首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray absorption spectroscopy using synchrotron radiation has been applied to the investigation of the coordination geometries around Y, Zr and Nb atoms in metamict zircon, gadolinite, fergusonite, euxenite and samarskite. EXAFS and XANES spectra of their crystalline counterparts and synthetic compounds including ZrO2, Y2O3, YNbTiO6, YNbO4, LiNbO3, and NiNb2O6 were also measured for comparison. Metamict zircon shows a significant decrease in its Zr-O bond distances accompanying an increase in distortion of the Zr-O coordination polyhedra as compared with crystalline zircon. On the contrary, the average Nb-O bond distances and the symmetry of the coordination polyhedra around the Nb atoms in metamict euxenite and samarskite resemble those in the crystalline euxenite. Compared with crystalline fergusonite, a decrease in the distortion of the Nb-O octahedra is observed in metamict fergusonite. The structures of the second nearest neighbors (the metal-metal interactions) are largely disrupted in the metamict specimens except for metamict zircon and samarskite with high trivalent iron concentration. Nb in metamict samarskite is in octahedral coordination by oxygen and is similar to that in euxenite.  相似文献   

2.
Ti 2p X-ray absorption spectra for a series of minerals have been measured. Crystal field multiplet calculations can explain the spectral shape. The asymmetry of the e g , peak is shown to be related to distortions of the Ti IV octahedron. It is found, theoretically as well as experimentally, that the absorption spectra are more sensitive to tetragonal distortions than to trigonal distortions. A number of silicate minerals and metamict minerals containing titanium are measured and Ti III has not been observed in any of these minerals. A comparison is made to the 1s X-ray absorption, and the potential of both for the study of minerals is discussed.  相似文献   

3.
Gadolinite, REE2FeBe2Si2O10, is commonly metamict. 57Fe Mössbauer annealing studies of fully metamict gadolinite from Ytterby, Sweden, have been completed in argon atmosphere from 873 to 1473 K. This technique has rarely been employed in studies of metamict minerals. Changes in the experimental parameters of Mössbauer spectra are sensitive indicators of the thermal recrystallization process of metamict gadolinite and revealed two stages of the structural recovery: a major stage from 873 to 1073 K and a slower recovery stage from 1133 to 1473 K. These observations are confirmed by X-ray powder diffraction. In relation to the first stage, the exponential behaviour of the changes in the Mössbauer parameters can be used for deriving the activation energy E a of the recrystallization process. The calculated value E a =1.97 eV in argon atmosphere explains the common occurrence of gadolinite in the fully or partially metamict state. Results of Mössbauer spectroscopy suggest that the recrystallization of metamict gadolinite is a displacive transition that involves rotation and translation of SiO4 and BeO4 to their normal positions associated with removal of OH groups from the structure.  相似文献   

4.
The Baerzhe alkaline granite pluton hosts one of the largest rare metal (Zr, rare earth elements, and Nb) deposits in Asia. It contains a geological resource of about 100 Mt at 1.84 % ZrO2, 0.30 % Ce2O3, and 0.26 % Nb2O5. Zirconium, rare earth elements (REE), and Nb are primarily hosted by zircon, yttroceberysite, fergusonite, ferrocolumbite, and pyrochlore. Three types of zircon can be identified in the deposit: magmatic, metamict, and hydrothermal. Primary magmatic zircon grains occur in the barren hypersolvus granite and are commonly prismatic, with oscillatory zones and abundant melt and mineral inclusions. The occurrence of aegirine and fluorite in the recrystallized melt inclusions hosted in the magmatic zircon indicates that the parental magma of the Baerzhe pluton is alkali- and F-rich. Metamict zircon grains occur in the mineralized subsolvus granite and are commonly prismatic and murky with cracks, pores, and mineral inclusions. They commonly show dissolution textures, indicating a magmatic origin with later metamictization due to deuteric hydrothermal alteration. Hydrothermal zircon grains occur in mineralized subsolvus granite and are dipyramidal with quartz inclusions, with murky CL images. They have 608 to 2,502 ppm light REE and 787 to 2,521 ppm Nb, much higher than magmatic zircon. The texture and composition of the three types of zircon indicate that they experienced remobilization and recrystallization during the transition from a magmatic to a hydrothermal system. Large amounts of Zr, REE, and Nb were enriched and precipitated during the transitional period to form the giant low-grade Baerzhe Zr–REE–Nb deposit.  相似文献   

