首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Planetary and Space Science》2007,55(10):1456-1463
A new method for the meteoric dust detection in the upper atmosphere based on the polarimetric observations of the twilight sky is proposed. Polarization measurements are effective for detection of the meteoric dust scattering on the background consisting basically of troposphere multiple scattering. The method is based on the observed and explained polarization properties of the sky background during different stages of twilight. It is used to detect the mesosphere dust after the Leonids maximum in 2002, estimate its altitude range and to investigate its evolution—slow decrease of the altitude. The polarization method takes into account the multiple scattering and sufficient contribution of moonlight scattering background and turns out to be more sensitive than existing analogs used in the present time.  相似文献   

2.
COSMOS 1009 rocket was launched on 19 May 1978 into an orbit with initial perigee height 150 km and apogee 1100 km: its lifetime was only 17 days. The orbit has been determined daily during the final 14 days of its life, using the RAE orbit refinement program PROP6,with about 1100 observations supplied by NORAD. An average accuracy of about 60 m, radial and cross-track, was achieved.The orbits were analysed to reveal three features of the upper atmosphere at heights between 125 and 175 km. From the decrease in perigee height, five values of density scale height, accurate to ±4%, were obtained. The first three were within 10% of those from CIRA 1972; the fourth, after a magnetic storm, was higher than expected; the fifth gave evidence of the decrease in drag coefficient at heights below 130 km.Atmospheric oblateness produced a change of 4° in perigee position during the last four days of the life. Analysis showed that the ellipticity of the upper atmosphere was approximately equal to that of the Earth, f, for the first two of the four days, and about 12f in the last two.The orbital inclination decreased during the 14 days by about 50 times its standard deviation, and the observed variation was analysed to determine zonal winds at heights of 150–160 km at latitudes near 47° north. The zonal wind was very weak (0±30 m/s) for 23–28 May at local times near 03h; and 90±30 m/s east-to-west for 29 May to 4 June at local times near 01 h.  相似文献   

3.
《Planetary and Space Science》2007,55(13):1959-1963
It is possible to determine the mean molecular mass of a planetary atmosphere using pressure and temperature measurements made by an entry probe descending at terminal velocity. The descent trajectory of an entry probe can be determined from pressure, temperature, and mean molecular mass data. This technique offers redundancy for large entry probes in the event of a mass spectrometer failure and increases the potential scientific yield of small entry probes that do not carry mass spectrometers. This technique is demonstrated on Huygens atmospheric structure instrument (HASI) data from Titan. Accurate knowledge of entry probe and parachute drag coefficients is required for this technique to be useful.  相似文献   

4.
In this paper we present an in-depth study of the distributions of various neutral species in Titan's upper atmosphere, between 950 and 1500 km for abundant species (N2, CH4, H2) and between 950 and 1200 km for other minor species. Our analysis is based on a large sample of Cassini/INMS (Ion Neutral Mass Spectrometer) measurements in the CSN (Closed Source Neutral) mode, obtained during 15 close flybys of Titan. To untangle the overlapping cracking patterns, we adopt Singular Value Decomposition (SVD) to determine simultaneously the densities of different species. Except for N2, CH4, H2 and 40Ar (as well as their isotopes), all species present density enhancements measured during the outbound legs. This can be interpreted as a result of wall effects, which could be either adsorption/desorption of these molecules or heterogeneous surface chemistry of the associated radicals on the chamber walls. In this paper, we provide both direct inbound measurements assuming ram pressure enhancement only and abundances corrected for wall adsorption/desorption based on a simple model to reproduce the observed time behavior. Among all minor species of photochemical interest, we have firm detections of C2H2, C2H4, C2H6, CH3C2H, C4H2, C6H6, CH3CN, HC3N, C2N2 and NH3 in Titan's upper atmosphere. Upper limits are given for other minor species.The globally averaged distributions of N2, CH4 and H2 are each modeled with the diffusion approximation. The N2 profile suggests an average thermospheric temperature of 151 K. The CH4 and H2 profiles constrain their fluxes to be and , referred to Titan's surface. Both fluxes are significantly higher than the Jeans escape values. The INMS data also suggest horizontal/diurnal variations of temperature and neutral gas distribution in Titan's thermosphere. The equatorial region, the ramside, as well as the nightside hemisphere of Titan appear to be warmer and present some evidence for the depletion of light species such as CH4. Meridional variations of some heavy species are also observed, with a trend of depletion toward the north pole. Though some of the above variations might be interpreted by either the solar-driven models or auroral-driven models, a physical scenario that reconciles all the observed horizontal/diurnal variations in a consistent way is still missing. With a careful evaluation of the effect of restricted sampling, some of the features shown in the INMS data are more likely to be observational biases.  相似文献   

