首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The segmentation of the Mid-Atlantic Ridge between 29°N and 31°30′ N during the last 10 Ma was studied. Within our survey area the spreading center is segmented at a scale of 25–100 km by non-transform discontinuities and by the 70 km offset Atlantis Transform. The morphology of the spreading center differs north and south of the Atlantis Transform. The spreading axis between 30°30′N and 31°30′N consists of enéchelon volcanic ridges, located within a rift valley with a regional trend of 040°. South of the transform, the spreading center is associated with a well-defined rift valley trending 015°. Magnetic anomalies and the bathymetric traces left by non-transform discontinuities on the flanks of the Mid-Atlantic Ridge provide a record of the evolution of this slow-spreading center over the last 10 Ma. Migration of non-transform offsets was predominantly to the south, except perhaps in the last 2 Ma. The discontinuity traces and the pattern of crustal thickness variations calculated from gravity data suggest that focused mantle upwelling has been maintained for at least 10 Ma south of 30°30′ N. In contrast, north of 30°30′N, the present segmentation configuration and the mantle upwelling centers inferred from gravity data appear to have been established more recently. The orientation of the bathymetric traces suggests that the migration of non-transform offsets is not controlled by the motion of the ridge axis with respect to the mantle. The evolution of the spreading center and the pattern of segmentation is influenced by relative plate motion changes, and by local processes, perhaps related to the amount of melt delivered to spreading segments. Relative plate motion changes over the last 10 Ma in our survey area have included a decrease in spreading rate from 32 mm a−1 to 24 mm a−1, as well as a clockwise change in spreading direction of 13° between anomalies 5 and 4, followed by a counterclockwise change of 4° between anomaly 4 and the present. Interpretation of magnetic anomalies indicates that there are significant variations in spreading asymmetry and rate within and between segments for a given anomaly time. These differences, as well as variations in crustal thickness inferred from gravity data on the flanks of spreading segments, indicate that magmatic and tectonic activity are, in general, not coordinated between adjacent spreading segments.  相似文献   

2.
晚新近纪以来中国北方堆积的风成红粘土-黄土序列是古气候信息的良好载体, 在黄土高原北部的吴起地区存在一套湖相沉积物, 层位上介于第四纪黄土与晚新近纪红粘土之间, 但该古湖存在的具体时限尚不清楚. 我们利用岩石磁学及古地磁年代学方法并结合多种气候指标对代表“吴起古湖”的土佛寺剖面进行了初步研究, 结果表明湖相沉积物中特征剩磁的载体主要为磁铁矿和赤铁矿, 在此基础上得到的磁极性序列能很好地与国际地磁极性年表对比, 剖面起始于4.28 Ma B. P.左右, 湖相沉积层起始于3.0 Ma B. P.左右, 结束于1.2 Ma B. P.左右. 岩性、磁化率、粒度和沉积速率变化均反映出这一时期该地区环境变化的总体趋势是由暖湿向冷干发展, 期间“吴起古湖”的演化大致经历了三个阶段: 3.0~2.5 Ma B. P.为古湖形成时期, 水体相对较深; 2.50~2.05 Ma B. P.期间受古气候变化的影响湖水明显变浅; 2.05~1.20 Ma B. P.时古湖中仍有一定量的水体存在, 但随后逐步缩小并最终消亡. 该地区气候条件在1.2 Ma B. P.左右的恶化是导致吴起古湖消亡的主要因素, 区域构造活动引起的北洛河溯源侵蚀并切穿湖盆可能也是原因之一.  相似文献   

3.
Welded tuffs in the Bogopol and Sijanov groups were sampled at 27 sites from 12 caldera formations in the Sikhote Alin mountain range around Kavalerovo (44.3°N, 135.0°E) for chronological and paleomagnetic studies. KAr age dates show that the welded tuffs erupted between 66 Ma and 46 Ma. All sites yield reliable paleomagnetic directions, with unblocking temperatures higher than 560°C. The high-temperature component at 12 sites and the medium-temperature component at 3 sites in the Bogopol Group show reversed polarity (D = 193.7°, I = −57.6°,95 = 8.1°). The high-temperature component at 11 sites in the Sijanov Group showed both reversed and normal polarities and its mean direction reveals no detectable deflection from north (D = −2.9°, I = 59.6°,95 = 11.2°). The combined paleomagnetic direction of the two groups yields a paleomagnetic pole of 250.5°E, 84.1°N (A95 = 8.8°), which falls near Cretaceous paleomagnetic poles from Outer Mongolia, Inner Mongolia, the North China Block and the South China Block. The Sikhote Alin area appears not to have been subjected to detectable motion with respect to East Asia since about 50 Ma. This implies that the Sikhote Alin area behaved as an integral part of East Asia during the opening of the Japan Sea at about 15 Ma. However, significant separation between the paleomagnetic poles of East Asia and Europe during the Jurassic-Paleogene implies a major relative movement between these two blocks since the Paleogene.  相似文献   