5.
Most rare-metal granites in South China host major W deposits with few or without Ta–Nb mineralization. However, the Yashan granitic pluton, located in the Yichun area of western Jiangxi province, South China, hosts a major Nb–Ta deposit with minor W mineralization. It is thus important for understanding the diversity of W and Nb–Ta mineralization associated with rare-metal granites. The Yashan pluton consists of multi-stage intrusive units, including the protolithionite (-muscovite) granite, Li-mica granite and topaz–lepidolite granite from the early to late stages. Bulk-rock REE contents and La/Yb ratios decrease from protolithionite granite to Li-mica granite to topaz–lepidolite granite, suggesting the dominant plagioclase fractionation. This variation, together with increasing Li, Rb, Cs and Ta but decreasing Nb/Ta and Zr/Hf ratios, is consistent with the magmatic evolution. In the Yashan pluton, micas are protolithionite, muscovite, Li-mica and lepidolite, and zircons show wide concentration ranges of ZrO2, HfO2, UO2, ThO2, Y2O3 and P2O5. Compositional variations of minerals, such as increasing F, Rb and Li in mica and increasing Hf, U and P in zircon are also in concert with the magmatic evolution from protolithionite granite to Li-mica granite to topaz–lepidolite granite. The most evolved topaz–lepidolite granite has the highest bulk-rock Li, Rb, Cs, F and P contents, consistent with the highest contents of these elements and the lowest Nb/Ta ratio in mica and the lowest Zr/Hf ratio in zircon. Ta–Nb enrichment was closely related to the enrichment of volatile elements (i.e. Li, F and P) in the melt during magmatic evolution, which raised the proportion of non-bridging oxygens (NBOs) in the melt. The rims of zoned micas in the Li-mica and topaz–lepidolite granites contain lower Rb, Cs, Nb and Ta and much lower F and W than the cores and/or mantles, indicating an exotic aqueous fluid during hydrothermal evolution. Some columbite-group minerals may have formed from exotic aqueous fluids which were originally depleted in F, Rb, Cs, Nb, Ta and W, but such fluids were not responsible for Ta–Nb enrichment in the Yashan granite. The interaction of hydrothermal fluids with previously existing micas may have played an important role in leaching, concentrating and transporting W, Fe and Ti. Ta–Nb enrichment was associated with highly evolved magmas, but W mineralization is closely related to hydrothermal fluid. Thus these magmatic and hydrothermal processes explain the diversity of W and Ta–Nb mineralizations in the rare-metal granites.  相似文献   

6.
佛冈高分异I型花岗岩的成因:来自Nb-Ta-Zr-Hf等元素的制约   总被引:12,自引:8,他引:4  
陈璟元  杨进辉 《岩石学报》2015,31(3):846-854
华南南岭地区发育有大面积的与钨锡成矿相关的侏罗纪花岗岩,然而其中有些花岗岩的成因类型却难以确定。本文以佛冈岩体为例,结合前人已发表数据,对佛冈花岗岩体中Nb、Ta、Zr和Hf等元素的迁移特征及其原理进行探讨,并对佛冈花岗岩的成因类型进行了厘定。随着分异程度增加,佛冈花岗岩Nb和Ta含量增加,Nb/Ta(3.6~15.3)和Zr/Hf(17.3~38.9)比值降低并发生分异。随着Zr含量的降低,佛冈花岗岩的Zr/Hf比值降低,这一特征表明锆石的分离结晶作用使得佛冈花岗岩的Zr/Hf比值分异。Nb/Ta比值分异可能与角闪石和黑云母的分离结晶作用有关。随着Nb/Ta比值降低,Y/Ho比值增加,这一特征表明佛冈花岗岩Nb/Ta比值的分异也和岩浆演化后期的流体有关。佛冈花岗岩不含原生的富铝矿物,为准铝质到弱过铝质岩石。随着分异程度增加,佛冈花岗岩P2O5含量降低,表明它不是S型花岗岩。随着Y/Ho比值增加和Nb/Ta和Zr/Hf比值降低,佛岗花岗岩Ga/Al和Fe OT/Mg O比值增加,从典型I型花岗岩特征演化到类似A型花岗岩的地球化学特征。因此,我们认为佛冈花岗岩不是A型花岗岩而是高分异的I型花岗岩。区域上与成矿相关的流体和花岗质岩浆的相互作用和分离结晶作用,使得华南南岭地区的花岗岩地球化学特征复杂,所以其成因类型也变的难以确定。  相似文献   