5.
A theory for the production of eddy diffusion in the upper atmosphere by the global deposition of meteoroids is presented. It is based on the assumption that meteoroids falling on the Earth carry, on the average, a greater amount of orbital angular momentum per unit mass than that corresponding to the Earth's orbit. This excess of orbital angular momentum of the meteoroids is deposited in some or the other form during their interaction with the Earth's atmosphere. The softer material deposits the excess of its orbital angular momentum in a region slightly higher than the harder material and is held responsible for the superrotation observed in the atmosphere. It is shown that the other population of meteoroids which is metallic in nature deposits the excess orbital angular momentum below 100 km altitude and produces eddies. The size and velocity of the eddies so formed give the value of the vertical eddy diffusion coefficient in agreement with the upper limit set by Johnson and Wilkins (1965) from the study of downward heat transport in the atmosphere.  相似文献   

6.
Magnetohydrodynamic formulation has been used to deduce the velocity distribution of the upper atmospheric movement caused by the auroral electric field at the thermospheric height. The expressions for Joule heating and viscous heating are obtained. Numerical analysis has been made to estimate their magnitudes as well as the rate of their variations with time. The results are presented graphically.  相似文献   

7.
A kinetic model is developed for the prediction of upper atmospheric i.r. radiation from the vibrational bands of NO. The model is appropriate to both the quiescent and aurorally excited nighttime atmosphere and has been exercised to examine the variation in NO radiation levels which can result from both natural atmospheric variability and uncertainties in kinetic parameters. Comparisons between model predictions and i.r. radiance data are presented.  相似文献   

8.
Data acquired by the Ion Neutral Mass Spectrometer (INMS) on the Cassini spacecraft during its close encounter with Titan on 26 October 2004 reveal the structure of its upper atmosphere. Altitude profiles of N2, CH4, and H2, inferred from INMS measurements, determine the temperature, vertical mixing rate, and escape flux from the upper atmosphere. The mean atmospheric temperature in the region sampled by the INMS is 149±3 K, where the variance is a consequence of local time variations in temperature. The CH4 mole fraction at 1174 km is 2.71±0.1%. The effects of diffusive separation are clearly seen in the data that we interpret as an eddy diffusion coefficient of , that, along with the measured CH4 mole fraction, implies a mole fraction in the stratosphere of 2.2±0.2%. The H2 distribution is affected primarily by upward flow and atmospheric escape. The H2 mole fraction at 1200 km is 4±1×10−3 and analysis of the altitude profile indicates an upward flux of , referred to the surface. If horizontal variations in temperature and H2 density are small, this upward flux also represents the escape flux from the atmosphere. The CH4 density exhibits significant horizontal variations that are likely an indication of dynamical processes in the upper atmosphere.  相似文献   

9.
Gladstone GR  Allen M  Yung YL 《Icarus》1996,119(1):1-52
The hydrocarbon photochemistry in the upper atmosphere of Jupiter is investigated using a one-dimensional, photochemical-diffusive, and diurnally averaged model. The important chemical cycles and pathways among the major species are outlined and a standard model for the North Equatorial Belt region is examined in detail. It is found that several traditionally dominant chemical pathways among the C and C2 species are replaced in importance by cycles involving C-C4 species. The pressure and altitude profiles of mixing ratios for several observable hydrocarbon species are compared with available ultraviolet- and infrared-derived abundances. The results of sensitivity studies on the standard model with respect to variations in eddy diffusion profile, solar flux, atomic hydrogen influx, latitude, temperature, and important chemical reaction rates are presented. Measured and calculated airglow emissions of He at 584 angstroms and H at 1216 angstroms are also used to provide some constraints on the range of model parameters. The relevance of the model results to the upcoming Galileo mission is briefly discussed. The model is subject to considerable improvement; there is a great need for laboratory measurements of basic reaction rates and photodissociation quantum yields, even for such simple species as methylacetylene and allene. Until such laboratory measurements exist there will be considerable uncertainty in the understanding of the C3 and higher hydrocarbons in the atmospheres of the jovian planets.  相似文献   