4.
塔北阿瓦特剖面磁性地层的构建:天山的脉动式隆升   总被引:1,自引:0,他引:1       下载免费PDF全文
晚新生代以来天山造山带的构造演化过程仍缺少准确的年龄限制.南天山山前新生界地层普遍缺乏古生物化石以及岩浆活动等定年依据,然而地层沉积连续,适合于磁性地层定年.对阿瓦特地区3700 m厚的晚新生代地层进行了详细的磁性地层研究,建立了该地区西域组底部至吉迪克组顶部的磁极性变化序列,共识别出26个负极性和26个正极性带,与C...  相似文献   

5.
兰州地区晚第三纪磁性地层与古环境意义   总被引:1,自引:0,他引:1       下载免费PDF全文
兰州地区位于黄土高原和青藏高原的过渡带,其第三纪地层对研究风尘沉积发育和青藏高原隆升都有着特殊的意义.本研究以0.5 m间距对兰州盆地皋兰山剖面240 m的晚第三纪地层进行古地磁样品采集,古地磁样品共计422个;以50 ℃为间隔从室温至500 ℃用热退磁仪和超导磁力仪完成了皋兰山剖面样品的系统热退磁和剩磁测量.结果表明皋兰山剖面上部地层的实测极性柱出现2个负极性大段中间夹着4个正极性小段,其特点与Gilbert时的典型特征完全一致,并且两端未完全出露的正极性分别与Chron2A.3n和Chron3An.1n相对应,最终确定皋兰山剖面的年代为6~3.5 Ma.由此推断,皋兰山剖面顶部的五泉砾岩形成大约开始于3.5 Ma,五泉砾岩底界年代的确定,为青藏高原的A幕运动提供了地质证据.皋兰山剖面深度602 m处出现由河湖相砂岩向以风成红粘土为主常夹有薄层砂岩的地层转变,通过岩性地层及年代的推断,兰州地区的风尘序列堆积发育的年代至少为7 Ma,与黄土高原风尘序列堆积底界8~7 Ma基本一致,说明了兰州地区与黄土高原在风尘序列堆积过程中具有统一性.  相似文献   

6.
The new data presented here from a 10–24°N segment of the North Mid-Atlantic Ridge show that this segment is the most depleted of the 10–70°N ridge section. They also show the existence of: (1) a geochemical gradient from the 14°N anomaly to 17°10′N; (2) a very depleted mantle source (the lowest Sr isotopic ratios found so far in the North Atlantic); and (3) a geochemical limit located at about 17°10′N without any obvious relation with any structural feature. The 15°20′N fracture zone does not show any relationship with respect to this gradient. The basalts located north of 17°10′N have very homogeneous features, which allow their characteristics to be averaged (i.e., 87Sr/86Sr= 0.70238 ± 0.00004, (Nb/Zr)N = 0.28 ± 0.1) and they are defined as normal mid-ocean ridge basalts. The basaltic glasses located south of 17°10′N present a wide spectrum of isotopic compositions and extended rare earth element patterns (from depleted to enriched). Despite this, they have a constant K/Nb of 233 ± 9 (1sM, n = 18) whereas this ratio is 344 ± 29 north of 17°10′N. These observations illustrate the strong coherence of behaviour between K and Nb (Ta) during the petrogenic processes involved in the generation of these mid-ocean ridge basalts and also their fractionation during previous mantle processes. Possible interpretations of mixing processes are discussed and sources at the ridge segment scale are favoured. However, when looking in detail, local heterogeneities are still common and can even be traced back off-axis to 115 my.