7.
Field evidence from the western Tianshan subduction complex in northwestern China indicates that the high field strength elements Ti, Nb, and Ta were mobilized and thereby fractionated from Zr and Hf during the dehydration process that transformed blueschist into eclogite. Both a segregation with a depletion halo, thought to represent initial mobilization during dehydration, and a transport vein, indicative of the long distance transport were investigated. In each case, centimeter-sized rutile grains grew as needle-like crystals in the segregation and as prismatic crystals in the vein. Within the host rock of the segregation, the Ti contents of garnet and omphacite, the modal abundances of rutile and titanite and the bulk rock Ti, Nb, and Ta contents decrease towards the segregation. These observations are consistent with transport of Ti, Nb, and Ta from the host rock into the segregation. Textural and geochemical data for the eclogite-facies vein minerals indicate that Ti-Nb-Ta-rich fluids were transported over long-distances (at minimum meter-scale) during fracture-controlled fluid flow. Complex forming ligands (e.g., Na-Si-Al polymers and F) may have enhanced the solubility of Ti, Nb, and Ta in the fluid. Changes in fluid composition (e.g., XCO2) may both precipitate rutile and fractionate Ti, Nb, and Ta from LILE and REE.  相似文献   

8.
The fission track technique was used not only to determine the U distribution, but indirectly, to locate the host minerals of other incompatible elements such as P, Ti, Y, Zr and Nb in spilitic pillow lavas from SW England. The majority of U was introduced early in the alteration process probably due to interaction with sea-water. At a later stage in the process, these elements, some previously considered to be relatively immobile during low-grade alteration, were mobilised and subsequently redeposited in stable secondary phases. The hydrothermal fluid responsible for mobility was rich in CO2 and H2O. Carbonate complexes were the most likely mobile species.  相似文献   

9.
山西省石墙区铝土矿地质与地球化学特征研究   总被引:2,自引:0,他引:2  
孙思磊 《地质与勘探》2012,48(3):487-501
[摘 要]山西省原平市石墙区铝土矿属于典型的喀斯特型铝土矿。含矿岩系自下而上包括铁质粘土层、铝土矿层、粘土层,且含矿岩系一般包含两个明显的沉积旋回。矿体主体呈层状、似层状产出,矿石结构以隐晶质结构为主,局部出现碎屑和豆鲕粒结构。矿石构造大都为块状构造。矿物学分析显示,硬水铝石、针铁矿、锐钛矿、高岭石是主要的组成矿物,另外还含有石英、伊利石、绿泥石等矿物。地球化学分析显示,主量元素主要包括Al2O3、SiO2、Fe2O3、H2O+及TiO2,微量元素中碱性和碱土元素Li、Sr、Be、Cs、Ba 及酸土元素Zr、Hf、Nb、Ta、W 均表现为明显富集,且Zr 和Hf 之间以及Nb 和Ta 之间具有高度的相关性。地球化学指标Zr/ Hf、Nb/ Ta 以及Eu/ Eu*- TiO2/ Al2O3图解显示,底板碳酸盐岩是山西省原平市石墙区铝土矿的重要源岩。  相似文献   

