., 2000), (Dunworth and Bell, 2001) and (Woolley, 2003)]. In the small (≈ 20 km2) Vuoriyarvi massif, apatite is typically a liquidus phase during the magmatic evolution and so it can be used to test genetic relationships. Trace elements contents have been obtained for both whole rocks and apatite (by LA-ICP-MS). The apatites define a single continuous chemical evolution marked by an increase in REE and Na (belovite-type of substitution, i.e., 2Ca2+ = Na+ + REE3+). This evolution possibly reflects a fractional crystallisation process of a single batch of isotopically homogeneous, mantle-derived magma.The distribution of REE between apatite and their host carbonatite have been estimated from the apatite composition of a carbonatite vein, belonging to the Neskevara conical-ring-like vein system. This carbonatite vein is tentatively interpreted as a melt. So, the calculated distribution coefficients are close to partition coefficients. Rare earth elements are compatible in apatite (D > 1) with a higher compatibility for the middle REE (DSm : 6.1) than for the light (DLa : 4.1) and the heavy (DYb : 1) REE.  相似文献   

19.
A saline circuit has been studied as a model of coastal evaporite system. The lipid composition of diverse salt ponds encompassing calcite, gypsum and halite domains has been determined. Most of the lipid materials has been found in the carbonate samples and is related to algal/cyanobacterial debris. Lipids in the gypsum domain are of heterotropic microbialorigin and extreme halophilic bacteria constitute the main lipid contribution in the halite samples. n-Alkane distributions with high predominance of n-docosane constitute a previously described feature of sedimentary evaporitic conditions that is charateristics of the intermediate calcite/gypsum samples. In the calcite domain, the presence of C20 highly branched isoprenid olephines, tetrahymanol and the large amounts of phytol constitute likely precursors of lipids usually found in evaporitic environments (i.e. C20 highly branched isoprenoid alkanes, gammacerane and high phytane/pristane ratios). Their occurence point to dehydration and hydrogenations as two main diagenetic processes leading to the formation of “evaporitic molecular markers”.  相似文献   

20.
A general form of a “fracture function” for isotropic brittle materials is expressed in terms of the three invariants of the stress tensor. The coefficients in the function are determined by use of the small number of experimental data under specific conditions. This function is applicable to an estimate of the fracture condition of brittle rocks under a general stress state i.e., σ1σ2σ3. The application of this function is attempted for the data of three brittle rocks i.e., Dunham dolomite, Mizuho trachyte, and Westerly granite, reported by previous workers. For the first two, this criterion gives a good estimation of the effect of the intermediate principal stress σ2 on failure. For the last, the fracture strength at high confining pressure is estimated by use of the several data obtained under very low confining pressures, and the agreement with experimental data is also satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号