Placed in the context of the North Atlantic Ridge from 10° to 70°N, the Sr isotopic ratios reveal the Azores superstructure (23–50°N), whereas the trace element ratios (La/Sm-Nb/Zr) trace the second-order structures (33–40°N, 42–48°N) superimposed on the superstructure. This study illustrates the complementarity of information given by certain well chosen trace element ratios on the one hand and by isotopic ratios on the other. Since there is evidence of decoupling between isotopic ratios and/or trace element ratios, it introduces the notion of complementary “chemical memory” as recorded by a given type of trace element ratio or a given type of isotopic ratio  相似文献   


7.
We have developed techniques to determine238U,234U and232Th concentrations in seawater by isotope dilution mass spectrometry. U measurements are made using a233U236U double spike to correct for instrumental fractionation. Measurements on uranium standards demonstrate that234U/238U ratios can be measured accurately and reproducibly.234U/238U can be measured routinely to ± 5‰ (2σ) for a sample of 5 × 109 atoms of234U (3 × 10−8 g of total U, 10 ml of seawater). Data acquisition time is 1 hour. The small sample size, high precision and short data acquisition time are superior to-counting techniques.238U is measured to ± 2‰ (2σ) for a sample of 8 × 1012 atoms of238U ( 3 × 10−9 g of U, 1 ml of seawater).232Th is measured to ± 20‰ with 3 × 1011232Th atoms (10−10 g232Th, 1 1 of seawater). This small sample size will greatly facilitate investigation of the232Th concentration in the oceans. Using these techniques, we have measured238U,234U and232Th in vertical profiles of unfiltered, acidified seawater from the Atlantic and238U and234U in vertical profiles from the Pacific. Determinations of234U/238U at depths ranging from 0 to 4900 m in the Atlantic (7°44′N, 40°43′W) and the Pacific (14°41′N, 160°01′W) Oceans are the same within experimental error (± 5‰,2σ). The average of these234U/238U measurements is 144 ± 2‰ (2σ) higher than the equilibrium ratio of 5.472 × 10−5. U concentrations, normalized to 35‰ salinity, range from 3.162 to 3.281 ng/g, a range of 3.8%. The average concentration of the Pacific samples (31°4′N, 159°1′W) is 1% higher than that of the Atlantic (7°44′N, 40°43′W and 31°49′N, 64°6′W).232Th concentrations from an Atlantic profile range from 0.092 to 0.145 pg/g. The observed constancy of the234U/238U ratio is consistent with the predicted range of234U/238U using a simple two-☐ model and the residence time of deep water in the ocean determined from14C. The variation in salinity-normalized U concentrations suggests that U may be much more reactive in the marine environment than previously thought.  相似文献   

8.
We report a comprehensive morphological, gravity and magnetic survey of the oblique- and slow-spreading Reykjanes Ridge near the Iceland mantle plume. The survey extends from 57.9°N to 62.1°N and from the spreading axis to between 30 km (3 Ma) and 100 km (10 Ma) off-axis; it includes 100 km of one arm of a diachronous ‘V-shaped' or ‘chevron' ridge. Observed isochrons are extremely linear and 28° oblique to the spreading normal with no significant offsets. Along-axis there are ubiquitous, en-echelon axial volcanic ridges (AVRs), sub-normal to the spreading direction, with average spacing of 14 km and overlap of about one third of their lengths. Relict AVRs occur off-axis, but are most obvious where there has been least axial faulting, suggesting that elsewhere they are rapidly eroded tectonically. AVRs maintain similar plan views but have reduced heights nearer Iceland. They are flanked by normal faults sub-parallel to the ridge axis, the innermost of which occur slightly closer to the axis towards Iceland, suggesting a gradual reduction of the effective lithospheric thickness there. Generally, the amplitude of faulting decreases towards Iceland. We interpret this pattern of AVRs and faults as the response of the lithosphere to oblique spreading, as suggested by theory and physical modelling. An axial, 10–15 km wide zone of high acoustic backscatter marks the most recent volcanic activity. The zone's width is independent of the presence of a median valley, so axial volcanism is not primarily delimited by median valley walls, but is probably controlled by the lateral distance that the oblique AVRs can propagate into off-axis lithosphere. The mantle Bouguer anomaly (MBA) exhibits little mid- to short-wavelength variation above a few milliGals, and along-axis variations are small compared with other parts of the Mid-Atlantic Ridge. Nevertheless, there are small axial deeps and MBA highs spaced some 130 km along-axis that may represent subdued third-order segment boundaries. They lack coherent off-axis traces and cannot be linked to Oligocene fracture zones on the ridge flanks. The surveyed chevron ridge is morphologically discontinuous, comprising several parallel bands of closely spaced, elevated blocks. These reflect the surrounding tectonic fabric but have higher fault scarps. There is no evidence for off-axis volcanism or greater abundance of seamounts on the chevron. Free-air gravity over it is greater than expected from the observed bathymetry, suggesting compensation via regional rather than pointwise isostasy. Most of the observed variation along the ridge can be ascribed to varying distance from the mantle plume, reflecting changes in mantle temperature and consequently in crustal thickness and lithospheric strength. However, a second-order variation is superimposed. In particular, between 59°30′N and 61°30′N there is a minimum of large-scale faulting and crustal magnetisation, maximum density of seamounts, and maximum axial free-air gravity high. To the north the scale of faulting increases slightly, seamounts are less common, and there is a relative axial free-air low. We interpret the 59°30′N to 61°30′N region as where the latest chevron ridge intersects the Reykjanes Ridge axis, and suggest that the morphological changes that culminate there reflect a local temperature high associated with a transient pulse of high plume output at its apex.  相似文献   