10.
The Dajia Salento-type bauxite deposit in western Guangxi is hosted within the Quaternary ferrallitic soil profile, and it formed via breaking up, weathering and oxidizing of Permian bauxite orebodies occurring as a semi-continuous layer in the upper Permian. Mineralogical analyses reveal that diaspore, hematite and kaolinite are the major minerals in bauxite ores with small amounts of anatase, chamosite, gibbsite, goethite, illite, zircon, quartz and pyrite. The ore texture and mineral assemblage reveal that the depositional/diagenetic environment of the Dajia bauxite was much close to phreatic environment. Both the ore texture and the morphology of zircon grains also indicate that most of the bauxitic soils were transported a short distance. Diaspore is suggested to be non-metamorphic in origin and mainly formed in a reducing condition of diagenetic environment, while kaolinite is the product of the in situ epigenetic replacement of alumina in diaspore by dissolved silica. Geochemical analyses indicate that Al2O3, Fe2O3, SiO2 and TiO2 are the main components of the bauxite ores and trace elements such as Zr, Hf, Nb, Ta, Th and U were enriched during the bauxitization process. Simultaneously, Zr vs. Hf and Nb vs. Ta show a high correlation. Geochemical indices such as Zr/Hf, Nb/Ta and Eu/Eu* (among others) denote that the magmatic rocks related to the Emeishan plume in western Guangxi and the carbonates in the underlying Maokou Formation provided the main sources of material for the bauxite ores.  相似文献   

11.
Solid bituminous substances (SBS) are common components of the late hydrothermal mineral assemblages of peralkaline pegmatites. SBS are formed in a reductive setting as a result of progressive sorption of minor carbon-bearing molecules (CO, CO2, CH4, C2H6, C2H4, etc.), their polymerization, transformation into aromatic compounds (reformation), and selective oxidation on microporous zeolite-like Ti-, Nb-, and Zrsilicates serving as sorbents and catalysts. The oxygen-bearing aromatic compounds with hydrophile functional groups (−OH, −C=O, −COOH, −COO) act as complexing agents with respect to Th, REE, U, Zr, Ti, Nb, Ba, Sr, Ca, resulting in transfer of these bitumenophile elements under low-temperature hydrothermal conditions in the form of water-soluble macroassociates of the micelle type. Th, REE, and to a lesser extent, U, Zr, Ti, and Nb concentrate at the late stage of the hydrothermal process as microphases impregnating SBS or macroscopic segregations of Th and REE minerals. At the final stage, homogeneous SBS break down into organic (partly together with Ca, Sr, Ba, and Pb) and mineral (with Th, Ln, Y, Ti, Nb, Ca, Na, K, Si) microphases.  相似文献   

12.
13.
Samples of allanite and gadolinite with a range of alpha-recoil damage 0.1 to 3.0 dpa, were annealed in Ar and analysed by X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), infrared (IR) and differential thermal analysis (DTA). Samples that were fully metamict, and also amorphous regions of partially metamict samples, annealed according to the Ostwald step rule. After annealing, X-ray crystalline material still showed significantly damaged regions under transmission electron microscopy (TEM). Hydrothermal annealing of fully metamict gadolinite at 710° C and PH2O=2.3 kbar resulted in direct recrystallization. Direct recrystallization, by heterogeneous nucleation, occurred also in samples with significant amount of relict crystalline material. Of two exotherms observed on DTA curves for fully metamict gadolinite only one, at 840° C, resulted from recrystallization. The second exotherm at 895° C was related to the transformation of a transitional, high-temperature γ-phase into gadolinite. The activation energy of recrystallization of partially metamict gadolinite is 0.58 eV. The same annealing path for fully metamict gadolinite and for the amorphous component of partially metamict allanite is consistent with the model of an aperiodic random network structure of metamict minerals.  相似文献   