10.
A new theory of the superrotation of upper atmosphere is worked out on the basis of global deposition of meteoroids assuming that a certain constant influx of meteoroids is continually falling upon the Earth's atmosphere. On the average the meteoroids are shown to carry a greater amount of orbital angular momentum than that corresponding to the Earth's orbit about the Sun. It is argued that the excess of orbital angular momentum appears as extra spin angular momentum in the atmospheric layer in which the meteoroids are arrested and this is used to calculate the velocity difference which can be maintained across a certain layer of the atmosphere. It is found that a global deposition of 34 tons/day of meteoric material is required to account for the observed superrotation which agrees with the recent estimates on meteoric mass influx on the Earth.  相似文献   

11.
The DTM series of atmospheric density models (Barlier and Berger) have been developed for atmospheric constituent representation and precise orbit computation. They are based upon satellite drag total density data which are implicitly averaged over one or more days.

Our approach consists of refining the computation of the density model coefficients with more precise orbit computation, using the information contained in the tracking data. Satellite Laser Ranging (SLR) in case of Starlette (800 km) and GFZ-1 (380 km), Doppler-DORIS in case of SPOT2 (800 km).

This has been verified by comparison of the new density values to Dynamic Explorer 2 (DE-2) measurements, as well as by precise orbit computation. In both cases, an improvement of a few percent has been achieved, showing the interest of the method.

This study has been done in preparation for the new accelerometric mission CHAMP for which we prepare a new gravity field (GRIM5) using the orbit perturbation technique, as well as an improved density model, hence improving the drag modeling.  相似文献   


12.
Evaluations are presented of the time-average heating at different latitudes and heights due to energy flux divergence of the equinox diurnal and semidiurnal tides calculated by Forbes (1982a,h)from 0 to 400 km.It is found that diurnal tidal heating maximizes in the region of 80 km and semidiurnal has a sharp maximum at 108 km. Thermospheric diurnal oscillations give rise to a second region of heating that maximizes at 200 km and effectively transports energy from low to high latitudes.Global means are evaluated for the time-averaged vertical energy fluxes and heating rates: below 130 km, the results for the diurnal tide agree with those for the (1,1) mode alone, and for the semidiurnal tide, heating rates below 130 km are the same as those that would he obtained without the thermospheric semidiurnal excitation.Comparisons are made from 90 to 170 km between the combined diurnal and semidiurnal heating rates and previously reported rates due to e.u.v. radiation, Sq currents and gravity waves.  相似文献   

13.
Joule heating has been shown to be very effective in increasing electronic temperature in the upper atmosphere. It is found theoretically that the electronic temperature can rise up to several thousands °K soon after certain ionospheric current disturbances occur, while the temperature of neutral particles increases only very slowly. Temperatures in various conditions have been computed and are found to be compatible with observation. It is also possible that the high electronic temperatures may explain the excitation of certain auroral glows.  相似文献   

14.
Material from the Galilean satellites of Jupiter ejected by energetic particles in the Jovian magnetosphere may provide large sources of oxygen to the parent planet. Formation of a CO molecule is the ultimate fate of an oxygen atom in the upper Jovian atmosphere. This high altitude source of CO supports Beer and Taylor's (1978, Astrophys. J.221) observations and analysis, provided that the globally averaged O atom input flux is ~107 cm?2 sec?1 and the eddy diffusion coefficient at the tropopause is ~103 cm2 sec?1. Implications for the possible presence of other atoms and molecules derived from the satellites are discussed.  相似文献   