9.
The magnetic stratigraphy of the Lower Cretaceous, pelagic Maiolica limestone has been investigated in three partially correlative sections at Gorgo a Cerbara, Presale and Frontale in the northern Umbrian Apennines of central Italy. The white, well-bedded limestone has a magnetic mineralogy dominated by magnetite. Stable magnetic directions isolated by thermal demagnetization define alternating polarity zones in each section. The magnetozone patterns are distinctive and can be correlated with the geomagnetic reversal history derived from the M-sequence marine magnetic anomalies. The three new sections confirm the polarity sequence for anomalies M0 to M10N. Although the Maiolica is inadequately dated, the correlated anomalies, together with the results of other investigations, allow tentative associations of anomalies M0–M19 with individual stages in the Lower Cretaceous and Upper Tithonian.The investigations also demonstrate the usefulness of magnetic stratigraphy in basin analysis. They yield mean sedimentation rates, confirm that there is a hiatus between the base of the Presale section and the underlying Jurassic formations, and show that a large part of the Frontale section has been cut out by faulting.  相似文献   

10.
We present new 40Ar/39Ar ages and paleomagnetic data for São Miguel island, Azores. Paleomagnetic samples were obtained for 34 flows and one dike; successful mean paleomagnetic directions were obtained for 28 of these 35 sites. 40Ar/39Ar age determinations on 12 flows from the Nordeste complex were attempted successfully: ages obtained are between 0.78 Ma and 0.88 Ma, in contrast to published K–Ar ages of 1 Ma to 4 Ma. Our radiometric ages are consistent with the reverse polarity paleomagnetic field directions, and indicate that the entire exposed part of the Nordeste complex is of a late Matuyama age. The duration of volcanism across São Miguel is significantly less than previously believed, which has important implications for regional melt generation processes, and temporal sampling of the geomagnetic field. Observed stable isotope and trace element trends across the island can be explained, at least in part, by communication between different magma source regions at depth. The 40Ar/39Ar ages indicate that our normal polarity paleomagnetic data sample at least 0.1 Myr (0–0.1 Ma) and up to 0.78 Myr (0–0.78 Ma) of paleosecular variation and our reverse polarity data sample approximately 0.1 Myr (0.78–0.88 Ma) of paleosecular variation. Our results demonstrate that precise radiometric dating of numerous flows sampled is essential to accurate inferences of long-term geomagnetic field behavior. Negative inclination anomalies are observed for both the normal and reverse polarity time-averaged field. Within the data uncertainties, normal and reverse polarity field directions are antipodal, but the reverse polarity field shows a significant deviation from a geocentric axial dipole direction.  相似文献   

11.

Late Cenozoic sediments in the Hexi Corridor, foreland depression of the Qilian Mountain preserved reliable records on the evolution of the Northern Tibetan Plateau. Detailed magnetic polarity dating on a 1150 m section at Wenshushan anticline in the Jiudong Basin, west of Hexi Corridor finds that the ages of the Getanggou Formation, Niugetao Formation and Yumen Conglomerate are >11-8.6 Ma, 8.6-4.5 Ma and 4.5-0.9 Ma respectively. Accompanying sedimentary analysis on the same section suggests that the northern Tibetan Plateau might begin gradual uplift since 8.6-7.6 Ma, earlier than the northeastern Tibetan Plateau but does not suppose that the plateau has reached its maximum elevation at that time. The commencement of the Yumen Conglomerate indicates the intensive tectonic uplift since about 4.5 Ma.