14.
X-ray photoelectron and absorption spectra have been obtained for natural specimens of cubanite and compared with the corresponding spectra for chalcopyrite. Synchrotron X-ray photoelectron spectra of surfaces prepared by fracture under ultra-high vacuum revealed some clear differences for the two minerals, most notably those reflecting their different structures. In particular, the concentration of the low binding energy S species formed at cubanite fracture surfaces was approximately double that produced at chalcopyrite surfaces. However, the core electron binding energies for the two S environments in cubanite were not significantly different, and were similar to the corresponding values for the single environment in chalcopyrite. High binding energy features in the S 2p and Cu 2p spectra were not related to surface species produced either by the fracture or by oxidation, and most probably arose from energy loss due to inter-band excitation. Differences relating to the Fe electronic environments were detectable, but were smaller than expected from some of the observed physical properties and Mössbauer spectroscopic parameters for the two minerals. X-ray absorption and photoelectron spectra together with the calculated densities of states for cubanite confirmed an oxidation state of CuI in the mineral. It was concluded that the best formal oxidation state representation for cubanite is CuI(Fe2)VS 3 ?II .  相似文献   

15.
《Chemical Geology》2003,193(1-2):109-125
Ilmenite separates from the floor (LS), roof (UBS), and wall (MBS) sequences of the Skaergaard Intrusion were analyzed for major and trace elements using DCP-AES and ICP-MS techniques. In all three sequences, FeO progressively increases, and MgO and Al2O3 progressively decrease with differentiation. Although trace element abundances are, in general, higher in UBS ilmenite than in MBS and LS ilmenite, all three sequences have similar trends for trace element abundance vs. crystallization. Ba, Cs, Rb, Sr, Th, U, Y, and the REEs are excluded elements in ilmenite, and remained at low abundances during differentiation. Cr, Ni, Sc, and V are included elements in ilmenite and other mafic phases, and decreased during differentiation. V contents in ilmenite, however, do not decrease significantly until the upper part of the middle zone, suggesting that magnetite did not begin to affect the magma differentiation trend until much later than when it first appears in the intrusion. Hf, Nb, Ta, and Zr, which are strongly excluded elements in silicates, are included elements in ilmenite. The element ratios Zr/Hf, Y/Ho, Nb/Ta, and U/Th are relatively constant in Skaergaard ilmenite from different parts of the intrusion, suggesting that fluid transport did not significantly effect these elements during differentiation or post-solidification cooling. Calculated partition coefficients for ilmenite in the Skaergaard Intrusion are similar to those reported from previous studies of lunar and terrestrial basalts and kimberlites, and for most elements are significantly lower than those reported for ilmenite in rhyolitic magma. Similar Di's for Zr, Hf, Nb, and Ta suggest that ilmenite crystallization did not significantly affect Zr/Nb or Hf/Ta in the Skaergaard magma, but the ratios of Zr, Hf, Nb, or Ta to other high field strength elements, such as Th, U, Y, or the REEs, may have been altered by ilmenite fractionation.  相似文献   

16.
The paper discusses the mineralogy and geochemistry of altered rocks associated with calcite and dolomite–ankerite carbonatites of the Onguren dyke–vein complex in the Western Transbaikal Region. The alteration processes in the Early Proterozoic metamorphic complex and synmetamorphic granite hosting carbonatite are areal microclinization and riebeckitization; carbonates, phlogopite, apatite, and aegirine occur in the near-contact zones of the dolomite–ankerite carbonatite veins; and silicification is displayed within separated zones adjacent to the veins. In aluminosilicate rocks, microclinization was accompanied by an increasing content of K, Fe3+, Ti, Nb (up to 460 ppm), Th, Cu, and REE; Na, Ti, Fe3+, Mg, Nb (up to 1500 ppm), Zr (up to 2800 ppm), Ta, Th, Hf, and REE accumulated in the inner zone of the riebeckitization column. High contents of Ln Ce (up to 11200 ppm), U (23 ppm), Sr (up to 7000 ppm), Li (up to 400 ppm), Zn (up to 600 ppm), and Th (up to 700 ppm) are typical of apatite–phlogopite–riebeckite altered rock; silicified rock contains up to (ppm): 2000 Th, 20 U, 13000 Ln Ce, and 5000 Ва. Ilmenite and later rutile are the major Nb carriers in alkali altered rocks. These minerals contain up to 2 and 7 wt % Nb2O5, respectively. In addition, ferrocolumbite and aeschynite-(Ce) occur in microcline and riebeckite altered rocks. Fluorapatite containing up to 2.7 wt % (Ln Ce)2O3, monazite-(Ce), cerite-(Ce), ferriallanite-(Ce), and aeschynite-(Ce) are the REE carriers in riebeckite altered rock. Bastnäsite-(Ce), rhabdophane-group minerals, and xenotime-(Y) are typical of silicified rock. Thorite, monazite-(Ce), and rhabdophane-group minerals are the Th carriers.  相似文献   