15.
The activity of Librids on 4 April 1973 was detected by the rise of the twilight luminosity. The ratio of circumzenithal luminosity in the antisolar to solar azimuth also increases in the presence of cosmic dust in the upper atmosphere.  相似文献   

16.
A study of the upper-atmosphere variations induced by solar activity was made by using 29,574 densities derived from the drag of 10 satellites in the interval 1958–1971. In a comparison of the respective merits of the Ca II-plage index and the 10.7 cm solar flux to represent the erratic (‘27 day’) component of the variation, the latter is shown to give invariably better results. The ratio ΔTδF of the temperature variations to the variations of the decimetric flux is shown to vary considerably with solar activity, but little with height or with local solar time. The time lag of the atmospheric variations behind those of the decimetric flux varies from a minimum of 0.9 day at noon to 1.6 days at midnight.  相似文献   

17.
Density profiles for CO, O, and O2 in the Cytherean atmosphere above 90 km are plotted with eddy diffusion coefficient (K) as a parameter, subject to the constraint that the mixing ratios of CO and O2 approach their observed value or values under the observed upper limit at the lower boundary. It is then shown that the value of K puts upper limits on the amount of hydrogen (in the form of H2O, HCl, and H2) the atmosphere near 90km can contain. This value is a function of the density and temperature of hydrogen at the critical level and the magnitude of the total escape flux, where unspecified flux mechanisms other than thermal are postulated ad hoc. In general these constraints call for large values of K to accomodate the atomic hydrogen produced by measured mixing ratios of HCl and H2O. Hence they constrain thee amount of O in the upper atmosphere to values well under 1% at 130 km unless there are very large hydrogen escape fluxes, 107 cm?2sec?1 or larger. The freedom to assume arbitrary amounts of H2 in the atmosphere is also restricted. We suggest either very effective escape mechanisms—despite low exospheric hydrogen densities—or novel excitation mechanisms for O(33S) and O(35S) in the upper atmosphere.  相似文献   

18.
G. Kockarts 《Solar physics》1981,74(2):295-320
Several semi-empirical models of the terrestrial upper atmosphere are presently available. These models take into account solar activity effects by using the solar decimetric flux as an index. Such a procedure is a consequence of the lack of continuous determinations of the solar spectrum directly responsible for the physical structure of the upper atmosphere. Variations of the thermopause temperature are discussed. Using five sets of solar irradiances measured in the ultraviolet and in the extreme ultraviolet, the penetration of solar radiation is analyzed as a function of solar activity. Several examples of absorption profiles and ion production rates are discussed for variable conditions. Various energetic effects are also described. All computations are made for physical conditions above Scheveningen (52.08° N) where the 14th ESLAB symposium was held.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

19.
Relative absorption cross-sections between 180 Å and 304 Å, and between 584 Å and 304 Å are obtained for atomic oxygen in the upper atmosphere, by observing the attentuation of solar radiation using a satellite instrument.  相似文献   

20.
Sounding rocket measurements of the solar soft X-ray irradiance   总被引:1,自引:0,他引:1  
Bailey  S.M.  Woods  T.N.  Canfield  L.R.  Korde  R.  Barth  C.A.  Solomon  S.C.  Rottman  G.J. 《Solar physics》1999,186(1-2):243-257
Measurements of the solar soft X-ray (XUV: 2 nm to 30 nm) irradiance were performed from a sounding rocket payload flown from White Sands Missile Range, New Mexico on 4 October 1993 and again on 3 November 1994. The soft X-ray instrumentation comprised of silicon photodiodes with thin films deposited directly onto their active areas. The deposited material and its thickness in conjunction with the sensitivity of an uncoated diode determine the passband and the sensitivity of these photometric devices. The measurements are interpreted in terms of appropriate SERF 1 (Hinteregger, Fukui, and Gilson, 1981) model solar spectra. It is found that the data are consistent with a solar spectrum that is on average approximately a factor of two times the model solar spectra. It is shown that the measured irradiances are in reasonable agreement with other experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号