  相似文献   

12.
Hydrothermal activity has been investigated along three different sections of the slow-spreading Mid-Atlantic Ridge (MAR): 11°20′–30°N, 36–38°N and the Reykjanes Ridge, 57°45′–63°06′N. When considered in total, the incidence of venting along these three sections of the MAR compares well with the predictions of a model in which frequency of venting is linearly related to ridge-crest spreading-rate. At the scale of individual study areas, however, departure from the model is observed by up to an order of magnitude. Venting is anomalously rare along the Reykjanes Ridge but anomalously abundant along the MAR 36–38°N. Whilst such variability may be within the error of the linear spreading-rate model, we note that the interplay between magmatic and tectonic processes also differs between the three study areas. In the case of the Reykjanes Ridge we propose that the low incidence of venting reported may reflect a limitation of the sampling/investigative strategy because the style of venting which predominates may not give rise to conventional black-smoker hydrothermal plumes. Along the oblique and broadly segmented MAR 36–38°N, we propose that vigorous hydrothermal venting in broad segment-end non-transform discontinuities may be focussed along deeply penetrating active faults with the requisite heat supply being supported through some combination of along-axis magmatic intrusions and thermal release associated with the serpentinisation of crustal peridotites.  相似文献   

13.
Twenty stations were established in the near-shore regions of South Fujian Shoal (116°10′–119°00 E, 21°20′–24°10′ N) on summer and winter cruises during the period from August 1997 and February to March 1998. The distribution pattern of marine bacterial β-glucosidase activity (β-GlcA) has been investigated by using fluorogenic model substrate (FMS) technique in order to have better understanding of the β-GlcA, as well as its relation to marine bacterial biomass, productivity and environmental factors in Taiwan strait. The results showed that: (1) In summer, the average of β-GlcA at the Southern stations of Taiwan strait was 1.94 nmol/1 h. While in winter, the average of β-GlcA at the Northern stations was 0.86 nmol/1 h and the range of variation (0.34–1.89 nmol/1 h) was much more narrow than that in summer (0.31–8.1 nmol/1 h). (2) According to the carbon conversion factor, the β-GlcA was 0.14 and 0.062 ugc/1 h in summer and winter respectively. These β-GlcA values were higher than the bacterial production of the two seasons respectively. (3) The β-GlcA gradually rises from offshore water to near-shore water. (4) The correlation between the β-GlcA and the bacterial secondary production was not so obvious. (5) The correlation between the section distributions, daily varying of the β-GlcA and the bacterial production was not obvious. (6) In the surface water, the distribution character of free-state β-GlcA from bacteria was equal to that of the total β-GlcA in the whole sea area.  相似文献   

14.
Twenty-four K-Ar radiometric ages are presented for late Cenozoic continental volcanic rocks of the Cordillera Occidental of southernmost Perú (lat. 16° 57′–17° 36′S). Rhyodacitic ignimbrite eruptions began in this transect during the Late Oligocene and continued episodically through the Miocene. The development of andesitic-dacitic strato volcanoes was initiated in the Pliocene and continues to the present.The earliest ignimbrite flows (25.3–22.7 Ma) are intercalated in the upper, coarsely-elastic member of the Moquegua Formation and demonstrate that this sedimentary unit accumulated in a trough, parallel to Andean tectonic trends, largely in the Oligocene. More voluminous ash-flow eruptions prevailed in the Early Miocene (22.8–17.6 Ma) and formed the extensively preserved Huaylillas Formation. This episode was coeval with a major phase of Andean uplift, and the pyroclastics overlie an erosional surface of regional extent incised into a Paleogene volcano-plutonic arc terrain. An age span of 14.2–8.9 Ma (mid-Late Miocene) is indicated for the younger Chuntacala Formation, which again comprises felsic ignimbrite flows, largely restricted to valleys incised into the pre-Huaylillas Formation lithologies, and, at lower altitudes, an extensive aggradational elastic facies. The youngest areally extensive ignimbrites, constituting the Sencca Formation, were extruded during the Late Miocene.In the earliest Pliocene, the ignimbrites were succeeded by more voluminous calcalkaline, intermediate flows which generated numerous large and small stratovolcanoes; these range in age from 5.3 to 1.6 Ma. Present-day, or Holocene, volcanism is restricted to several large stratovolcanoes which had begun their development during the Pleistocene (by 0.7 Ma).The late Oligocene/Early Miocene (ca. 22–23 Ma) reactivation of the volcanic arc coincided with a comparable increase in magmatic activity throughout much of the Cordilleras Occidental and Oriental of the Central Andes.  相似文献   