17.
The high field strength elements (HFSE: Zr, Hf, Nb, Ta, and W) are an important group of chemical tracers that are increasingly used to investigate magmatic differentiation processes. Successful modeling of these processes requires the availability of accurate mineral-melt partition coefficients (D). To date, these have largely been determined by ion microprobe or laser ablation-ICP-MS analyses of the run products of high-pressure, high-temperature experiments. Since HFSE are (highly) incompatible, relatively immobile, high-charge, and difficult to ionize, these experiments and their analysis are challenging. Here we explore whether high-precision analyses of natural mineral-melt systems can provide additional constraints on HFSE partitioning.The HFSE concentrations in natural garnet and amphibole and their alkaline host melt from Kakanui, New Zealand are determined with high precision isotope dilution on a multi-collector-ICP-MS. Major and trace element compositions combined with Lu-Hf isotopic systematics and detailed petrographic sample analysis are used to assess mineral-melt equilibrium and to provide context for the HFSE D measurements. The whole-rock nephelinite, ∼1 mm sized amphiboles in the nephelinite, and garnet megacrysts have similar initial Hf isotope ratios with a mean initial 176Hf/177Hf(34 Ma) = 0.282900 ± 0.000026 (2σ). In contrast, the amphibole megacrysts are isotopically distinct (176Hf/177Hf(34 Ma) = 0.282830 ± 0.000011). Rare earth element D values for garnet megacryst-nephelinite melt and ∼1 mm amphibole-nephelinite melt plotted as a function of ionic radii show classic near-parabolic trends that are in excellent agreement with crystal lattice-strain models. These observations are consistent with equilibrium between the whole-rock nephelinite, the ∼1 mm amphibole grains within the nephelinite and the garnet megacrysts.High-precision isotope dilution results for Zr and Hf in garnet (DZr = 0.220 ± 0.007 and DHf = 0.216 ± 0.005 [2σ]), and for all HFSE in amphibole are consistent with previous experimental findings. However, our measurements for Nb and Ta in garnet (DNb = 0.0007 ± 0.0001 and DTa = 0.0011 ± 0.0006 [2σ]) show that conventional methods may overestimate Nb and Ta concentrations, thereby overestimating both Nb and Ta absolute D values for garnet by up to 3 orders of magnitude and underestimating DNb/DTa by greater than a factor of 100. As a consequence, the role of residual garnet in imposing Nb/Ta fractionation may be less important than previously thought. Moreover, garnet DHf/DW = 17 and DNb/DZr = 0.003 imply fractionation of Hf from W and Nb from Zr upon garnet crystallization, which may have influenced short-lived 182Hf-182W and 92Nb-92Zr isotopic systems in Hadean time.  相似文献   

18.
The chemical composition of the clay fraction separated from the carbonate rock of the north-eastern Baltoscandian Basin was analysed and interpreted. Increased contents of Rb, Zr, Nb, Ti and their Al2O3-normalised ratios were detected at several stratigraphical levels in the geological sections of the Middle Ordovician–Upper Llandovery. In the weathering areas, Rb, Zr, Nb, Ti and Al are sensitive to moist conditions in the clay-forming process. In the sedimentary basin, the contents of these elements in clay are preserved and allow to infer past climates. Humid events occurred in the Dapingian, Sandbian, early Katian and Hirnantian (Ordovician) and in the Middle and Late Llandovery (Silurian). Juxtaposition with the sea-level curve shows correlation of five humid climate intervals with eustatic transgressions, suggesting global causes for these climatic changes. The warm and humid events, lasting one to two million years, occurred as climaxes between ice ages. An exceptional humid event within the Hirnantian glacial time occurs during mid-Hirnantian transgression, i.e. at a time of relative warming, as well.  相似文献   