15.
Polarity zones of sedimentary sections reflect a pattern of alternating polarity of the geomagnetic field recorded by the remanent magnetization of rocks. Unfortunately, this pattern can have been modified by the variable sedimentation rate, which complicates the identification of polarity zones against the reference geomagnetic polarity time scale. To avoid this obstacle, the present paper suggests a transform applied to both the sequence of levels of polarity reversal horizons and the sequence of ages of polarity reversals before computing their cross-correlation. This transform usually reduces the impact of the variable sedimentation rate so that a sequence of more than eight polarity reversal horizons may be identified without biostratigraphic constraints. Numerical experiments involving random processes to simulate both the duration of polarity reversals and the sedimentation rate proved, however, that not all the parts of a hypothetical stratigraphic section spanning the past 165 Ma would be equally suitable for dating by magnetic polarity stratigraphy. A program performing both the compilation of polarity zones from the directions of the primary magnetization sampled along a section and subsequent identification of these polarity zones is made available online.  相似文献   

16.
The ages of polarity chrons in previous M-sequence magnetic polarity time scales were interpolated using basal sediment ages in suitably drilled DSDP holes. This method is subject to several sources of error, including often large paleontological age ranges. Magnetostratigraphic results have now tied the Early Cretaceous and Late Jurassic paleontological stage boundaries to the M-sequence of magnetic polarity. The numeric ages of most of these boundaries are inadequately known and some have been determined largely by intuition. An examination of relevant data suggests that 114 Ma, 136 Ma and 146 Ma are optimum estimates for the ages of the Aptian/Barremian, Cretaceous/Jurassic and Kimmeridgian/Oxfordian stage boundaries, respectively. Each of these boundaries has a good correlation to the M-sequence of magnetic reversals. The magnetostratigraphic tie-level ages are linearly related to the spreading distance and have been used to calculate a new magnetic polarity time scale for the Early Cretaceous and Late Jurassic. All stage boundaries in this time interval were correlated by magnetic stratigraphy to the proposed new time scale which was then used to estimate their numeric ages. These are, with the approximate relative errors of placement within the M-sequence:The absolute errors of these interpolated stage boundary ages depend on the accuracy of the tie-level ages.  相似文献   

17.
The study area is situated along the Zolotica river in NW Russia, located within the Kola–Dvyna Rift System in the Baltic Shield that developed during Meso and Neoproterozoic times. A 9-m thick section made up of shallow marine sediments of Upper Ediacaran age was sampled in this locality. Two volcaniclastic levels from the middle part of the section yielded an age of 556 Ma. (U/Pb SHRIMP-II on zircons). Two magnetic components were successfully isolated, component A (Decl = 157.1, Incl = 68.0, 95 = 1.9°, N = 575 in situ) carried by magnetite and component B (Decl = 120.3, Incl = − 31.7, 95 = 3.9°, N = 57, bedding corrected), carried by haematite. While component A is thought to represent a younger overprint direction, the in situ direction for component B on the other hand, is dissimilar to any expected younger direction and is considered to be primary magnetisation in origin, acquired during or soon after deposition of the sediments in the Late Ediacaran. The corresponding palaeomagnetic pole for component A in situ is located at Lon = 55.4°E, Lat = 31°N, A95 = 2.7° and for component B at Lon = 110°E, Lat = 28.3°S, A95 = 3.8°, N = 57. Combined with other palaeomagnetic poles of the same tectonostratigraphic unit an alternative apparent polar wander path for the Late Proterozoic–Early Palaeozoic of Baltica is proposed. Such an alternative path shows that after the mid Cryogenian (750 Ma), the poles that were situated over South Africa (p.d.c.) moved to the east until they reached Australia during the Late Ediacaran (555 Ma) where they remained approximately stationary until the beginning of the Cambrian (545 Ma). Finally, they moved to the northwest until they reached the Arabian Peninsula in the Early Ordovician. Palaeolatitudes indicate that Baltica situated near the equator from the Cryogenian through to the Ediacaran moving gradually to the south at c. 1 cm/yr. During the Late Early Ediacaran, the plate suddenly began to drift northward at c. 8 cm/yr and in the boundary with the Cambrian it was positioned in low to intermediate latitudes. Finally, Baltica began to move back to the south at c. 13 cm/yr until in the Early Ordovician, reaching intermediate to high southern latitudes.  相似文献   