19.
Igneous rocks of Nusab El Balgum are formed as an elongated complex mass covering an area of about 4 km?×?12.5 km (50 km2), in the NNE-SSW direction of the Tarfawi-Qena-South Sinai trend, which is a branch of the Trans-African shear zone at the intersection with the Kalabsha fault, which is a branch from Guinean-Nubian lineaments. The continuous reactivation of these two major weakness zones from the late Triassic to recent times has created many generations of the magma batches. The exposed granitic rocks of these batches at Nusab El Balgum were represented by the fresh peralkaline granite (youngest) and hydrothermally altered granites (oldest). The fresh peralkaline granite takes the form of a small stock composed essentially of perthites, quartz, sodic pyroxenes, amphiboles (secondary), and rare albite according to the proportion of presence, respectively. The accessory minerals are zircon, bastnaesite-(Ce), columbite-(Fe), magnetite, barite, and sphalerite. The geochemical study indicated that this granite is peralkaline, ferroan, A-type (specifically belongs to the A1-subgroup), anorogeny, emplaced in a within-plate, and crystallized at relatively shallow depth from the alkali basaltic magma similar to the OIBs. Furthermore, it is enriched in the HFSE (e.g., Th, U, Nb, REE, and Zr). The hydrothermally altered granites are formed as an incomplete ring shape and a small stock. They were formed during the late Cretaceous age and were altered due to the hydrothermal solutions from the continuous reactivation affected weakness zones and the new magmatic batches. The hydrothermally altered granites are extremely rich in HFSE found in the accessory minerals such as zircon (different in shape, size, and contains inclusions of bastnaesite and columbite), columbite-(Fe&Mn), rare gittinsite, pyrochlore minerals (ceriopyrochlore and plumbopyrochlore) carlosbarbosaite, changbaiite, bastnaesite-(Ce), monazite-(Ce), stetindite, cerianite-(Ce), thorite, and uranothorite. These rocks were subjected to many highly superimposed hydrothermal alteration types, including propylitic, sericitic, potassic, silicification, argillic, and Fe-Mn oxy-hydroxides. The hydrothermal solutions with low temperatures and containing F1? and CO32?, PO43? and H2O caused redistribution; transportation and redeposition of the HFSE in these rocks, in addition to the clay minerals and K-metasomatism, were formed. The relations between the silicification index (SI?=?SiO2/(SiO2 + Al2O3) and Zr, Nb, Th, U, LREE, and HREE are positive but they become negative with the K-metasomatism.  相似文献   

20.
Fracture surfaces of a natural carrollite specimen have been characterised by synchrotron and conventional X-ray photoelectron spectroscopy and near-edge X-ray absorption spectroscopy. For the synchrotron X-ray measurements, the mineral surfaces were prepared under clean ultra high vacuum and were unoxidised. The characterisation was undertaken primarily to establish unequivocally the oxidation state of the Cu in the mineral, but also to obtain information on the electronic environments of the Co and S, and on the surface species. Experimental and simulated Cu L2,3-edge absorption spectra confirmed an oxidation state of CuI, while Co 2p photoelectron and Co L2,3 absorption spectra were largely consistent with the CoIII established previously by nuclear magnetic resonance spectroscopy. S 2p photoelectron spectra provided no evidence for S to be present in the bulk in more than one state, and were consistent with an oxidation state slightly less negative than S-II. Therefore it was concluded that carrollite can be best represented by CuICoIII2(S4)-VII. The CuI oxidation state is in agreement with that expected for Cu tetrahedrally coordinated by S, but is in disagreement with the CuII deduced previously from some magnetic, magnetic resonance and Cu L-edge X-ray absorption spectroscopic measurements. A significant concentration of S species with core electron binding energies both lower and higher than the bulk value were formed at fracture surfaces, and these entities were assigned to monomeric and oligomeric surface S species. The density of Cu d states calculated for carrollite differed from that previously reported but was consistent with the observed Cu L3 X-ray absorption spectrum. The initial oxidation of carrollite in air under ambient conditions was confirmed to be congruent, unlike the incongruent reaction undergone by a number of non-thiospinel sulfide minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号