18.
Two Red Clay profiles near Xi’an and Xifeng were investigated in an attempt to determine magnetostratigraphic and palaeoclimatic records. The results show that aeolian dust accumulation and the related East Asia palaeomonsoon system had begun by 6.5 Ma, and it is deduced that the Tibetan Plateau had reached a significant elevation at that time. The late Tertiary palaeoclimatic history of the Red Clay as reflected by magnetic susceptibility is reconstructed during the period of 6.5–2.5 Ma. Stepwise increase in susceptibility of aeolian dust accumulation appears to have a close correlation to the uplift processes of the Tibetan Plateau. The remarkable increase of aeolian dust accumulation at 3.2 Ma appears to be due to the influence of global ice volume on the East Asia monsoon. Palaeomonsoon variation during the late Tertiary as recorded in the Red Clay sequences from the Chinese Loess Plateau can be regarded as the product of a number of interacting factors, such as uplift of the Tibetan Plateau, solar radiation, global ice volume, etc. Project supported by the National Natural Science Foundation of China and the Foundation of Xi’an Laboratory of Loess and Quaternary Geology, Chinese Academy of Sciences.  相似文献   

19.
Detailed paleomagnetic data from the Wairoa Syncline, a middle Miocene to the present forearc basin on the East Coast of the North Island, New Zealand, show that the rate of clockwise rotation for the last 5 Ma has been 7–8°/Ma of which less than 1.5°/Ma can be explained by apparent polar wander due to motion of the Australian or Pacific plates. This rotation is similar to a present-day rate of 7°/Ma determined from geodetic data. Between 5 and 20 Ma ago the rate of tectonic rotation is poorly determined and may be between 0° and 2°/Ma.

The change in the rate of rotation of the Wairoa Syncline around 5 Ma is probably related to a markedly different tectonic style in the New Zealand region within the last 5 Ma, associated with a change in position of the Euler poles of rotation for the Pacific-Australian plates.  相似文献   


20.
New U–Pb age-data from zircons separated from a Northland ophiolite gabbro yield a mean 206Pb/238U age of 31.6 ± 0.2 Ma, providing support for a recently determined 28.3 ± 0.2 Ma SHRIMP age of an associated plagiogranite and  29–26 Ma 40Ar/39Ar ages (n = 9) of basalts of the ophiolite. Elsewhere, Miocene arc-related calc-alkaline andesite dikes which intrude the ophiolitic rocks contain zircons which yield mean 206Pb/238U ages of 20.1 ± 0.2 and 19.8 ± 0.2 Ma. The ophiolite gabbro and the andesites both contain rare inherited zircons ranging from 122–104 Ma. The Early Cretaceous zircons in the arc andesites are interpreted as xenocrysts from the Mt. Camel basement terrane through which magmas of the Northland Miocene arc lavas erupted. The inherited zircons in the ophiolite gabbros suggest that a small fraction of this basement was introduced into the suboceanic mantle by subduction and mixed with mantle melts during ophiolite formation.

We postulate that the tholeiitic suite of the ophiolite represents the crustal segment of SSZ lithosphere (SSZL) generated in the southern South Fiji Basin (SFB) at a northeast-dipping subduction zone that was initiated at about 35 Ma. The subduction zone nucleated along a pre-existing transform boundary separating circa 45–20 Ma oceanic lithosphere to the north and west of the Northland Peninsula from nascent back arc basin lithosphere of the SFB. Construction of the SSZL propagated southward along the transform boundary as the SFB continued to unzip to the southeast. After subduction of a large portion of oceanic lithosphere by about 26 Ma and collision of the SSZL with New Zealand, compression between the Australian Plate and the Pacific Plate was taken up along a new southwest-dipping subduction zone behind the SSZL. Renewed volcanism began in the oceanic forearc at 25 Ma producing boninitic-like, SSZ and within-plate alkalic and calc-alkaline rocks. Rocks of these types temporally overlap ophiolite emplacement and subsequent Miocene continental arc construction.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号